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Abstract.

Let (G ) be a subfiltration of (F ) so that the processes
[P(A/Gt)] are (F J-martingales for all A E G,. Let stab (G) be
the smallest stahle subspace of gP which contalns the rlggt continuous
modifications of these martingales. The paper shows that the martingale
(Nt) i stab1(G) if (N ) 1is orthogonal to the martingales [P(A/G )]
This yields that stabp(G) =stab (G) NH° and that the elements ot
stab1(G} remain martingales under any measure Q << P so that
Q(A/Ft) = P(A/Gt) for all A€ G, . The results are applied to regqular
solutions of stochastic differential equations.

AMS subject classification: 60G44, 60M10, 60M20, 62P20.
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Introduction.

1.1. Some notations, and the main theorem.

Let (Q’F’Ft’P)tgo be a filtered probability space with (Ft)
right continuous and complete. Let M be the space of right con-
tinuous uniformly integrable (Ft,P)-martingales with seminorm

Ny = INGHl 25 and Tet HP (pel1,»)) be the set of (N.) M
which satisfy H(Nt)”Ep A E[s%piNt]p] <o . If GEHP, Tet
stabp(G) be the smallest stable subspcae of HP  which contains G
(see Jacod (1979), ch. IV- 1-a, for the definition of stable subspace).
If (Nt) and (L,) € M, then (N

i if NjL,=0 and (N,L,)

t) t) t) tt

is a local martingale.

The purpose of this paper is to prove the following result:

Theorem

Let (Gt) be a subfiltration of (Ft) , and assume that
vt20 VAEG NAmt)=F%MFO (1.1)

Let G be a set of right continuous modifications of the martingales
(P(A|Gt)] for A€G_  (note that (1.1) ensures that they are adapted

to the completion of (Gt) ). Then

) EM (Nt) 1L G=(N,) L stab,(G) (1.2),

+)

stab, () being the smallest stable subspace over (Ft) which contains G.

1.2. Previous and related results.

The statement (1.2) has previously been proved for other definitions

of G. It holds when G is a finite set of martingales and stab, (G) =Hl,



see Jacod (1978), and also Theorem 4.6.7 of Jacod (1979). It also holds
when G s a set of continuous martingales. This goes back to Theorem
1.5 (p.88) of Jacod & Yor (1977), see also Proposition 4.13 in Jacod
(1979) and Theorem 15 in Strook & Yor (1980). We have not been able to
find a formulation where the only condition is that the elements of G be
continuous, but this is an easy extension of the mentioned results.
Finally, a similar result holds for stable spaces of integrals over random
measures, see Yor (1978), and also Theorem 4.53 of Jacod (1979).

The reason why (1.2) 1is interesting is shown in Jacod (1979). First,
it relates the concept of stable subspace of HP  for different values of
p . By using the duality between HP and H9 (for %+%=1 s P&l
see Theorem 4.7 of Jacod (1979)) together with the Hahn - Banach theorem,
(1.2) implies that for all pe[1,»),

stab (6) = stab, (6) nHP (1.3) .

Second, (1.2) connects different extremality-like criteria on P. If
F, is a 0-1-o0-field, then stab,(Gu {1}) =H' iff P is extremal

in the set M of measures under which the elements of G are local

martingales, see Theorem 11.2 of Jacod (1979). Using (1.2) (set N,

., ., .
aﬁ')’ it is seen that this is equivalent to

Q<KP, QeM= Q=P (1.4) .

A manifestation of this is found in Corollary 11.4 of Jacod (1979).
(1.2) and its consequences can be applied to solutions of martingale

problems and to weak solutions of stochastic differential equations. An

example of this is Theorem 12.21 of Jacod (1979). In the same way, the

result in the present paper can be applied to what is usually called



regular weak solutions of stochastic differential equations. E.g., if

we consider the equation

d)(t = ut(X)dZt . Xy =X (1.5)

where (Zt) is an (m-dimensional) semimartingale, and ug s an
(n xm-dimensional) predictable functional, then (Q,F,Ft,P,Xt,Zt) is
a regular weak solution of (1.5) if (1) wu(A) =P(Z€A) coincides
with a predetermined measue on the function space where 7 takes

values, (2) (Xt) and (Zt) satisfy (1.5), and (3)

vtz0 VAEFS  P(AIF,) = P(A|FL) (1.6) .

For a further discussion of the equation (1.5) and the concept of

regular solution, see Jacod (1980), Jacod & Memin (1981) and Lebedev
(1983).

An extremal reqular weak solution (Q’F’Ft’P’Xt’Zt) is one where

it holds that if there are measures Q, and Q, on Fi’z

Pk

so that

, and so that (Q,FX’Z FX’Z Qi’xt’zt)

o) bl t 2
is a regular weak solution, then Q, =02 =P on Fi’z

P=a,0Q, +a,0, (a,,a,>0) on
If we assume

that F, is complete and that H is the set of right continuous modifi-
cations of the martingales (P(A]FZ’Y)] for AeF s’

G, =F€ , (1.2) yields for an extremal regular solution that, for any

, then by setting

pz1,

stabp(G) = stabp(H) (1.7)

stabp being the smallest stable subspace over (Ft) . This is because

X,Z).

it holds when stabp is the smallest stable subspace over (Ft

An interesting consequence of this is that

X,Z

vAeFLt vtz0  P(AIFLD) = P(AJF) (1.8) ,



which Tinks extremality with Granger-causality and with the concept of
adapted distribution. For this, see sect.4 of Mykland (1986), which
also discusses the relationship between Granger-causality and weak
uniqueness of a regular solution.

Finally, note that since (1.4) holds for extremal regular weak

solutions, there is, for each extremal regular solution (Q,F,F,_.P,X,,Z,)

B> YR

of (1.5), a measurable set A in the (function) space where (X,Z)

takes values, so that (Q,F,Ft,P,Xt,Zt) is a solution of
(1.5 &% (X,2)(w) € A (1.9) ,

and so that (1.9) has a weakly unique regular solution. This is easily
seen from the fact that the set of measures over the space where (X,Z)
takes values is separable. "Weakly unique" here means that for every
regular solution (Q,F,Ft,P,Xt,Zt) of (1.9), there is no measure Q

on FoZ, Q=P on Fi’z , so that (Q,Fi’z,Fi’Z,antaZt) is a regular

(ee]

solution of (1.9).

2. Proof of the theorem.

2.1. Preliminary remarks.

In the following we shall mean the completion of (Gt) when we

speak of (G Set

t)'

I = stab_(G)

and let (Nt)ezM ; (Nt)_LG . To show that (Nt)_LI , We can assume

without loss of generality that



where T 1is the time of the first jump by (Nt) (or = if Nt(w) does
not jump). This is because a general (Nt) can be decomposed into
(N ), (N ), (NtAT3 -NtATZ) , and so on, where T, s

the i'th jump of (Nt) : (Nt) is orthogonal to a martingale if and

taT, tM2 B NtATl

only if each of these components so is.

Decompose, following Theorem 2.21 (p.32) in Jacod (1979), (Nt)

into a continuous and a purely discontinuous part,

N .=NC+N

d
t t t

Every (Kt) €G can be decomposed over (Gt) in the same way as (Ki)
and (Kg) , and these are also, respectively, continuous and purely
discontinuous martingales over (Ft) as all (Gt)—martingales are (Ft)-

martingales. Since (Nt).LG it must be orthogonal to (Ki) , hence

(Ni).L(K%) since (NS)J'(Ki) by Corollary 2.29 (p.37) in Jacod. By
the same result, (Ni)-L(Kg) , hence (Ni).L(Kt) . As (N%).LG and is
locally bounded, it is by Theorem 4.7 (p.116) L1 .
In the following, we shall write Te for the restriction of T to
a set E, i.e. T =T on E and « otherwise. By Theorem 5.16 (p.42)

In E11i0t (1982), we can write
T = Ty ATg y

where A and B are disjoint, AUB =, A,B EFT_ , and so that A

is accessible and Ty totally inaccessible.

Consider the set
€ = {[J{TB =cn<(w}|0n is a (Gt)-stopping time} ,
n

and set



A = sup{P(E) : E€e}

Let Cn be a sequence in e so that P(Cn) —=X. As e 1is closed

under countable union,

C=yC €c¢
g B
and
P(C) = A
Obviously,
C=B
and
C e FT y
B

hence Tc = TCaB is a stopping time. We also consider the stopping time
T where

D=B-C€F
B

As (Ni) is orthogonal to I , it remains to show that the same result

d
t)'

studying the jumps in A, C and D separately. From this, (N

holds for the pure jump martingale (N We shall begin this by
d
¢)
will naturally be decomposed

_ (1) (2)
Nt—Lt +Lt s

(Lél)) taking care of the jump over D and (Léz)) of the rest of
the jump. We show that (Lél)) and (Léz)) are L to I, whence

the result will follow.



2.2. The jump in A.

By definition of accessibility

[ty 1 € H[Th]] U E

where E is evanescent and the t's are predictable.

Set

_fn_ 1 n__n-1
E,={t =t}u...uf{r =t "}

By Theorem 5.26 in E11iot (1982) (p.44), En EF&_ . Hence, by Theorem

5.25 in the same book, TE is a predictable stopping time. Hence, by
n

using an increasing sequence of stopping times increasing to rg s 1t

n
is easy to see that

is a martingale L G. Hence, as A 1is the disjoint union (up to a null-
set) of {TE =t} (note that P(TE =1g) = 0 by definition of predicta-

n n
bility and total inaccessibility) and as

AN I = AN n 9
Tl To
Erl En
it follows that
(1) _
Nt B IAANTI{tZ }

]
0~
>
=
~
—
—~—
ot
v
et
—t

n
n fr=1~ }
En
=y AN I ,
noote {tz1)}
En En

is a martingale L to G.



2.3. The jump in D : conclusion for (Lél)) :

Set
0 . R
Nt = Nt Nt
=N - oaNT
5 A~ Tt {tz1}

(Néz)) is a martingale, L G which jumps at Tg - For a given (Gt)

stopping time o, we have
{TB=O}ECUE (P(E) =0) .

hence

By using Theorem 6.46 (p.61) in E1liot (1982), it is easily seen that for
all (Gt)-martingales (Kt):

This leads to (Lil)) being orthogonal to stabM(G) , Where (w; being

the dual predictable projection)
(1) _ ¥
Lt = At np(At) ;
with
At - ID 4 NTI{tZT}

To see this, note that the set J of martingales of the form

n .
T oM )
(1'=1 By tagy



(where the (Mi)s are (Gt)-martinga1es, Ei €F, , the o; s are
(Ft)—stopping times and n is arbitrary) is dense inn I. This is
because it is a linear space which is closed under stopping; the set
of Timits of Hl-convergent sequences on this space is also closed
under stopping and therefore stable.

Now of (Kt) €l , there is a sequence in J which converges to
(Kt) in M, and a subsequence (Kél)) of this converges also for
all t, P-a.s. (Kig) can be chosen to converge P-a.s., the rest
follows by right continuity of the sample paths). Hence, for a given

stopping time o,
AK(E) — AK P-a.s.
o] (o]
However, for fixed %,

() _
AKG -ZI_

In the case of T » this gives that

AK,(EQ) =0 3
D

whereby

for all elements of stab,(G) . Hence, by Corollary (2.27) (p.35) in
Jacod (1979), (Lél)) is orthogonal to stab,(G) .



2.4. The jump in C.

Set

(3) _ g2 _ (1)
N = Ng Lt ,

=N - zIAUDANTI{t;T} .

g =N

This is again a martingale, LG, which jumps at T -

Set

and let c;* be the restriction of c; to En . Obviously,
EnEzGG » so that o is a (G)-stopping time. In addition, C fis
n

obviously a disjoint union of the sets {4 =o;*‘<m} . Now write (by

Theorem 5.16 (p.42) in E1liot (1982))

**

where 9 and o; are, respectively, the totally inaccessible and

the accessible parts of c;* with respect to the filbration (Gt) g

Now ,

Lo T <ylnd

where the n, s are predictable stopping times with respect to (G,)
k t
As

and therefore (Ft) .
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ETB B n Enk 1
is evanescent by definition of total inaccessibility, it follows that

C=u{rg =0 } VE , P(E) =0 ;
n

the union being disjoint.

Since 9, is (Gt)-totally inaccessible, the process
) _ q(m) _ _*,,(n)
Kt = At ﬂp(A )t

where

(n) _
At - I{tZGn}

*
and ﬂp is the dual predictable projection with respect to (G is

t) ,
a (Gt)- and therefore (Ft)-martinga1e. Hence,

i - [N(a)’K(n)]t

U1 S S
T {tz1} {TB—on< }

by the results (2.21) and (2.29) (p.32-37) in Jacod (1979), and this is
a martingale by Corollary (2.27) in the same book and by (Néa)lLG.

Hence

(%) _
Ng 7 = AN Tl

- rzm A NTI {tzT}I{TBwn(w}

is a martingale.



= 19 =

2.5. Further study of the jump at AuC.

Set

(2) _ (1) (3)
Ly " = N oo+l

Since

AN = Al A ®
T T T

d

it follows that (Nt - LEI) —Léz)) is continuous, and therefore, by

construction, nul. That is,
d _, (v (2)
Nt = Lt + Lt
Hence, as mentioned in 2.1, it now remains to show that (Léz))i.l.

From 2.2 and 2.4, we have that

(2) _
Le 7 = 0N TnoeTiesny

Consider the following 3 types of sets:

{s < TAUC} ne, B(—:FS

and
{t

v

Tauc!

The integral of Liz) over each of these sets is 0, and since

(2) e (2) .
(L") is orthogonal to G, the same holds for Il ', where E is
AuC
any element of G_. Since F. . s the smallest o-field over the
AuC

algebra of finite disjoint unions of sets on these 3 forms, this yields

that



< 13

E(I aL$®? |F

E™ " T —) =1
AuC “AuC

for all EEGm. Hence,

E(AL(Z) [6.vF = 0

Taue @ TAuc‘)

However, from what we have seen in 2.3, all martingales (K,) el

¢)

satisfy that AK is G _vF _ -measurable. This isbecause
TAUC TAuC

{oigcﬂ-EFU_ for stopping times o and o; » see Elliot (1982),
Theorem 5.13 (4), p.41. Hence,

E (AL(z) AK_|F =0 ‘

Tauc  Tauc Tauc ” )
which yields that [L(z),K]t is a martingale. (Léz))_LI follows
by Jacod (1979)'s Corollary 2.29 (p.36).

(ged)
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Correction to statistical report no. 15, Dept. of Mathematics,
University of Bergen, Norway. December 1988.

Part 1.

p.1: Add at end of first paragraph: "If I is a subset of M, we

say that (N 1LE 5 (H )J_(L ) for all (L JeEI so that (N )

is loeally 1ntegrable. Locally 1ntegrable here means that there

is a sequence of stopping times q qn =)0 as n-)e0 , so that
LA% t“?’ls integrable for each n andxfy” - 2

P. 3: "measue" should be "measure". Ft’ should be Ft’

Part 2.

P.5: T is the first jump exceedipp 1. The second paragraph (with

the decomposition It—nt+Nt) is omitted.

p.6: Last paragraph ("As (H ) is ...") to be replaced by:

"We shall study the jump at time T in A, C and D se arately. From
uhlS J ) will naturally be decomposed N —L(’l)-k]’_u(2 +remainder,
(L 15) taking care of the jump over D and (L 2)) of the rest of
the Jjump at time T¥. How let (K ) be an arbltrary element of I.
Local integrablilty of Nth is equivalent to local integrability
of LH Kjt, and one is a local martingale if the other so is.

Wle shall show that EL K] =0 (sect. 2.3), and that if [w, K]t
is locally integrable, then so is [L 2) K]t’ and the latter is

a local martingale (sect. 2.5). In particular (since (K ) can be
any element of G), it follows that (L( ) (2)) is orthogonal to
G, whence the same holds for the remalnder. Being locally bounded,
the remainder is also | to every element of I, by Thm. 4.7

(p. 117) in Jacod (1979), and in particular to the (R ) from the
beginning of the paragraph. Hence [remalnder K] is a 1ocal
martingale. Hence [h R] is a local martingale whenever it is
locally integrable. The ¥esult follows." (1)
P.8: Omit first two sentences of sect. 2.3%. "This leads to (L )
being orthogopal to stabl(G) should be replaced by "This leads
to EL K]t 0 for all (K JEL

p.9: Last sentence replaced by:"Hence by the proof of Corollary
(2.27) (a) (p.35) in Jacod (1979), [L&q K]t=0 for all t.

p.10: Omit first two sentences of sect. 2.4. "filbration" should
be"filtration".

(continued next page)



I (A
p.11: Replace NEB) by H,. Replace Hf: D vy i3,
p.72: Second and third sentence of sect. 2.5 should be omitted.
P.15: Last tpo sentences of sect. 2.5 should be replaced by

I\UI'.

is some bounded stopping time so that EL 2) K]t A9 is 1nterrable,

then
[[_L(2) K] nuc”), A ’nF,)] =0

"Since EL(g) K]t A (E)AKTAuclft'ij’ it follouq that if n

AvC b

vhence [L(g) K]t* is a martingale. Since we have from sect. 2.
and seect. 2.% that [L( ) K]t O and [}emalhder h]t is locally
intepgrable, assuming that [T K & is locally integrable implies
that [ (?) L is locally integrable, and,

by the preceeding,
a local martlngale. (qed)"

Per Ivklard.



