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Abstract

High frequency inference has generated a wave of research interest among econometricians
and practitioners, as indicated from the increasing number of estimators based on intra-day
data. However, we also witness a scarcity of methodology to assess the uncertainty, the standard
error, of the estimator. The root of the problem is that whether with or without the presence of
microstructure noise, standard errors rely on estimating the asymptotic variance (AVAR), and
often this asymptotic variance involves substantially more complex quantities than the original
parameter to be estimated.

Standard errors are important: they are used both to assess the precision of estimators in
the form of confidence intervals, to create “feasible statistics” for testing, and also when building
forecasting models based on, say, daily estimates.

The contribution of this paper is to provide an alternative and general solution to this
problem, which we call Observed Asymptotic Variance. It is a general nonparametric method
for assessing asymptotic variance (AVAR), and it provides consistent estimators of AVAR for a
broad class of integrated parameters Θ =

∫
θtdt. The spot parameter process θ can be a general

semi-martingale, with continuous and jump components. The construction and the analysis of
ÂV AR(Θ̂) work well in the presence of microstructure noise, and when the observation times are
irregular or asynchronous in the multivariate case. Edge effects, the phasing in and phasing out
of an estimator on the boundary of the data interval, are also analyzed and treated rigorously.

As part of the theoretical development, the paper shows how to feasibly disentangle edge
effects from the estimation error of Θ̂−Θ and the variation in the parameter θ alone. For the
latter, we obtain a consistent estimator of the quadratic variation (QV) of the parameter to be
estimated, for example, the QV of the leverage effect.

The methodology is valid for a wide variety of estimators, including the standard ones for
variance and covariance, and also for more complex estimators, such as, of leverage effects, high
frequency betas, and semi-variance.

Keywords: asynchronous times, consistency, discrete observation, edge effect, irregular
times, leverage effect, microstructure, observed information, realized volatility, robust estima-
tion, semimartingale, standard error, two scales estimation, volatility of volatility.
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1 Introduction

1.1 Two Standard Errors

As high frequency data becomes more readily available, the demand for analyzing such big and noisy
data is also increasing. Within the recent decade, we have seen the arrival of novel methodologies
for using the high frequency data to estimate volatility, to assess the asymmetric information in
financial returns via semi-variance and leverage effect, to measure statistical leverage, to make
inference relating to jumps, and many other objects of interest. As financial markets and global
economies evolve, we expect an ongoing need to estimate new parameters of interest from data of
the high-frequency variety. This process will substantially improve the precision with which we can
measure financial and economic quantities.

A typical analysis takes the following form. One seeks to estimate

Θ =
∫ T

0
θtdt (1)

on the basis of n data points, where {θt} is a spot parameter process such as volatility, leverage
effect, instantaneous regression coefficients, etc. To arrive at feasible inference, one typically needs:

Theoretical Requirement 1. (Asymptotic Validity of Normal Approximation.)1 As
the number of observations n becomes large,

i. An estimator Θ̂n which is consistent

ii. A standard error se(Θ̂n), i.e., a data-based statistic for which

Θ̂n −Θ
se(Θ̂n)

L→ N(0, 1) stably. (2)

2

The conventional way to implement Step (ii) is to go through the following additional steps:

Theoretical Requirement 2. (Estimated Asymptotic Variance.)

i. A limit theory: nα(Θ̂n − Θ) L→ V
1
2N(0, 1) stably in law, where V is a (potentially random)

asymptotic variance;2

ii. Find a mathematical expression for V ;

iii. Find a consistent estimator V̂n of V ;

iv. Set se(Θ̂n) = |ÂVARn|
1
2 , where ÂVARn = n−2αV̂n. 2

1See Proposition 2 in Section 3.1 for precise conditions. Stable convergence is described in Definition 3 in the
same section.

2 For subsequent decluttering of notation, we set AVARn = n−2αV and ÂVARn = n−2αV̂n. V̂n is consistent if and

only if ÂVARn = AVARn(1 + op(1)). We refer to this as ÂVARn being consistent. The formulae for V and AVARn

are given explicitly in (16)-(17) in Section 3.1.
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Our purpose in this paper is to circumvent Theoretical Requirement 2, by developing

The Alternative: Observed Asymptotic Variance. We shall find general formulae for
ÂVARn, one which does not depend on knowing α or V . We call this the Observed Asymptotic
Variance, and se(Θ̂n) = |ÂVARn|

1
2 is the observed standard error.

We provide two constructions of observed AVAR: (i) A two-scales ÂV ARn in Definition 4 and
Theorem 4 in Section 3.2, and (ii) and multi-scale ÂV ARn in eq. (58) and Theorem 7 in Section 4.2.
Both estimators are consistent for the asymptotic variance (they satisfy Theoretical Requirement
2) using the cited theorems and under Proposition 1 in Section 3.1. Theoretical Requirement 1 is
then satisfied via Proposition 2 in Section 3.1. 2

Apart from regularity conditions, our only assumption is that the spot parameter process {θt}
is allowed to be a general semimartingale, hence {θt} can have jump or continuous evolution and it
can be either an Itô or non-Itô process as in Calvet and Fisher (2008).3 Allowing non-Itô processes
makes the results appropriate to more areas of data applications. We shall see in Sections 8-9
that the conditions for our results are satisfied broadly, including on quite exotic quantities such
as leverage effect, and nearest neighbor truncation. Additional guidance on theory is provided in
Section 7.

Practical guidance to how to use our theory is provided in Section 6. We emphasize that
for empirical analysis, one does not need to know the form of V to use the Observed Asymptotic
Variance. Whether one needs to check the conditions of the cited theorems is a question of priority.
The technique permits the setting of prima facie standard errors by just using our formulae and
without any prior theoretical derivation. One can then verify the theoretical conditions afterwards.
This is much like the practice in parametric inference (using the observed information) and when
bootstrapping.

1.2 Why do we need a Standard Error?

Currently, the main use of standard errors are hypothesis testing and self-contained confidence
intervals based on (2). In high frequency econometrics, such intervals go back to Barndorff-Nielsen
and Shephard (2002a), where ÂVARn was set as the 2

3× the quarticity (see Section 3.3). Confidence
intervals and tests have been the main spur for pursuing the asymptotics described in Theoretical
Requirement 2. Other early contributions to this asymptotics are those of Foster and Nelson (1996),
Comte and Renault (1998), Jacod and Protter (1998), and Zhang (2001). A substantial amount of
work on this problem has followed, as described below and throughout the paper; in particular, we
refer to Section 8.

There are other reasons than tests and confidence intervals for wanting the standard error,
3See also Rosenbaum, Duvernet, and Robert (2010) and Aı̈t-Sahalia and Jacod (2013) for recent interest in this

type of evolution.
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which we summarize in the following. All of these applications require the standard error.

i. Incorporation into forecasting models: see Andersen, Bollerslev, and Meddahi (2005)
and Bollerslev, Patton, and Quaedvlieg (2015).

ii. Optimal combination of intraday high frequency estimators, see an early draft of
Meddahi (2002), as well as Andreou and Ghysels (2002) and Ghysels, Mykland, and Renault
(2012).

iii. Model selection in high frequency regression, see Zhang (2012, Section 4, pp. 268-
273). As documented in the cited paper, this problem has applications to the estimation of
high frequency betas, as well as to non-parametric options trading.

iv. Selection of tuning parameters: Many estimators involve one or more “tuning parame-
ters”, such as block or subgrid size. Optimizing the estimator Θ̂n as a function of these tuning
parameters would naturally involve minimizing the asymptotic variance. We shall see that this
optimization can be done on the basis of our proposed ÂVARn. See Section 5 for references
and further development.

1.3 Why do we need the Observed Asymptotic Variance?

The rationale behind this paper is that Theoretical Requirement (TR) 2(ii)-(iii) is a main hindrance
to the development and use of inference in high frequency data. Recall that (ii) entails finding the
form of the theoretical asymptotic variance V , and then (iii) requires find a consistent estimator
for V .

It can already be difficult to find appropriate estimators Θ̂, and it is often a substantial ad-
ditional burden to carry out the steps in TR 2(ii)-(iii). To corroborate this, we draw attention
to the large number of cases where the literature provides estimators Θ̂n of Θ, but where feasible
(asymptotically pivotal) statistics of the form (2) are not available.

A notable class of examples of this problem is provided by the number of estimators that are
documented for the case where there is no microstructure noise (thus revealing interest in the
problem) but with little literature on the case where microstructure noise is present. Anecdotal
evidence suggests that this is usually because microstructure noise makes the problem so forbid-
ding that researchers never get around to it. Also, the main challenge is not in finding Θ̂n, but
rather the problem of finding AVAR and ÂVARn. Examples in the literature include, but are not
limited to, semivariance (Barndorff-Nielsen, Kinnebrouck, and Shephard (2009)); nearest neighbor
truncation (Andersen, Dobrev, and Schaumburg (2012), see also Section 9); estimating the rank of
the volatility matrix (Jacod and Podolskij (2013)); principal component analysis (Aı̈t-Sahalia and
Xiu (2015)); the volatility of volatility (Vetter (2011); see Remark 4 in Section 2.3 and Example 10
in Section 8); and high frequency regression, and ANOVA (Mykland and Zhang (2006, 2009, 2012);
see Example 7 in Section 8). In all these examples, one can obtain a point estimate in the presence
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of microstructure noise,4 but one does not have ready access to tests, confidence intervals, and the
other methods discussed in Section 1.2. The overall challenge is thus not specific to one estimator,
but holds across estimators of various types, which reminds us that we all are in the same boat in
searching for how to quantify the uncertainty in the estimators.5

It should be emphasized that in many cases, the asymptotic variance is on the form of an
integral of a function of volatility. In this case, TR 2(iii) in Section 1.1 can often be met with
the theory in Jacod and Protter (2012, Section 16.4-16.5, pp. 512-554), Jacod and Rosenbaum
(2013a,b), and Mykland and Zhang (2009, Section 4.1, p. 1421-1426). These papers are important
contributions to the AVAR problem. Not all asymptotic variances, however, are on such a form
(such as, Examples 5, 9, and 10 in Section 8; and Robert and Rosenbaum (2011, 2012)). Also,
even when the AVAR is on this form, it may be difficult to go through step TR 2(ii). In addition,
there are cases where the estimation approach may be based on robustness considerations which
would make the cited volatility estimators inappropriate (e.g., Andersen, Dobrev, and Schaumburg
(2012, 2014)). When it comes to finding and estimating asymptotic variance, there is plenty of
white space on the map.

1.4 Connections to the Literature

The basic principle behind the observed AVAR is to segment the available time line into sub-periods,
and then compare the estimators in successive sub-periods. We show that this difference can be
decomposed into two parts. One part reveals the behavior of Θ̂ in the form of its estimation error,
and the other part tells us the dynamics of spot parameter process θ alone. We develop estimators
to disentangle these two effects and to construct the observed AVAR. A heuristic outline of the
principles is given in Section 2.2.

The observed AVAR has a lot in common with quarticity estimate of AVAR in realized volatility,
in the seminal work of Barndorff-Nielsen and Shephard (2002a, 2004a). Also, it resembles observed
information in likelihood theory. The difference between the observed AVAR and the estimated
AVAR (going through Theoretical Requirement 2 in Section 1.1) correspond to the difference be-
tween the observed and the estimated expected information in parametric inference. In these two
instances, the connections go beyond the superficial, and require some notation. For this reason,
we defer the comparisons to Section 3.3.

Our procedure is unlike resampling in that it is not based on the “Russian doll” principle (Hall
(1992, Chapter 1.2)), and in particular it does not involve a second level of nesting. We emphasize
that our block parameter K is (typically) entirely unrelated to any block size used to construct the
estimator Θ̂n. For a precise discussion of this, see Section 6.5.

4For example, by the device in Section 9.
5To the best of our knowledge, assuming the presence of microstructure noise, the theoretical AVAR and its

estimation have been documented only in the case of variance (volatility), covariance, leverage effect (skewness), and,
in some instances, of jumps. See Section 8 for references.
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The comparison of adjacent estimators, however, is also a feature of the subsampling developed
for volatility in the pioneering work of Kalnina and Linton (2007) and Kalnina (2011), with an
important subsequent study by Christensen, Podolskij, Thamrongrat, and Veliyev (2015). Boot-
strapping has been developed in the groundbreaking papers Gonçalves and Meddahi (2009) and
Gonçalves, Donovon, and Meddahi (2013), but is further away from the approach of the current
paper.

In addition to the overall construction of observed asymptotic variance, there are two other
intellectual novelties in the paper. On the one hand, the comparison of adjacent values of the
integral of θ is given a precise formulation in the Integral-to-Spot Device (Theorem 1 and Corollary
1, in Section 2.3) which shows that “realized volatility” of integrals

∫
θtdt converges to the volatility

of the spot parameter process θt. The only condition is that the spot process be a semi-martingale.

On the other hand, the estimation of asymptotic variance AVAR(Θ̂−Θ) is reduced to a problem
which resembles that of estimating volatility, with edge effects playing the rôle of “microstructure
noise”. We can thus adapt known methods to the current problem of estimating asymptotic vari-
ance. It is worth to mention that edge effects are estimator-specific. As its name suggests, edge
effects show up in an estimator whenever the estimator under-uses or over-uses the data at the edge
of a sampling interval, relative to the middle portion of the data interval. As we shall see in our
examples (Section 8), edge effects are ubiquitous in high frequency inference, especially when the
inference involves multi-variate, multi-power, or multi-scale estimation, or microstructure noise. In
the current paper, edge effects of different magnitudes is explicitly discussed and treated. The effect
is also referred to as burn-in time, and border effect. After setting up the statistical structure, we
pursue this problem in Sections 3-4.

We emphasize that our purpose in this paper is to provide a method for getting at observed
asymptotic variance, for any estimator of interest. The proposed approach extends broadly to high
frequency inference. The contribution of the current paper is, in particular, to estimators other
than volatility. For the latter, much is known, both in terms of asymptotic variances AVAR, and
in terms of resampling as discussed above. Volatility, however, is not our main focus.

In addition to the main line of argument, we also provide consistent estimators of the quadratic
variation of the spot parameter process θt (Sections 3.2 and 4.2). See Example 10 in Section 8 for
comparison to the earlier work on this by Vetter (2011).

The use of the ÂV ARn to select tuning parameters is discussed in Section 5. The generalization
to the multidimensional case is described in Remark 13 in Section 6.6. Section 6 provides practical
guidance to using the theory, and Section 7 gives advice on how to verify the conditions of the
theory. Sections 8-9 give examples. Finally, proofs are, for the most part, located in the Appendix.
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2 Finite Sample Quadratic Variations of a Parameter Process.

2.1 Setup and Notation

We observe data at high frequency, in a time period from 0 to T . The data will normally take
the form of samples from a semimartingale Xt, typically contaminated by microstructure noise.
Examples are provided in Sections 8-9. We suppose that we are interested in estimating integrals
of a “parameter” spot process θt, which also is assumed to be a semimartingale.

For example, we can take θt to be the spot variance of the continuous part Xc
t of the process

Xt: θt = σ2
t where dXt = σtdWt + dt-terms + jump terms, and W is a Brownian motion. In the

multivariate case, θt can be a function of the instantaneous covariance. The development, however,
holds more generally, such as for the leverage effect where θt = d[Xc, σ2]t/dt, the volatility of
volatility where θt = d[σ2, σ2]ct/dt, or other. The case of multivariate θt is considered in Remark
13.

Definition 1. (Model Structure and Notation). The notation [X,X]t refers to the continuous-
time quadratic variation of semimartingale X from time zero to time t (Jacod and Shiryaev (2003,
p. 51-52), Protter (2004, p. 66)). The quadratic variation is also known as (ex-post) integrated
variance (Barndorff-Nielsen and Shephard (2002b)).6 Semimartingales are defined in, e.g., Jacod
and Shiryaev (1987, Definition I.4.41, p. 43), as well as Protter (2004, Definitions on p. 52, and
Definition and Theorem III.1 on p. 102), and also Dellacherie and Meyer (1982). We assume
that all our semimartingales are càdlàg (right continuous with left limits). All data generating and
latent (such as Xt and θt) processes live on a probability space (Ω,F , P ).7

We consider integrated parameters and their estimators8 over time intervals (S, T ] ⊂ [0, T ]:

Θ(S,T ] =
∫ T

S
θtdt and Θ̂(S,T ] = a consistent estimator of Θ(S,T ]. (3)

Even when estimating the spot volatility, one almost invariably estimates such integrals.9

6Similarly, [X,Z]t refers to the continuous-time quadratic co-variation (or integrated covariance) of semimartin-
gales X and Z.

7A full specification of the model also involves a filtration (Ft)0≤t≤T , FT ⊆ F , which we for simplicity shall
take to be fixed throughout the paper, until we reach Section 7.2. Also until then, when we say that Xt is a
“semimartingale”, we automatically mean a semimartingale relative to (Ft)0≤t≤T and P . The “filtered probability
space” (Ω,F , (Ft)0≤t≤T , P ) is also taken to satisfy the “usual conditions” (Jacod and Shiryaev (2003, Definition
I.1.2-I.1.3, p. 2)).

8All estimators are implicitly or explicitly indexed by the number of observations n. Consistency, convergence in
law, etc, refers to behavior as n→∞,

9The standard spot estimate is θ̂Ti = Θ̂i/(Ti − Ti−1) for suitable choice of Ti−1. See, for example, Foster and
Nelson (1996); Comte and Renault (1998); Mykland and Zhang (2008). The theory requires the existence of a “spot”
θt, cf. Section 6.3. To the extent that the “integral” process has jumps, we assume that such jumps have been suitably
removed by the estimation procedure in use, as also discussed at the beginning of Section 8, see also Examples 1 and
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To get a stab at the asymptotic variance we shall use the following finite sample quantities.

Definition 2. (Rolling Quadratic Variations of Integrated Processes.) Divide the time interval
[0, T ] into B basic blocks of time periods (days, five minutes, thirty seconds, or other) (Ti−1, Ti]
from T0 = 0 to TB = T . The blocks are assumed to be of equal size: Set ∆T = T /B, and assume
that Ti = i∆T . We shall permit rolling overlapping intervals, and so let K be a number no greater
than B. We define

The quadratic variation of Θ: QVB,K(Θ) =
1
K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2, and

The quadratic variation of Θ̂: QVB,K(Θ̂) =
1
K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 (4)

We emphasize that the above quadratic variations are defined on the discrete grid {0,∆T, 2∆T, · · · , T },
as opposed to the continuous-time quadratic variation [X,X]t discussed above.

Later on, from Section 3 onwards, B, ∆T , and K will depend (explicitly or implicitly) on an
index n, which usually denotes the number of observations. We may then write ∆T = ∆Tn, or
omit the index n if the meaning is obvious.

2.2 The Basic Insight

The basic insight behind the Observed AVAR is that we can decompose the increment Θ̂(Ti,Ti+K ]−
Θ̂(Ti−K ,Ti] into the parts related to estimator behavior and the part solely tied to parameter behavior:

Θ̂(Ti,Ti+K ]−Θ̂(Ti−K ,Ti] =
(

Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ]

)
︸ ︷︷ ︸

estimation error

+
(
Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti]

)︸ ︷︷ ︸
evolution in parameter

−
(

Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti]

)
︸ ︷︷ ︸

estimation error

.

(5)
In consequence, we can write the quadratic variation of Θ̂ as

QVB,K(Θ̂) =
2
K

∑
i

(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])
2 +

1
K

∑
i

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2

+ martingale and negligible terms

=

2 AVAR(Θ̂(0,T ] −Θ(0,T ])︸ ︷︷ ︸
estimation error

+ QVB,K(Θ)︸ ︷︷ ︸
parameter behavior

 (1 + op(1)) (6)

9 in the same section. See also Section 6.3. On the other hand, we shall see that the process θt can have as many
jumps as it wants.
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when ∆T goes to zero.10

To turn this from a heuristic to a rigorous theory, we need to

i. Explain how to go from the first to the second line of (6), and in particular explain how
1
K

∑
i(Θ̂(Ti,Ti+K ]−Θ(Ti,Ti+K ])2 comes to be related to the asymptotic variance of Θ̂(0,T ]−Θ(0,T ].

We shall do this in Sections 3-4.

ii. Disentangle AVAR(Θ̂(0,T ]−Θ(0,T ]) from QVB,K(Θ). We shall do this by finding that the latter
is approximately equal to 2

3(K∆T )2[θ, θ]T −. We shall then be able to write two (or more)
distinct linear equations on the form (6), which we can solve for AVAR.

We start with (ii): the approximation of QVB,K(Θ).

2.3 The Integral-to-Spot Device: A General Result for the Quadratic Variation

of Integrals of Semimartingales

A main result is the following, with proof in Appendix B. The appendix also contains a simplified
version of the proof for finite K.

Theorem 1. (The Integral-to-Spot Device, General Case.) Assume that θt is a semi-
martingale on [0, T ]. Also suppose that K∆T → 0. Set t∗ = max{i∆T : i∆T < t} and
t∗ = min{i∆T : i∆T ≥ t}. Then

1
(K∆T )2

QVB,K(Θ) =
2
3

(
1− 1

K2

)
[θ, θ]T −+

1
K2

∫ T
0

((
t∗ − t
∆T

)2

+
(
t− t∗
∆T

)2
)
d[θ, θ]t + op(1)

(7)
where [θ, θ]T − = limt↑T [θ, θ]t. The convergence in probability is uniform in ∆T , so long as ∆T > 0
and K∆T → 0.11

Remark 1. (Consistency for Absloutely Continuous [θ, θ]t.) If [θ, θ]t is absolutely contin-
uous, the right hand side of (7) equals 2

3 [θ, θ]T + op(1), also for finite K. The reason is that the
limit of the second term in (7) then equals 2

3
1
K2 [θ, θ]T −. 2

It would seem from Theorem 1 that much nuisance is created when there are jumps in θ. As
further analyzed in Section 3.2, however, it is typically meaningful to add the extra restriction that
K →∞. This solves the discontinuity problem, as follows.

10See Footnote 2 in the Introduction for the normalization of AVAR. The statement (6) involves having moderate
edge effects. We return to this in Sections 3-4.

11See Remark 18 in Appendix A. The same holds for Theorem 3 in Section 3.2, and Theorem 10 in Appendix C.
In other theorems, the uniformity is valid subject to the needs of other assumptions, such as the balance condition
(30) in Section 3.2.
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Corollary 1. (The Integral-to-Spot Device, Consistent Case.) In addition to the As-
sumptions of Theorem 1, also suppose that K →∞. Then

1
(K∆T )2

QVB,K(Θ) =
2
3

[θ, θ]T − + op(1). (8)

Remark 2. (Convergence fails for finite K in the Presence of Jumps.) To understand
the impact of jumps on the above Theorem 1, note that for finite K it will not, in general, produce
a limit when θ has jumps.

To see why, suppose for simplicity that θt is continuous except for a single jump at (stopping)
time τ ∈ (0, T ). Also assume that [θ, θ]ct = [θc, θc]t (the continuous part of [θ, θ]t) is absolutely
continuous. For K = 1, we get from (7) that

(∆T )−2
∑
i

(Θ(Ti.Ti+1] −Θ(Ti−1.Ti])
2 =

2
3

([θc, θc]T ) +
1
2
(
(1− Un)2 + U2

n

)
∆θ2

τ + op(1), (9)

where Un = (τ − τn,∗)/∆Tn, where τn,∗ = maxi{i∆T < τ}. If, for example, the jump happens at a
Poisson time independent of the rest of the θt process, then one can proceed along the lines of Jacod
and Protter (2012, Chapter 4.3) and get that Un converges in law to a standard uniform random
variable. Similar considerations apply more generally to Theorem 1 if θt is an Itô-seminartingale
in the sense of Jacod and Protter (2012, Chapter 4.4, p. 114).

On the other hand, if τ is a non-random time, such as the time of the news release from a (U.S.)
Federal Open Market Committee meeting,12 the right hand side of (9) simply does not converge,
in probability or law. 2

Remark 3. (Link to Pre-Averaging, and the Factor 2/3.) Think of θt as Xt. One can
relate Theorem 1 to pre-averaging.13 An integral is much like a sum, and so we are continuously
pre-averaging θt, and then using the averaged quantity to find the volatility of θt. The factor 2/3
originates from the procedure of pre-averaging, cf. the example on p. 2255 in Jacod, Li, Mykland,
Podolskij, and Vetter (2009a). A similar factor of 1/2 appears in the estimation of leverage effect,
see Mykland and Zhang (2009).14 This downward bias is typically refered to as “smoothing bias”,
and is well studied in the literature on nonparametric density estimation (Stoker (1993)). For use
of this terminology in the high frequency setting, see Aı̈t-Sahalia, Fan, and Li (2013, Section 4.2,
p. 230).

Theorem 1 is concerned with the volatility of a general semimartingale, and this has not been
studied in full generality by the pre-averaging literature.15 It is thus conjectured to have implica-

12At the time of writing, 2 pm Washington DC time, on the day of the meeting. This time appears to be defined
to within single digit milliseconds. See, for example, “Fed probes for leaks ahead of policy news” (Financial Times,
24 September 2013).

13Jacod, Li, Mykland, Podolskij, and Vetter (2009a); Podolskij and Vetter (2009b).
14For more on the leverage effect, and further references, see Example 9 in Section 8.
15The closest we can find is Chapter 16.2-16.3 of Jacod and Protter (2012), which has several important contribu-
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tions for the consistency of pre-averaging estimators of volatility. To see this, consider equidistant
discrete observations of θTi , and Θ(Ti,Ti+K ] =

∑i+k
j=i+1 θTj∆Tn, and define QVB,K(Θ) in analogy

with (4). From the proof of Proposition 8 (in Appendix F.1), it is clear that Theorem 1 yields the
following corollary:

1
(K∆T )2

QVB,K(Θ) =
2
3

(
1− 1

K2

)
[θ, θ]T −+

1
K2

∫ T
0

((
t∗ − t
∆T

)2

+
(
t− t∗
∆T

)2
)
d[θ, θ]t + op(1).

(10)
With standard calculations, one can get similar results when observing data with microstructure
noise, YTi = θTi + εTi . What is clear from (10), however, is that pre-averaging (followed by the
usual two scales correction) is robust to the most exotic forms of jumps, but with two caveats.
One is that (naturally) one cannot capture a jump at the end time T . The other is that if one
has reason to scale with a sufficiently small K, one may pick up the 1

K2 term in (10) at some
point, for example as asymptotic bias. This term would not be a problem with the usual scaling
K = O(B1/2), but sometimes a smaller K is warranted, see, e.g., Jacod and Rosenbaum (2013a,b);
Mykland and Zhang (2015b), or in the case of models with shrinking size of noise. 2

Remark 4. (Link to Volatility of Volatility.) We shall see in Sections 3-4 that Theorem
1 is an ingredient in the estimation of [θ, θ]T −. Specific procedures are given in Theorems 4 and
7 in Sections 3.2 and 4.2. In particular, for θt = σ2

t , one retireves an estimator of volatility of
volatility. This connects to an earlier estimator of [σ2, σ2]T by Vetter (2011), which is further
discussed in Example 10. An estimator of volatility that is based on different principles can be
found in Mykland, Shephard, and Sheppard (2012, Theorem 7 and Corollary 2). 2

We emphasize that the cited papers in Remarks 3-4 also have central limit theorems (CLT),
rather than just consistency. Our main focus is asymptotic variance (AVAR), where only consistency
is necessary, and we are interested in the weakest possible conditions for such consistency to hold.
Higher order properties of the AVAR would be interesting, cf. the discussion of likelihood methods
in Section 3.3, but this seems beyond the scope of this paper.

The particular sharpness of Theorem 1 is due to the following result. Since it may have other
applications, we provide the main building block as a separate result. The proof is also in Appendix
B. The result is also true for many other processes than semimartingales.

Theorem 2. (Rewriting Integral Differences as Semimartingale Increments.) Let θt
be a semimartingale. We use the following notation. For nonrandom times S < T , set

Θ′(S,T ] =
∫ T

S
(T − t)dθt and Θ′′(S,T ] =

∫ T

S
(t− S)dθt. (11)

Then, if δ > 0 is nonrandom

Θ(T,T+δ] −Θ(T−δ,T ] = Θ′(T,T+δ] + Θ′′(T−δ,T ]. (12)

tions. We see our statement (10) as a complement to their findings.
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3 Estimating Asymptotic Variance in High Frequency Data

3.1 General Principles for the Asymptotic Variance

Following the notation (3), we have at hand estimators Θ̂(S,T ] = Θ̂(n)
(S,T ] of Θ(S,T ].16

The typical statistical situation is now as follows: there is a semimartingale Mn,t and edge
effects en,S and ẽn,T , so that,

Θ̂(n)
(S,T ] −Θ(S,T ] = Mn,T −Mn,S︸ ︷︷ ︸

semimartingale

+ ẽn,T − en,S︸ ︷︷ ︸
edge effects

for S < T ∈ Tn, (13)

where Tn = {Tn,i : i = 0, · · ·Bn}.17 The edge effect is essentially anything that messes up the
semimartingaleness of the difference Θ̂(0,T ] −Θ(0,T ], and it occurs in many shapes, which we shall
document in Section 8.18 The edge effect has a component eS relating to phasing in the estimator
at the beginning of the time interval, and component ẽT for the phasing out at T . For the estimator
on the whole interval, we use Θ̂n = Θ̂(n)

(0,T ] from now on. An important construction leading to (13)
relates to half-interval estimators (Section 6.1).

Remark 5. (Edge Effects.) To rephrase, the Edge Effect reflects the difference in behavior
of an estimator between the middle and the edges of the interval on which it is defined. For a
conceptual illustration, consider the bi-power estimator (Barndorff-Nielsen and Shephard (2004b,
2006)) of the integrated volatility of a process Xt, where Xt is observed (without microstructure
noise) at equidistant times ti, i = 0, · · · , n , spanning [0, T ]. The estimator has the form Θ̂(S,T ] =
π
2

∑
S<ti−1≤ti≤T |∆Xti−1 ||∆Xti |. Each absolute return |∆Xti | appears twice in the summation,

except the first and the last such return. This is a case of edge effect. The precise form of this
effect is given in Example 2 in Section 8, along with a number of other examples. In fact, the only
estimator that we can identify to not have edge effect, is realized volatility absent microstructure
noise. 2

Meanwhile, we seek an estimator of the asymptotic variance of Θ̂(n)
(0,T ]. For a conceptual path,

we turn to the substantial fraction of the high frequency literature which has been concerned with
the study of the asymptotic behavior of Θ̂(n)

(S,T ] − Θ(n)
(S,T ] for all S < T ∈ [0, T ]. This is typically

required to achieve stable convergence.

Definition 3. (Stable Convergence.) Let Ln = (Ln,t)0≤t≤T be a sequence of semimartingales
(Definition 1 in Section 2.1). We say that Ln converges stably in law to L = (Lt)0≤t≤T with

16By convention, we use superscript “(n)” when it is too unaesthetic to place n as a subscript. See Section 6.1 on
how to obtain such estimators from half-interval estimators. The latter are required for stable convergence results,
cf. the development in this section and in Section 7.

17Until we reach Section 7.2.
18All of Θ̂(S,T ], MT , eS , and ẽT will depend on the number of observations n. For the most part, n is omitted from

our notation to avoid an excessive number of subscripts, but when crucial for understanding we may write Mn,T , etc.
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respect to a sigma-field G ⊆ F , and as n→∞, if (1) Lt is measurable with respect to an extension
(Ω̃, G̃, P̃ ) of (Ω,G, P ); and (2) for every bounded G-measurable (real valued) random variable Y ,
(Ln, Y ) converges in law to (L, Y ).19

The standard asymptotic result in the literature is now as follows. This is illustrated by a
number of examples in Section 8 below. General conditions for this to be true can be found in
Hall and Heyde (1980) and Jacod and Shiryaev (2003). This kind of result has also been found
in countless articles in specific situations, including in high frequency data. See also the book by
Jacod and Protter (2012). We here make this result our starting point, our condition.

Condition 1. (Standard Convergence Result in the Literature.) Assume (13), and that
one can show the following. There is an α > 0 so that as n→∞,

nαMn,t
L→ Lt stably in law (14)

with respect to a sigma-field G. The quadratic variation [L,L]T (Section 2.1) is measurable with
respect to G, and Lt is a local martingale conditionally on G. Also, en,Tn = op(n−α) and ẽn,Sn =
op(n−α) for any Sn, Tn ∈ Tn. Finally, the sequence nαMn,t is Predictably Uniformly Tight (P-UT)
(Section 7.1; Jacod and Shiryaev (2003, Chapter VI.3.b, and Definition VI.6.1, p. 377)).20

We recall the basic facts about this situation. First, Condition 1 assures that, with Θ̂n = Θ̂(n)
(0,T ]

and Θ = Θ(0,T ],

nα(Θ̂n −Θ) L→ LT stably in law . (15)

Also, the asymptotic variance of nα(Θ̂n −Θ) given the underlying data represented by G is

V = AVAR(nα(Θ̂n −Θ)) = Var(LT |G). (16)

To declutter the notation, we shall define AVARn = AVAR((Θ̂n −Θ)), formally21

AVARn = n−2αVar(LT |G). (17)

Second, we have guidance on how to estimate the asymptotic variance:

Proposition 1. (Quadratic Variation and Asymptotic Variance.) Assume Condition 1.
Then the conditional variance Var(LT |G) exists (is “well defined”) and

[Mn,Mn]T = AVARn (1 + op(1)). (18)

19For further explanation of stable convergence, see Section 7.1. For conditions assuring a minimal form of stable
convergence, see Proposition 7 in Section 7.1.

20See Section 7 for further explanation of this condition, as well as some standard methods for how to verify it.
Examples of verification are also given in Sections 8-9.

21As foreshadowed by Footnote 2. In the notation of this earlier footnote, V = Var(LT |G).
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Proof of Proposition 1. Towards the end of Section 7.1. Q.E.D.

In particular, a necessary and sufficient condition for an estimator ÂVARn of asymptotic vari-
ance to be consistent, i.e., ÂVARn = AVARn (1 + op(1)), is that

ÂVARn = [Mn,Mn]T (1 + op(1)). (19)

We emphasize that for empirical analysis, one does not need to know the form or value of any of the
limiting quantities Lt, [L,L]T , and G in Condition 1 in order to estimate the asymptotic variance.22

All one needs is to check the criterion (19). We shall in the sequel use this path to show that our
proposed estimator is consistent. The procedure can be used much like observed information or
bootstrapping, and recall that practical guidance is provided in Section 6.

Because of its importance, and also to illustrate the simplicity of the approach, we here state
the main usage as a corollary to the above development.

Proposition 2. (Feasible Estimation.) Assume the Condition 1. Also assume that LT is
conditionally Gaussian given G. Suppose that ÂVARn = [Mn,Mn]T (1 + op(1)). Set se(Θ̂n) =
|ÂVARn|

1
2 . Then

Θ̂n −Θ
se(Θ̂n)

L→ N(0, 1) stably in law. (20)

3.2 A General Expansion Result for QVB,K(Θ̂n) under moderate Edge Effects,

and The Two Scales AVAR and ̂[θ, θ]
For a given grid, we use the notation

ave(e2
Ti)

∆=
1
Bn

∑
i

e2
Ti (21)

and similarly for ave(ẽ2
Ti

). Observe that ẽ0 = eT = 0 by convention. We obtain:

Theorem 3. (Expansion of QVB,K(Θ̂) under Moderate Edge Effects.) Assume Condition
1. Let K = Kn be positive integers, and assume that Kn∆Tn → 0. Also assume about the averages
of the edge effects that

ave(e2
Ti) = op(Kn∆Tnn−2α) and ave(ẽ2

Ti) = op(Kn∆Tnn−2α). (22)

Then

1
2K

∑
K≤i≤B−K

(Θ̂(Ti−K ,Ti+K ] −Θ(Ti−K ,Ti+K ])
2 = AVARn (1 + op(1)). (23)

22In fact, an automatic minimal G is provided by Proposition 7 in Section 7.1.
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Also, if we assume that θt is a semimartingale on [0, T ], and that

∆Tn = o(n−α), (24)

then

QVB,K(Θ̂) = 2AV ARn +
2
3

(Kn∆Tn)2[θ, θ]T − + op((Kn∆Tn)2) + op(n−2α) (25)

The convergence in probability is uniform in ∆T , so long as ∆T > 0 and K∆T → 0.

Proof. See Appendix C, where it is also shown that a related result holds under (occasionally
useful) weaker conditions. Q.E.D.

On the basis of Theorem 3, we now provide the estimators that we recommend for most situa-
tions.

Definition 4. (Two Scales AVAR, and Volatility of Spot θ.) Let B, K and QVB,K(Θ̂)
be as in Definition 2. Let K1 < K2 be two distinct values of K. The estimators23

TSAVARn =
1
2

(
1
K2

1

− 1
K2

2

)−1( 1
K2

1

QVB,K1(Θ̂)− 1
K2

2

QVB,K2(Θ̂)
)

and (26)

̂[θ, θ]T − =
3
2

(K2
2 −K2

1 )−1(∆T )−2
(
QVB,K2(Θ̂)−QVB,K1(Θ̂)

)
(27)

as well as se(Θ̂n) = |TSAVARn|
1
2 are referred to as two scales asymptotic variance, volatility, and

standard error. When K2 = 2K1 = 2K, we shall refer to (1, 2) estimators. Specifically, the (1,2)
TSAVAR is

TSAVARn =
2
3

(
QVB,K(Θ̂)− 1

4
QVB,2K(Θ̂)

)
(28)

The consistency of the two scales estimators is given by the following result.

Theorem 4. (Consistency of Two Scales AVAR and Volatility of Spot θ. Feasibility

of inference.) Assume Condition 1, and that θt is a semimartingale on [0, T ]. Assume that

ave(e2
Ti) = op(n−3α) and ave(ẽ2

Ti) = op(n−3α). (29)

Assume that ∆Tn = o(n−α). Let Kn,1 < Kn,2 be positive integers, and assume that Kn,i∆Tn → 0
23 The TSAVAR ((26) and (28)) does not have similar coefficients to the Two-Scales Realized Volatility (TSRV,

Zhang, Mykland, and Aı̈t-Sahalia (2005)). For a heuristic explanation of this, consider the left hand side of (5), and
write it as noise + signal - noise from previous interval. This looks like a scene from “inference with micro-structure
noise”, especially if the noise is shrinking (via, say, pre-averaging). The AVAR problem is different, however, in that
the “signal” has different properties. In particular, it shrinks at rate Op(Kn∆Tn) by Theorems 1-2. It also has
different dependence structure.
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for i = 1, 2. Assume that both Kn,1 and Kn,2 satisfy the balance condition

Kn∆Tn are of the same order as n−α. (30)

with lim infn→∞(Kn,2/Kn,1) > 1.

Then, TSAVARn and ̂[θ, θ]T − are consistent:

TSAVARn = AVARn (1 + op(1)) and̂[θ, θ]T − p→ [θ, θ]T −. (31)

Finally, if LT is conditionally Gaussian given G, then

Θ̂n −Θ
se(Θ̂n)

L→ N(0, 1) stably in law. (32)

Proof of Theorem 4. Theorem 3 and assumption (30) gives rise to (33), for K = K1 and
K2. Ignoring remainder terms gives rise to estimators defined by a system of two equations and
two unknowns by letting K = K1 and = K2 in (34). By linear algebra, this system is equivalent the
formulae for the estimators TSAVARn and ̂[θ, θ]T − given in (26)-(27) in Definition 4. The estimators
are consistent by substituting (34) into (33) and then using that lim infn→∞(Kn,2/Kn,1) > 1. The
last part of the result follows from Proposition 2. Q.E.D.

Remark 6. (Theoretical and Empirical Decompositions of QVB,K .) Under the assump-
tion (30), for K = K1 or K2, we have the theoretical decomposition:

QVB,K(Θ̂) = 2AVARn +
2
3

(K∆T )2[θ, θ]T − + op(n−2α). (33)

Meanwhile, the two scales estimators TSAVARn and ̂[θ, θ]T − satisfy an corresponding empirical
decomposition:

QVB,K(Θ̂) = 2 TSAVARn +
2
3

(K∆T )2 ̂[θ, θ]T − , i = 1, 2. (34)

One can think of (34) as an empirical decomposition of QVB,Ki(Θ̂) into TSAVARn and ̂[θ, θ]T −, cf.
Figure 1. 2

To get a sense of how the empirical decomposition (34) plays out in real data, we plot the
separation of TSAVARn and ̂[θ, θ]T − using four months of tick-by-tick data from E-mini S&P 500
futures. As shown in Figure 1, cumulative AVAR is the main component in QVB,K(Θ̂), and we can
identify the days when the dispersion [θ, θ]T of the underlying spot parameter moved notably.
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Figure 1: This plots illustrates the empirical decomposition (34) in practice, for the S&P E-mini
future as traded on the Chicago Mercantile Exchange, for the 22 trading days of May 2007. The
total curve is the total volatility QVB,K(Θ̂) for each day, the red part is 2×TSAVAR for each day,
and the blue part is 2

3(K1∆T )2 ̂[θ, θ]T −, as given in this Section. In the estimation, the underlying
parameter is the spot volatility: θt = σ2

t . Θ̂(S,T ] is based on first pre-averaging the data to 15
seconds, and then computing a TSRV on these pre-averages with j = 20 and k = 40 (Mykland
and Zhang (2015a), see also Example 4 in Section 8). The estimator is thus of integrated volatility
Θ(S,T ] =

∫ T
S σ2

t dt, and [θ, θ]T = [σ2, σ2]T . For QVB,K(Θ̂), we take ∆T to be five minutes, and a (1,
2) TSAVAR is computed on this basis for every fine minute five minute period, using the forward
half interval method in Section 6.1. The estimation method has low enough edge effect that the
“small edge” condition (29) in Theorem 4 applies (Example 4).

Remark 7. (Guidance on ∆T and K, and the choices that lead from Theorem 3

to Theorem 4) Both ∆T and K are under the control of the econometrician, and we offer the
following main approach to choosing these two tuning parameters.

i. By linear combination of QVB,K for two or more K’s, one can eliminate either the [L,L]T or
the [θ, θ]T − term in (25). We have seen this in Theorem 4 above. This means that the main
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question is how to optimize Theorem 3 with respect to ∆T and K.

ii. On the one hand, ∆T may be arbitrarily small. ∆T is, therefore, limited only by one’s com-
putational power. In particular the assumption (24) is routinely satisfied in practice.

iii. In fact, ∆T ought to be small. In particular, by a sufficiency argument, QV2B,2K(Θ̂) will
under mild conditions have less variability (given the data) than QVB,K(Θ̂). This is akin to
the desirability of post-averaging after subsampling (Zhang, Mykland, and Aı̈t-Sahalia (2005,
Section 3.1, p. 1399)).

iv. On the other hand, K∆T ought not to be very small. As a general rule, we recommend to
take Kn∆Tn to be of the same order as n−α, given as Condition (30) in Theorem 4.

The reason for this is that the larger one chooses K∆T , the more likely it is that the assumption
(22) will be satisfied. To avoid having AVARn dwarfed by [θ, θ]T −, it is safe to chose Kn∆Tn
to be no larger than O(n−α).24 With this choice, it is easy to see that equation (25) then reads
(33) while the requirement (22) on the edge effect becomes (29) in Theorem 4.

v. In summary, one should thus think of ∆T as a computational parameter, while δ = K∆T
represents an amount of time over which one can reasonably compute estimators Θ̂(T,T+δ].

2

3.3 One Scale Standard Error, Quarticity, and the Likelihood Connection

Tiny Edge Effects. There are cases where one can safely choose

Kn∆Tn = o(n−α). (35)

and still have a sufficiently small edge effect relative to block size (22). This is most often the case for
estimators based on data with no microstructure noise, such as Realized Volatility (RV, Example 1),
Bipower Variation (Example 2), and some estimator of integrals of functions of volatility (Example
6). (The examples are further discussed in Section 8, where references to the literature is also given.)
We emphasize that the choice (35) may not not be possible for estimators based on increasing-size
blocks, or on data with microstructure noise.

Remark 8. (A One Scale Standard Error). Assume the conditions of Theorem 3 except
condition (24). Assume instead (35). Set

ÂVARn =
1
2
QVB,K(Θ̂). (36)

Then ÂVARn is consistent. 2

24A more elaborate development may allow for Kn∆Tn to be of order larger than O(n−α), as with the cancellation
of microstructure noise in two- and multi-scale estimation (Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006))
but such a development is beyond the scope of this paper.
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Quarticity. The quarticity of Barndorff-Nielsen and Shephard (2002a, 2004a) can be viewed as
a one scale estimator in our setup. Instead of (5) in Section 2.2, one writes25

Θ̂(Ti,Ti+K ] = Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ]︸ ︷︷ ︸
estimation error

+ Θ(Ti,Ti+K ]︸ ︷︷ ︸
parameter value

. (37)

This consideration leads to a generalized quarticity, on the form

QB,K =
1
K

B−K∑
i=0

(Θ̂(Ti,Ti+K ])
2. (38)

Theorem 5. (Expansion of QK,Bn.) Assume Condition 1, and that θt is a continuous semi-
martingale on [0, T ]. Suppose that K is a finite integer.

∆Tn = O(n−2α), (39)

Also assume (22) about the averages of the edge effects. Then

QBn,K = AVARn +K∆Tn
∫ T

0
θ2
t dt+ op(n−2α). (40)

Proof. By the same method as the proof of Theorem 3, and by the sample-path continuity of
θt. Q.E.D.

In the case where Θ̂ is realized variance based on the observed process Xt, θt = σ2
t (the volatility

of X ), Bn = n, and α = 1
2 . There is no edge effect (cf. Example 1 in Section 8). Thus,

AVARn = 2∆Tn
∫ T

0 θ2
t dt. In the case where K = 1, one retrieves Q1,Bn = 3

2AVARn(1 + op(1)). We
thus retrieve the results of Barndorff-Nielsen and Shephard (2002a, 2004a), also similarly in the
case of (synchronous) covariance, correlation, and regression.

A number of estimators have similar behavior in the sense that AVAR is proportional to
∫ T

0 θ2
t dt.

These include Bipower and Multipower Variation (Barndorff-Nielsen and Shephard (2004b, 2006)),
and estimation of integrals of θ = σp with finite blocks (Mykland and Zhang (2009, Section 4.1, p.
1421-1426), Mykland and Zhang (2012, Ch. 2.6.2, pp. 170-172)).

In the more general case where
∫ T

0 θ2
t dt is not directly related to AVARn, one can go to a two

scales estimator and obtain that 2QBn,1 −QBn,2 = AVARn + op(n−2α). We have not investigated
the situation for quarticity where θt is discontinuous.

A likelihood connection. We think of the observed AVAR as akin to the observed in-
formation in likelihood theory. Barndorff-Nielsen and Shephard have a similar view of quarticity
(Barndorff-Nielsen and Shephard (2015)).

25This is close to the argument in Barndorff-Nielsen and Shephard (2004a, Appendix B.1.1, p. 922-923).
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The observed asymptotic variance is like the observed information in parametric statistical the-
ory, in that there is no need for an intermediate theoretical asymptotic step, involving expectations
or similar operations. Just as in likelihood theory, the observed asymptotic variance is easier to
use, and it has a more universal form.

In parametric statistics, there has been a lively debate about the relative accuracy properties
of observed and estimated expected information. In statistics, accuracy refers to the the closeness
of an approximation to the true distribution of a statistic. For the standard error, accuracy can
refer either to how close the statistic is to the actual standard deviation of a statistic, or to how the
se(Θ̂n) best accomplishes the asymptotic approximation of the law of Θ̂n −Θ/se(Θ̂n) to a normal
or other reference distribution.

The subject originally goes back to the debates between Fisher, and Neyman and Pearson.
The neo-likelihood wave would seem to have started with Cox (1958, 1980) and Efron and Hinkley
(1978), who demonstrated that the observed information in many cases was a more accurate mea-
sure of the variance of an estimator. This breakthrough was followed by a large literature, including
Barndorff-Nielsen (1986, 1991); DiCiccio and Romano (1989); DiCiccio, Hall, and Romano (1991);
Jensen (1992, 1995, 1997); McCullagh (1984, 1987); McCullagh and Tibshirani (1990); Pierce and
Peters (1994); Reid (1988); Skovgaard (1986, 1991); Mykland (1995a, 1999, 2001).

Some of the same considerations may apply to the observed AVAR in this paper. In Mykland
(1995a), a dual likelihood26 is constructed on the basis of a martingale Mn,t, and it is shown that the
second derivative of the score function in this likelihood is indeed [Mn,Mn]T . Whence [Mn,Mn]T
becomes the observed information, albeit evaluated at the true value (zero) of the dual parameter.
The cited paper shows Bartlett correction properties (Bartlett (1953a,b), Lawley (1956)) for the
“asymptotically ergodic” case.27 In other words, there is something more to explore here, but these
matters are beyond the scope of this paper.

4 Hard Edge

4.1 A General Expansion Result for QVB,K(Θ̂n) under Hard Edge Effects

One cannot always take the edge effect to be negligible in the sense of (29) in Theorem 4. We shall
see that this will give rise to an extra term in the expansion of QVB,K(Θ̂), one due to the edge
effects et and/or ẽt. Instead of a two scales estimator, we shall require a linear combination of three
or more scales K, in other words a multi-scale ÂVARn.28

26Which is connected to empirical likelihood.
27The “asymptotically ergodic” case is where [L,L]T is nonrandom, and G in Definition 3 can be taken to have no

information (G = {∅,Ω}). This is the situation in the many papers where one, say, conditions on the σt process.
28This is comparable to the extension from Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang (2006). Though the

edge effects resemble microstructure, the parallel should not be taken too far, since two scales are normally required



Observed Asymptotic Variance for High Frequency Data, September, 2015 20

To warm up, we first state an expansion QVB,K(Θ̂) which permits larger edge effects than
Theorem 3. We make the following set of assumptions.

Condition 2. (Hard Edge Assumptions.) Suppose that there is an integer Jn for which en,Tn,i =
e′n,Tn,i + e′′n,Tn,i and ẽn,Tn,i = ẽ′n,Tn,i + ẽ′′n,Tn,i, so that (e′n,Tn,i , ẽ

′
n,Tn,i

) are FTn,i+Jn -measurable,29 and
for which E(e′n,Tn,i | FTn,i−Jn ) = E(ẽ′n,Tn,i | FTn,i−Jn ) = 0 and where

∑
i(e
′′
Tn,i

)2 = op(n−2α) and∑
i(ẽ
′′
Tn,i

)2 = op(n−2α). Also suppose that, for all i, E(e′n,Tn,i)
2 <∞ and E(ẽ′n,Tn,i)

2 <∞, and that

sup
n
E nα

(
max

0≤i≤Bn
|e′n,Ti |+ max |ẽ′n,Ti |

)
< ∞. (41)

In other words, we let the edge effects be larger, but they must have more structure and
uniformity. We shall see in our examples that the Condition above is reasonable. As a complement,
they are argued from a mixing perspective in Appendix E.1. We recall that we assume (Condition
1) that each eTi and ẽTi is of order op(n−α), so that assumption (41) refers only to to tail behaviour
of the edge effects.

The edge effects are now potentially the dominating terms in the expansion of QVB,K(Θ̂). Define
autocovariances

Cabn,K =


1
Bn

∑B
i=K ẽn,Tn,i ẽn,Tn,i−K for (a, b) = (1, 1)

1
Bn

∑B
i=K ẽn,Tn,ien,Tn,i−K for (a, b) = (1, 2)

1
Bn

∑B
i=K en,Tn,ien,Tn,i−K for (a, b) = (2, 2)

(42)

The aggregated main and lagged edge effects are now given by, respectively,

MAEEn = C11
n,0 + C12

n,0 + C22
n,0 =

1
Bn

B∑
i=0

(ẽ2
Ti + e2

Ti + ẽTieTi)

εn,K = −
(
C11
n,K + 2C12

n,K + C22
n,K

)
+ C12

n,2K (43)

The following is our main result for large edge effects, which parallels Theorem 3. We discuss the
behavior of the aggregated edge effects. We then seek linear combinations of QVB,K(Θ̂) to remove
the edge effects.

Theorem 6. (Representation of QVB,K(Θ̂).) Suppose θt is a semimartingale, and that Con-
ditions 1-2 hold. Assume the balance condition (30). Also assume that Jn ≤ Kn, and that

Jn∆Tn = op(n−α). (44)

even in the case where the edge effect is negligible.
29In other words, we allow the edge effect to depend on the future. This would, for example, be relevant for the

Backward Estimators discussed in Section 6.1.
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Then30

QVBn,Kn(Θ̂) = 2AVARn +
2
3

(Kn∆Tn)2[θ, θ]T − + 2T (Kn∆Tn)−1MAEEn

+ 2T (Kn∆Tn)−1εn,Kn + op(n−2α). (45)

Proof of Theorem 6: See Appendix D.

Our strategy in the following will be to use linear combinations to remove the main edge effect
term MAEEn, but to live with the lagged term εn,Kn . We pursue this further in the next section,
but lay the groundwork in a further analysis of the edge effects and their magnitude.

Proposition 3. (Behavior of Aggregated Edge Effects.) Assume the conditions of The-
orem 6. Then,

2T (Kn∆Tn)−1MAEEn = op(n−α) or less. (46)

Also assume that Kn ≥ 2Jn. Then

2T (Kn∆Tn)−1εn,Kn = Op

(
nα(Jn∆Tn)1/2VAEE1/2

n

)
= op

(
n−α(Jn∆Tn)1/2

)
or less, (47)

where

VAEEn =
1
Bn

Bn∑
i=0

(
E((ẽ′n,Tn,i)

2|FTi−2Jn
)2 + E((e′n,Tn,i)

2|FTi−2Jn
)2
)

= op
(
n−4α

)
or less. (48)

More generally, if Kn ≥ 2Jn

(C00
n,K , C

01
n,K , C

11
n,K) = Op

(
(Jn∆TnVAEEn)1/2

)
. (49)

Also, if 2Jn ≤ Kn,1 < Kn,2 < · · ·Kn,m, with Kn,l+1 −Kn,l ≥ 2Jn for each l, then
(Jn∆TnVAEE)−1/2(C00

n,Kl
, C01

n,Kl
, C11

n,Kl
), l = 1, · · ·m, are asymptotically uncorrelated.

Proof of Proposition 3: See Appendix E.2.

Discussion of the Impact of Edge Effects in Theorem 6. Proposition 3 permits a
discussion of the behavior of aggregated edge effects in Theorem 6. First, from (46), the main edge
effect MAEE can be as large as op(n−α), and so could easily overshadow the AVARn and [θ, θ]T −
terms in (45). Obviously, MAEE may be smaller, and if MAEE = O(n−3α), we retrieve the result
in Theorem 3 in the balanced case (30).31

30 If one does not assume (44) and the balance condition (30), the remainder term in (45) is Op(n
−2α(Jn∆Tn)(nα+

(Kn∆Tn)−1) + op(n
−2α). This is by Footnote 63 to Corollary 2 in Appendix D.

31This is since MAEE is of the same order as ave(e2Ti
) + ave(ẽ2Ti

) from (21).
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Second, the lagged edge effect (47) ought to be of order op(n−2α) so as to not dominate AVARn

and [θ, θ]T − in the representation (45). In other words, from (47), we require

(Jn∆Tn)VAEEn = op(n−6α). (50)

The mathematically simplest path would be to require that Jn∆Tn = Op(n−2α), but this depends
on the bandwidth of the time-dependence of the edge effects, and thus both on the data and on
the specific estimator.

Alternatively, if, say, in an average and fairly uniform sense, the eTi and ẽTi are of order
Op(n−β), the lagged edge effect (47) is of order Op(nα−2β(Jn∆Tn)

1
2 ) = Op(n

1
2
α−2β) under the

conditions of Theorem 6. Thus the lagged edge effect will disappear if β > 5
4α. This is in practice

much easier to verify than Theorem 3, which would require β > 3
2α. Thus the range where

Theorem 6 is effective is β ∈ (3
2α,

5
4α], and possibly including larger values of β if Jn∆Tn is small.

For comparison, under the same assumptions, and with β in this interval, the main edge effect
2T (Kn∆Tn)−1MAEEn = Op(nα−2β), which dominates the AVARn and [θ, θ]T − terms in (45).

We shall leave the question of the precise size of the lagged edge effect open, so as to have an
incentive to minimize this term. We shall do this next.

4.2 Estimation of AVAR and [θ, θ]T − under Hard Edge: Multi-Scale and Re-

gression Estimation

We proceed through linear combinations of QVBn,Kn(Θ̂) over m of scales, i.e.,

2Jn ≤ Kn,1 < Kn,2 < · · ·Kn,m, with Kn,l+1 −Kn,l ≥ 2Jn for each l ∈ [1,m− 1]. (51)

It will be convenient to rescale32 so that QV (R)
Bn,K

(Θ̂) = QVBn,K(Θ̂)(K∆Tn)), and define a multi-
scale estimator on the form

MSQVn(Θ̂) =
m∑
l=1

gn,lQV
(R)
Bn,Kl

(Θ̂)

= g∗
n
Yn (52)

where g∗
n

= (gn,1, · · · gn,m) is a vector of coefficients to be determined (“∗” denotes transpose), and
where

Y∗n =
(
QV

(R)
Bn,Kn,1

(Θ̂) QV
(R)
Bn,Kn,2

(Θ̂) · · · QV
(R)
Bn,Kn,m

(Θ̂)
)
. (53)

Also set
β∗
n

=
(

MAEEn,AVARn, [θ, θ]T −
)
, (54)

32See the discussion after Theorem 7. The rescaling is without loss of generality.
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X∗n =

 2T 2T · · · 2T
2(Kn,1∆Tn) 2(Kn,2∆Tn) · · · 2(Kn,m∆Tn)
2
3(Kn,1∆Tn)3 2

3(Kn,2∆Tn)3 · · · 2
3(Kn,m∆Tn)3

 , and (55)

ε∗n =
(
εn,K1 εn,K2 · · · εn,Km

)
. (56)

Theorem 6 and Proposition 3 then yield, subject to (51), that

Yn = Xnβn + 2T εn + op(n−3α)

= Xnβn +Op

(
n−α(Jn∆TnVAEEn)1/2

)
+ op(n−3α). (57)

Regression Interpretation of (57). Our whole notation, and the first line of (57), suggests
linear regression. Ordinary least squares (OLS) in the regression of Y on X from (53)-(55) yields

β̂
n

= (M̂AEEn, ÂVARn, ̂[θ, θ]T −)∗, where β̂
n

= (X∗nXn)−1X∗nYn. (58)

2

Multi-Scale Interpretation of (57). Consider the following constraint on (52):

X∗ngn = b (59)

where b = (0, b1, b2)∗. Then (52) and the second line of (57) yields

MSQVn(Θ̂) = b1AVARn + b2[θ, θ]T − +Op

(
n−α(Jn∆TnVAEEn)1/2E1/2

n

)
+ op(n−3αE1/2

n ) (60)

with En = g∗g . Hence,

• To estimate AVAR(Θ̂n), choose
b = (0, 1, 0)∗ . (61)

• To estimate the quadratic variation [θ, θ]T −, choose

b = (0, 0, 1)∗ . (62)

To minimize the error in (60), one solves the optimization problem

min g∗
n
g
n

subject to X∗ngn = b. (63)

The standard solution (e.g., Boyd and Vandenberghe (2004, p. 304)) to (63) is g
n

= Xn(X∗nXn)−1b.
For this value of g

n
,

MSQVn(Θ̂) = g∗
n
Y = b∗(X∗X)−1X∗Y = b∗β̂. (64)
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2

Hence the regression and Multi-Scale approaches coincide. Does the solution work?

From the theoretical standpoint, consistency is backed by a theorem. It also holds in the soft
edge case.

Theorem 7. (Consistency of ÂVARn and ̂[θ, θ]T − in the Both the Soft and Hard Edge

Cases.) Suppose θt is a semimartingale, and that Condition 1 holds. Let Kn,1, · · · ,Kn,m satisfy
(51), Suppose that Kn,1 satisfies the balance condition (30), and that there are constants c− and
c+, with 1 < c− < c+ <∞, for which

c1 ≤
Kn,m

Kn,1
≤ c+. (65)

Suppose that either (i) (29) holds (soft edge case), or (ii) Condition 2 holds, with (44) and (50)
(hard edge case).

Let ÂVARn and ̂[θ, θ]T − be given by (58). Then

ÂVARn = AVARn(1 + op(1)) and ̂[θ, θ]T − = [θ, θ]T −(1 + op(1)). (66)

In particular, if LT is conditionally Gaussian given G, then

Θ̂n −Θ
se(Θ̂n)

L→ N(0, 1) stably in law. (67)

Proof. See Appendix E.3.

From the practical standpoint, the rescaling QV
(R)
Bn,K

(Θ̂) = QVBn,K(Θ̂)(K∆Tn)) achieves two
things. On the one hand, the εn,Kn,l will often be close to homoscedastic (see Proposition 3 and
its proof). In the multi-scale formulation, this manifests itself in the form of the remainder term
En = g∗g. In addition, the rescaling turns the main edge effect MAEEn into an intercept term.
This is computationally advantageous since ÂVARn and ̂[θ, θ]T − can now be calculated without
the contribution of MAEEn, cf., Weisberg (1985, Chapter 2.2, p. 43-44). See also the proof of
Theorem 7 in Appendix E.3.

While the εn,K may be close to homoscedastic, they are not independent. The first order
solution lies in the requirement Kn,l+1 −Kn,l ≥ 2Jn in (51). This assures the second line in (57).
From definition (43), however, the εn,K are dependent. For example, εn,K and εn,2K contain a
shared autocovariance C12

n,2K . One solution to this is to require that the Kn,l satisfy

{Kn,l : l = 1, · · · ,m} ∩ {2Kn,l : l = 1, · · · ,m} = ∅. (68)
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This assures that the εn,Kn,l are asymptotically uncorrelated, in view of Proposition 3. In particular,
(68) holds if one only uses odd Kn,l, say,

Kn,l = (2l + 2p− 1)K. (69)

for non-negative integer p. Even if one does not do this, the solution in Theorem 7 is consistent,
and one can alternatively construct a weighted least squares procedure based on the dependence
structure given by (43) and Proposition 3.

Finally, note that if m→∞, it may be possible to get around the requirement (50), along the
lines of Zhang (2006).

Remark 9. In the volatility estimation problem, the realised kernel estimator Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2008) is very similar to that of the multi-scale estimator of Zhang
(2006), cf. Bibinger and Mykland (2013). It is conjectured that the realised kernel approach will
work also in this problem. 2

Remark 10. (A Three Scales ÂVARn.) If one uses a three-scales estimator, m = 3, the three
gn,l are determined by the three linear equations given through (59) and (61). The solution is

gn,1 = − 1
vn

(K3
n,3 −K3

n,2),

gn,2 =
1
vn

(K3
n,3 −K3

n,1), and

gn,3 = − 1
vn

(K3
n,2 −K3

n,1), where

vn = 2∆Tn(Kn,1 +Kn,2 +Kn,3)(Kn,2 −Kn,1)(Kn,3 −Kn,1)(Kn,3 −Kn,2). (70)

2

5 Application: Selection of Tuning Parameters

Many estimators involve one or more tuning parameters, for example block or subgrid size. The
typical situation is that of a tradeoff between two asymptotic variances. This is unlike the more
typical situation in statistics, where the bias-variance tradeoff dominates. Variance-variance trade-
off is explicitly carried out in connection with the estimation of integrated volatility in Zhang,
Mykland, and Aı̈t-Sahalia (2005); Zhang (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008); Podolskij and Vetter (2009b,a); Aı̈t-Sahalia, Mykland, and Zhang (2011); Jacod, Li, Myk-
land, Podolskij, and Vetter (2009b); Jacod and Mykland (2015). The typical question is how many
grids to subsample over, or how long a time window to average data over, or how many autoco-
variances to include. In a twist of this problem, the adaptive method of Jacod and Mykland (2015)
does carry out local model selection, but there is still a global tuning parameter which is left to be
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determined.

Similar tuning involving a variance-variance tradeoff occurs in connection with covariance es-
timation (Zhang (2011); Bibinger and Mykland (2013)), spot volatility estimation (see Mykland
and Zhang (2008)), estimation of the leverage effect (Wang and Mykland (2014), Aı̈t-Sahalia, Fan,
Laeven, Wang, and Yang (2013), Kalnina and Xiu (2015)) estimation of the volatility of volatility
(Vetter (2011), Mykland, Shephard, and Sheppard (2012)). These and other inference situations
requiring tuning are described in Section 8.

One can think of the tuning problem as involving a parameter c on which the estimators Θ̂n,c

depend.

Condition 3. Suppose that there is a tuning parameter c (chosen by the econometrician) upon
which Θ̂n = Θ̂n,c and AVARn = AVARn,c depend.33 Assume (as provided by, say, Proposition 1 in
Section 3.1, Theorem 4 in Section 3.2, or Theorem 7 in Section 4.2) that

∀c ∈ C : ÂVARn,c = AVARc(1 + op(1)) (for fixed) c. (71)

We seek c∗ = arg minc AVARc∈C, which we for simplicity of discussion take to be unique. C is a set
of values for the tuning parameters within which one wishes to optimize. For the following prima
facie discussion, we also take the number of points in C to be finite.34

For given number of observations n, our estimate is accordingly ĉn = arg minc∈C ÂVARn,c, where
ÂVARn,c is obtained through our proposals in the preceding sections.

Consistency. Under Condition 3, automatically,

ĉn → c∗. (72)

Validity. This procedure provides an estimator with asymptotic variance AVARc∗ :

asymptotic variance of Θ̂n,ĉn −Θ = AVARn,c∗ . (73)

This is the conceptually more complex issue. Since AVARc is typically random, so will c∗ be
random. A priori, the insertion of ĉn into an estimator might in principle create problems for the
standard convergence setup discussed in Condition 1. At least in our simple case, however, this
difficulty does not arise. We embody this in a formal result.

33Observe that Θ does not depend on c, but will normally be (statistically) mutually dependent with c∗. Recall
that we assume that AVARn = n−2αV , (cf. (16)-(17) in Section 3.1 as well as Footnote 2 in the Introduction.

34This case if of practical interest. See the example later in this section. In the more general case, one may imagine
that there is a finite partition, say, P of the space of all c’s, and that C has one representative of each element of P.
With a well chosen P and C, this construction will normally achieve approximate optimality.

The consistency part below generalizes straightforwardly to more complex C’s, under, say, uniform convergence
conditions. The validity part is best left as a separate paper.
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Proposition 4. (Optimization commutes with Asymptotic Variance.) Assume Conditions
1 and 3. Also suppose that c∗ is G-measurable, and that, for each c ∈ C, (Θ̂n,c − Θ)/AVAR1/2

c

converges stably in law to a N(0, 1) random variable that is independent of G.35 Then (73) holds,
and also

(Θ̂n,ĉn −Θ)/AVAR1/2
c∗

L→ N(0, 1) and (Θ̂n,ĉn −Θ)/ÂVAR
1/2

n,ĉn
L→ N(0, 1), both stably. (74)

Proof: With probability one, for n large enough, nα(Θ̂n,ĉn −Θ) =
∑

c∈C n
α(Θ̂n,c −Θ)I{c=c∗}.

We are thus rescued by the stable convergence. Q.E.D.

Implementation. It is not actually necessary to estimate AVAR to find c∗, so long as the [θ, θ]
component remains stable in c (which is, at least, true asymptotically). In view of Theorems 3 or 6,
it is enough to optimize with a single scale QVB,K(Θ̂). For increased efficiency, however, one may
use a multi-scale estimator from Section 4.2. This time, however, only two constraints are needed.
The criterion MSQV (Θ̂n,c) is obtained by minimizing En = g∗g (from Section 4.2) subject to

m∑
l=1

gn,l = 0 and
m∑
l=1

gn,l(Kn,l∆Tn) = 1 . (75)

In analogy with (64), the resulting MSQV (Θ̂n,c) is the estimated slope in the regression of Y on
the two first columns of X (from equations (53) and (55)). By standard regression considerations,
this estimated slope equals ÂV ARn,c + rn̂[θ, θ]T −,c, where rn is spelled out in (E.76) in Appendix
E.3. In this appendix, we show the following. Recall that (K̄∆Tn)2 is of the same order as n−2α.

Proposition 5. (Asymptotic Validity of Simplified Optimization Procedure.) Let
MSQV (Θ̂n,c) be as described, and assume that the conditions of Theorem 7 are satisfied. Let
K̄n be the mean of the Kn,l. Then, as n→∞,

MSQV (Θ̂n,c) =
(
AV ARn,c + rn(K̄∆Tn)2[θ, θ]T −

)
× (1 + op(1)), (76)

where rn is of exact order O(1) and does not depend on c; the formula is given in (E.76) in
Appendix E.3. Also, if the definition of ĉn is changed to ĉn = arg minc∈CMSQV (Θ̂n,c), then (72)
and Proposition 4 remain valid.

Example. Volatility estimation via pre-averaging followed by a (J,K) TSRV estimator (Ex-
ample 4 in Section 8), with J and K finite, provides an example where the action space C can
indeed be taken to be finite. The assumptions of Propositions 4-5 are satisfied. 2

35In other words, one must check the conditions of Proposition 2 for each c ∈ C.
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6 Guidance: I. Practice

We here give a step by step description of how to practically carry out the estimation of the
asymptotic variance. The situation is that one has a data set and wishes an ÂVARn.

6.1 Creating Estimators Θ̂
(n)
(S,T ] in each subinterval (S, T ].

In practice, a simple way to obtain estimators Θ̂(n)
(S,T ] is to start with half-interval estimators

Θ̂(n)
(0,T ], 0 < T ≤ T as given, and write, for S < T ,

Θ̂(n)
(S,T ] = Θ̂(n)

(0,T ] − Θ̂(n)
(0,S] (77)

We call estimators of the form (77) forward estimators. If the half-interval estimators have repre-
sentation

Θ̂(n)
(0,T ] −Θ(0,T ] = Mn,T + ẽn,T − en,0, (78)

then obviously the representation (13) continues to hold for the forward estimators, with eT = ẽT
for T > 0. If we also define ẽn,0 = en,0, we can write

Θ̂(n)
(S,T ] −Θ(S,T ] = Mn,T −Mn,S + ẽn,T − ẽn,S . (79)

Remark 11. (Additive Estimators.) The particularly simple form (79) can alternatively be
expressed by

Θ̂(n)
(S,T ] −Θ(S,T ] + Θ̂(n)

(T,U ] −Θ(T,U ] = Θ̂(n)
(S,U ] −Θ(S,U ], for S < T < U. (80)

Another construction of this type is the backward estimators: Θ̂(n,b)
(S,T ] = Θ̂(n)

(S,T ] − Θ̂(n)
(T,T ]. The de-

velopment is analogous to that of forward estimators. If estimators are constructed with hindsight,
after time T , one can also average the forward and backward estimator, which has slightly better
properties by sufficiency considerations. (Similarly to Remark 7(iii).)

Additive estimators also have the advantage that the conditions and theorems of the current
paper become easier to state and verify. 2

6.2 Irregular Sampling: Validity of the Previous Tick Approach. Several Di-

mensions

For simplicity, we discuss this issue for the forward or other additive estimator introduced above.
We suppose that data arrives at times tn,i, i = 0, · · · , B′n. We shall take this to mean that the
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underlying half-interval estimator Θ̂(n)
(0,T ] changes values at times T = tn,i. We then set

Θ̂(n)
(0,Ti]

∆= Θ̂(n)
(0,Tn,i,∗]

where Tn,i,∗ = max{ tn,j ≤ Tn,i }, (81)

and proceed as if nothing has happened. This is the previous tick scheme, see Zhang (2011) and
the references therein.

The rationale for this is the following result, which is shown in Appendix F.1.

Proposition 6. (Previous Tick Sampling.) Assume that the tn,i, i = 0, · · · , B′n is (for each
n) a non-decreasing sequence of stopping times. Suppose that

sup
i
|Tn,i,∗ − Tn,i|

p→ 0 as n→∞, (82)

as well as Tn,0,∗ = 0 and Tn,B′n,∗ = T . In the formal results36 of this paper, the conditions on the
microstructure ẽn,Tn,i may be replaced by the same conditions on ẽn,Tn,i,∗. FTn,i may, however, not
be replaced by FTn,i,∗.

In practice, this means that the results in Section 3 are unaffected by the previous-tick sam-
pling. On the other hand, in Section 4, the (Hard Edge) Condition 2 would, for example, involve
requirements such as E(ẽ′n,Tn,i,∗ | FTn,i−Jn ) = 0. Recall that because of the structure of the forward
estimator, en,T = ẽn,T .

Remark 12. (When there is no Edge Effect.) The condition (82) is required even when the
microstructure noise ẽn,T,∗ is identically zero. 2

Remark 13. (Several Dimensions.) The extension of this theory to several dimensions is
straightforward. All our results carry over appropriately for the regular grid {Tn,i, i = 0, · · · , Bn},
using the identity xy = 1

2

(
(x+ y)2 − x2 − y2

)
.37 One can then use Proposition 6 in each dimension,

since no time change is involved in our proofs. 2

6.3 In case the Spot Process θt does not exist

The theory in this paper requires the existence of a “spot” θt, and does not apply, say, to estimating
the discontinuous part of the quadratic variation. For example, suppose that Θ(0,T ] =

∫ T
0 θtdt+TT ,

where Tt is a process with finitely many jumps in (0, T ]. Then, obviously, to first order, QVB,K(Θ) =
[T,T]T − [T,T]0 + op(1). The same is true for QVB,K(Θ̂) The situation is not exotic: A simple

36Theorems, propositions, corollaries, and lemmae. We emphasize that (unless the tn,i are nonrandom, or in certain
other circumstances), the Tn,i,∗ may not be stopping times. Hence, for example, the argument in Remark 17 (Section
8) may not be valid. Also, FTn,i,∗ will not be defined unless Tn,i,∗ is a stopping time. In case of doubt, please make
use of the more specific Proposition 8 in Section 7.2.

37See the definition of multivariate quadratic variation in Jacod and Shiryaev (2003, Eq. (I.4.46), p. 52).
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example would be the estimation of [X,X] when the X process can have jumps. In our setting,
the methodology applies to estimating the continuous part

∫
σ2
t of this quadratic variation.

For this reason, in our examples (Section 8), we consider that the primary estimating procedure
removes anything that can cause Tt to be nonzero. In the case that the Tt process has finitely many
jumps, these can alternatively be removed directly with truncation or bi-/multi-power methods,
cf. the references at the beginning of Section 8. We presently show how one can proceed using
truncation.

Algorithm 1. (Jump removal in Θ̂.) If there are ν (finitely many) jumps, truncation cre-
ates ν removed intervals38 (Tij , Tij+1], j = 1, · · · , ν. (These intervals are identified with prob-
ability one as n → ∞.) One can then proceed as follows. For scale K, omit all Θ̂(Ti,Ti+K ] for
which (Tij , Tij+1] ⊆ (Ti, Ti+K ] for any of the removed intervals. When Θ̂(Ti,Ti+K ] is removed the
relevant squares in QVB,K(Θ̂) are computed as (Θ̂(Ti+K ,Ti+2K ] − Θ̂(Ti−K ,Ti])

2. Call this quantity
QVB,K,modified(Θ̂). Similarly, for the true process θ, denote the modified averaged quadratic
variation by QVB,K,modified(Θ). 2

The critical piece for analyzing the above construction is then the following, which generalizes
Theorem 1 in Section 2.3, by the same methods.

Theorem 8. (The Integral-to-Spot Device with Removed Intervals.) Assume that θt is
a semimartingale on [0, T ]. Set ∆T = T /B, and assume that Ti = i∆T . Suppose that K∆T → 0,
and that K → ∞. Suppose that there are stopping times τ1, · · · , τv ∈ (0, T ). Assume that in
Algorithm 1 above, P (∩νj=1{τj ∈ (Tij , Tij+1]})→ 1 as B →∞. Then

1
(K∆T )2

QVB,K,modified(Θ) =

2
3

[θ, θ]T − +
2
3

ν∑
j=1

([θ, θ]Tij+1 − [θ, θ]Tij )

 (1 + op(1))

p→ 2
3

[θ, θ]T − +
2
3

ν∑
j=1

(∆θτj )
2. (83)

Thus, if jump times in Tt coincide with those of θt, the estimation [θ, θ]T − becomes additionally
complicated.

The AVAR estimates, however, are not affected. Under the conditions of Theorem 4 the
TSAVAR (26) remains consistent for AVARn(Θ̂ − Θ). Similarly, under the conditions of Theo-
rem 7, the regression estimator of AVARn also remains consistent. QVB,K,modified(Θ̂) will have
lost a fraction ν/Bn of its asymptotic variance component, one can consider a small sample multi-
plicative adjustment of (1− ν̂/Bn)−1 to the estimated variances, where ν̂ is the number of removed
intervals (Tij , Tij+1], but this does not impact the asymptotics.

38The method carrying out the truncation may depend on the estimator.
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For the case of many small jumps, it is unlikely that all jumps will be detected. The contiguity
results of Zhang (2007), however, may mitigate the problem.

6.4 Choosing ∆T and K

The question of how to select ∆T and K is previously discussed in Remark 7, in connection
with small edge effects (Section 3.2). The recommendation in that context was that ∆Tn may be
arbitrarily small, and that Kn∆Tn should typically be of the same order as n−α.

We here provide nuance to the earlier comments. Consider the situation where the edge effects
may not quite be known or mathematically understood, and we are not sure whether they are soft
or hard edges.

First of all, while there is no restriction on ∆Tn as such, the Hard Edge Theorem 6 does have a
condition on the duration in time Jn∆Tn of dependence between the edge effects, and this may put
a lower bound on how small ∆Tn can meaningfully be. A data-driven way to assess the duration
may be to look at residuals from the regression that generates the multi-scale estimators in Section
4.2.

Second, consider what happens if the balance condition (30) is violated. This can happen
inadvertently, in at least two ways. (i) It is often relatively straightforward to obtain a ballpark
assessment of α, but our guidance only extends to Kn∆Tn and n−α being of similar order, and
so the balance may be “almost” violated. (ii) There are, of course, cases where α is difficult to
establish accurately.

In the case where Kn∆Tn = o(n−α), the contribution of [θ, θ]T − is reduced to the asymptotically
negligible, which in itself does not interfere with any of our observed AVARs. The concern, however,
is that the edge effect is similarly pushed up. Depending on the size of the edge effect, Theorem 3
may remain valid, and this creates some robustness to the choice of Kn∆Tn. The pushing up of the
edge effect does occur, however, as is clear in raw form from Theorem 10 (in Appendix C). Once
the size of Rn,K (eq. (C.33)) is pushed above op(n−2α), one is in the territory of of the hard edge.
Theorem 6 then takes over,39 and in this result the increased size of the edge effect is explicit, in
the sense that the edge components in (45) have coefficient proportional to (Kn∆Tn)−1.

One approach is to note that the multi-scale AVAR is robust to the size of the main edge effect
MAEEn, hence this method might be used (at least as a diagnostic) if one suspects that Kn∆Tn is
too small.

Less is known about the opposite situation where n−α = o(Kn∆Tn). We conjecture that there
is some robustness for the two- and multi-scale AVARs, since they would cancel the [θ, θ]T − term in
an expansion for the estimator, so that the main effect would be a second order central limit type

39See Footnote 30 to this theorem for robustness to failure of the balance condition
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term, of conjectured order Op(K3
n∆T

5
2
n ) for Itô-semimartingales. This provides some leeway in the

soft edge case. In the hard edge case, there is an additional worry about the remainder terms, and
we have not investigated this question.

6.5 Block Estimators: the Interface between Block Sizes Mn and Kn

Estimators are often based on rolling blocks of Mn observations. See, e.g., Examples 6, 7, 9, and
10 and Remark 17 in Section 8. We thus have two types of block sizes: (i)Mn is used to construct
the underlying Θ̂, and (ii) Kn (one or more) is used to construct our current QVB,K(Θ̂), and the
resulting AVAR and [θ, θ]T − estimators.

The two fundamental comments on this setup are: (a) it is important to not mix up Mn and
Kn, and (b) there is no need for Mn and Kn to be related.

In the schematic case40 where observations times are the same as our Tis, this means that
the estimator Θ̂(0,Ti] is not defined for i < Mn. For i ≥ M, however, we can seek relief in
forward estimators (Section 6.1), so that no matter what value Kn has, we can define Θ̂(Ti−Kn ,Ti]

=
Θ̂(0,Ti]− Θ̂(0,Ti−Kn ] from original forward estimators. These will be defined for Kn +Mn ≤ i ≤ Bn.
With this definition, we can marginally alter QVB,K(Θ̂) from (4) (Section 2.1) to

QVB,K,M′(Θ̂) =
1
K

B−K∑
i=K+M′

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2, (84)

and similarly for QVB,K(Θ), whereM′ is eitherMn or a slightly larger number (in case an estimator
based on a single block is undesirable).

All theorems and other formal results go through unaltered if one replaces QVB,K(Θ̂) by
QVB,K,M′(Θ̂), provided M′n∆Tn → 0 as n → ∞. This is a substantially weaker requirement
than the theoretical condition (104) used to analyse edge effects in Remark 17 in Section 8.

6.6 Applying ÂVAR

The above steps having been completed, there may still remain a choice between

i. The Two-scales estimator from Section 3.2, as given by (26) and (28) in Definition 4.
Theorem 4 assures consistency.

ii. The Multi-scale estimator, from Section 4.2, as given by (58). Theorem 7 assures consis-
tency.

40Otherwise see Section 6.2.
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The considerations in Section 6.4 may impose a choice. If not, there are two paths: one can either
check the theoretical conditions, or, at least for a prima facie impression, try both estimators on
the data. Diagnostic plots may then be helpful in deciding which estimator to use (and with which
Ks).

Finite Sample Adjustment. Without impacting the asymptotics, one can make finite sample
adjustments, and use B−2K+1

B QVB,K(Θ̂) in lieu of QVB,K(Θ̂), and B−2K−M′+1
B QVB,K,M′(Θ̂) in lieu

of QVB,K,M′(Θ̂) from (84). The adjustment will produce “unbiasedness” in Theorem 1 when [θ, θ]t
is absolutely continuous with constant derivative.

Finally, after the above, one is in possession of an estimate ÂVAR. Subject to the regularity
conditions imposed, this estimator is consistent in the sense of Section 3.1. In particular, under the
conditions of Proposition 2, if se(Θ̂n) = |ÂVARn|

1
2 , then

Θ̂n −Θ
se(Θ̂n)

L→ N(0, 1) stably in law. (85)

7 Guidance: II. Theory

We again emphasize that it is possible to use our methods without first verifying the conditions.
This is standard practice in many areas of inference; the observed information, and bootstrapping,
are examples where practice is often ahead of theory. We now, however, pass from the “how?” to
the “why?”41 We seek to address the why in this section, first conceptually, then practically.

7.1 The Purpose of Stable Convergence and of the P-UT Condition

Stable convergence (Definition 3 in Section 3.1) allows you to take the information from the
data (represented by sigma-field G) into the asymptotic distribution. Most commonly, this in-
formation is the quadratic variation [L,L]T , which plays the rôle of variance in the asymptotic
distribution, but which can be consistently estimated from the data by any consistent estimator of
n2α[Mn,Mn]T . This is the contents of Proposition 1. The principle goes back to Hall and Heyde
(1980, Chapter 3, p. 56), and has a quite general formulation in Jacod and Shiryaev (2003, Theorem
VI.6.26 (p. 384)).

The amount of data G that one wishes to carry to asymptopia may vary. The theory described
in this paper will work for any G ⊆ F , so long as [L,L]T is G-measurable. (This is true under
minimal conditions, see Proposition 7 at the end of this section.) One may, however, wish to carry

41 “The history of every major Galactic Civilization tends to pass through three distinct phases, those of survival,
inquiry, and sophistication, otherwise known as the How, Why, and Where phases. For instance, the first phase is
characterized by the question How can we eat? the second by the question Why do we eat? and the third by the
question Where shall we have lunch?” (Adams (1979, Chapter 35)).
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other information. First, for suitably chosen G, stable convergence commutes with measure change
(Mykland and Zhang (2009, Proposition 1, p. 1408)), and this can simplify analysis. Second,
stable convergence can help weaken conditions with the assistance of localization, see, e.g., Jacod
and Protter (2012, Lemma 4.4.9, p. 118-121), and Mykland and Zhang (2012, Section 2.4.5, pp.
160-161). In common practice, the information in G will include latent efficient prices Xt and
parameter processes θt, but typically not information from the microstructure noise, if present in
the model (Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006), Jacod, Li, Mykland, Podolskij,
and Vetter (2009a), Podolskij and Vetter (2009b), Jacod and Protter (2012), and many others).
Thus, Ln,t = nαMn,t may in some circumstances not be G measurable.

For general discussions of stable convergence, see Jacod and Protter (1998, Section 2, pp. 169-
170), Jacod and Shiryaev (2003, Chapter VIII.5c-d, pp. 512-519), Jacod and Protter (2012, Chapter
2.2.1, pp. 46-50), and Mykland and Zhang (2012, Section 2.4, pp. 150-161). For further background
on stable convergence, see Rényi (1963), Aldous and Eagleson (1978), , Rootzén (1980), and Zhang
(2001). Stable convergence was originally thought of as a form of conditional convergence (Jacod
and Shiryaev (2003, top of p. 513)).

Remark 14. In this paper, convergence in law for processes is relative to the Skorokhod topology
on the space D = D[0, T ] of càdlàg functions [0, T ]→ R. In Definition 3, the pair (Ln, Y ) converges
in the product topology. In other words, (Ln, Y ) L→(L, Y ) means that Ef(Ln)g(Y )→ Ef(L)g(Y ),
for all bounded continuous f : D → R and g : R → R. For more on the Skorokhod topology, see
Jacod and Shiryaev (2003, Chapter VI.1-2, pp. 325-346). Note that Ft can depend on n, cf. the
discretization discussion in the next section. 2

The Predictably Uniformly Tight (P-UT) Condition is described and studied in Jacod
and Shiryaev (2003, Chapter VI.6, p. 377-388). It is an additional regularity condition which avoids
certain idiosyncrasies associated with regular process convergence. If the sequence of semimartin-
gales Ln is tight in the Skorokhod topology, one can take as definition of P-UT that if Hn is a
bounded family of predictable processes, then

∫ T
0 Hn,tdLn,t is tight for each T (ibid, Definition 6.1,

p. 377, and Corollary 6.20, p. 381). Also, by ibid., Theorem VI.6.22 (p. 383), if (Hn,+, Ln) L→(H,L)

(and subject to regularity conditions), then
∫
Hn,tdLn,t

L→
∫
HtdLt. Also, and this is important for

the current paper, [Ln, Ln] L→[L,L] (ibid, Theorem VI.6.26, p. 384). Finally, P-UT prevents a
predictable finite variation part of Ln to turn into something different (ibid, Theorem 6.15 (iii), p.
380, and Theorem VI.6.21, p. 382).

We shall see in Sections 7.2 and 8-9 that there is little additional burden in verifying the P-UT
condition once one proves stable convergence. Also, a sufficient condition for a sequence of local
martingales Ln,t to be P-UT is that (Jacod and Shiryaev (2003, Corollary VI.6.30, p. 385))

sup
n
E sup

0≤t≤T
|∆Ln,t| <∞. (86)



Observed Asymptotic Variance for High Frequency Data, September, 2015 35

The condition (86) is weaker than what is usually required for a central limit theorem,42, and it does
in particular not impose asymptotic negligibility. If (86) still seems too strong, the requirement
can be localized using stable convergence, as described above in this section.

As an illustration of how stable convergence blends with P-UT:

Proof of Proposition 1. Let (FLt ) be the filtration generated by the process Lt, on the
extension (Ω̃, G̃, P̃ ). Since, by assumption, Lt is a local martingale with respect to filtration (G∨FLt ),
then it follows that L2

t − [L,L]t is also a local martingale w.r.t. G ∨ FLt , and hence E(LT | G) = 0
and E(L2

T − [L,L]T | G) = 0. Hence, Var(LT |G) = [L,L]T . Set Ln,t = nαMn,t. Since Ln,t is
P-UT, Jacod and Shiryaev (2003, Proposition VI.2.1, p. 377 and Theorem VI.6.26, p. 384)) yields
that [Ln, Ln]T

L→[L,L]T stably in law as n → ∞. However, since [L,L]T is G measurable and
hence defined on the original space, [Ln, Ln]

p→[L,L]T by Jacod and Protter (2012, eq. (2.2.7), p
47). (It is enough for the “<=” part of the cited result that the limiting random variable be G
measurable.) Q.E.D.

Remark 15. (Connection to Granger Causality.) In many developments, the extension
(Ω̃, G̃, P̃ ) also naturally has an overall filtration (G̃t)0≤t≤T , for example, G̃t = Ft∨FLt . The filtration
G̃t is then typically required to satisfy the slightly stronger condition of being “very good” (Jacod
and Protter (2012, p. 36)), which is to say that for all t ∈ [0, T ], G̃t is conditionally independent
of FT given Ft. This is the same as saying that “(Ft) is its own cause within (G̃t)” (Mykland
(1986, p. 3)), in a nonlinear extension of Granger (1969) Causality. In other words, the asymptotic
martingale does not cause the data, which is reassuring. 2

We finish with the promised result on minimal stable convergence.43

Proposition 7. (Automatic Minimal Stable Convergence.) Assume that the sequence of
semimartingales Ln = nαMn converges in law to L, and is P-UT. Also assume that [Ln, Ln]T
converges in probability. Call this limit V (so [Ln, Ln]T

p→V ). Let G be the sigma-field generated by
V . Then there is an extension (Ω̃, G̃, P̃ ) of (Ω,G, P ) so that Ln converges stably in law with respect
to G as n → ∞. Also, on this extension, [L,L]T = V , and FLT is conditionally independent of F
given G. In particular, the filtered extension is “very good” in the sense of Remark 15.

7.2 Tools to verify Condition 1

There are three main strategies: discretization, interpolation, and contiguity.

Discretization. For general results, we recommend, in particular, the books by Jacod and
Shiryaev (2003), Jacod and Protter (2012), and Aı̈t-Sahalia and Jacod (2014), as well as the many
articles cited above, and in these books.

42See, for example, Hall and Heyde (1980, conditions (3.18) and (3.20), p. 58).
43The following proposition is conceptually related to Hall and Heyde (1980, condition (3.19), p. 58).
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In our context, we assume for greatest generality that data arrives at irregular times, tn,i, i =
0, · · · , B′n. The semimartingale Mn is on the form

Mn,t =
i∑

j=1

χnj , for tn,i ≤ t < tn,i+1 (87)

We are now outside the framework of a fixed filtration used in the rest of the paper, but there is a
path. Proposition 8 will be proved in Appendix F.1.

Condition 4. (Alternative Convergence Condition.) Let θt be a semimartingale on the
fixed filtered probability space (Ω,F , (Ft)0≤t≤T , P ). Let ti,n, i = 0, · · ·B′n be a nondecreasing sequence
of (Ft)-stopping times so that

sup |ti+1,n − ti,n|
p→ 0 as n→∞, (88)

as well as tn,0 = 0 and tn,B′n = T for each n. Let Mn,t be on the form (87) and assume that Mn,t

is a semimartingale with respect to filtration Fnt = Ftn,i for tn,i ≤ t < tn,i+1. Assume the rest of
the wording of Condition 1 with the proviso that {(en,Tn,i , ẽn,Tn,i) : Tn,i ∈ Tn} be replaced with the
set of random variables {(en,Tn,i,∗ , ẽn,Tn,i,∗) : Tn,i,∗ = max{ tn,j ≤ Tn,i }}.

Proposition 8. (Satisfying Conditions with a Discrete Time Martingale). In the formal
results44 of this paper, Condition 1 may be replaced by Condition 4. At the same time, for conditions
on the microstructure (en,Tn,i , ẽn,Tn,i) should be replaced by the same conditions on (en,Tn,i,∗ , ẽn,Tn,i,∗),
while FTn,i may not be replaced by FTn,i,∗. With these modifications, all formal results remain valid.

We can now avail ourselves of the standard Jacod structure. For example, to satisfy Condition
1, we can check the assumptions of Theorem IX.7.19 (p. 589-590), or of Theorem IX.7.28 (p.
590-591) of Jacod and Shiryaev (2003, Chapter IX.7b, p. 589-591)), with B ≡ Z ≡ G ≡ 0. To
additionally satisfy P-UT, we additionally need, respectively,

n∑
i=1

|E(h(χni )|F(i−1)/n)| = Op(1) or
n∑
i=1

|E(χni |F(i−1)/n)| = Op(1). (89)

Furthermore, If Ln,t = nαMn,t can be written as Ln,t = L
(1)
n,t +L

(2)
n,t, Condition 1 is satisfied for Ln,t

provided it is satisfied for L(1)
n,t, and provided L

(2)
n,t → 0 uniformly in probability (ucp), with (for

P-UT)
n∑
i=1

|E(L(2)
n,tn,i

− L(2)
n,tn,i−1

|Fn,tn,i−1)| = Op(1), (90)

again by Jacod and Shiryaev (2003)[Theorem VI.6.21 (p. 382)). Both ucp and P-UT are additive
(ibid., Remark 6.4, p. 377).

44See Footnote 36 in Section 6.2 for caveats.
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Incidentally, Theorem IX.7.19, or Theorem 7.28, of Jacod and Shiryaev (2003) also guarantee
the conditions of Proposition 2 (feasible estimation).

The methodology is illustrated by Example 6, where the paper by Jacod and Rosenbaum (2013b)
verifies the stable convergence with the help of Jacod and Shiryaev (2003, Theorem IX.7.19 (p.
590)) and where ignorable terms are ucp, and where it remains to show P-UT-ness. The example
illustrates that the P-UT property often follows from the same arguments that give rise to stable
convergence.

Interpolation. This has to a great extent been the approach of the current authors. Even
if the data are discrete, one can create a continuous martingale by interpolation. One can verify
Condition 1 by checking the assumptions of Zhang (2001, Theorem B.4, pp. 65-67) or Mykland
and Zhang (2012, Theorem 2.28, p. 152-153). The P-UT property is here automatic, by Jacod and
Shiryaev (2003, Corollary VI.6.30, p. 385). We have included a procedure of this type in Example
1 in Section 8.

The idea of interpolation goes back to Heath (1977), and is related to embedding, cf. the
references in Mykland (1995b). In our current case, however, one has to be particularly precise,
since the process θt already lives on the relevant filtration.

Contiguity. The contiguity approach (Mykland and Zhang (2009, 2011, 2012, 2015b,c)) may,
when applicable, reduce high frequency martingales to ones that are locally Gaussian. We refer to
the cited papers for further discussion. We have included a procedure of this type in the example
in Section 9.

8 Examples: Corroboration of Concept

The purpose of this section is to document that the assumptions in this paper are widely satisfied
in the existing literature. The relevant papers will typically have expressions for AVARn and an
estimator thereof. In most cases, however, the alternative Observed ÂVARn is much easier to imple-
ment when constructing a feasible statistic of the form (2). We also in many cases describe carefully
the separation into martingale and edge effect, thereby hopefully assisting the understanding of the
concept. For an example of a new analysis where we deliberately do not find the theoretical AVAR,
see the next section.

Unless the opposite is indicated, we suppose that Xt is an Itô-semimartingale, either with no
jumps (dXt = µtdt + σtdWt), or with jumps that are removed by bi- and multi-power methods
(Barndorff-Nielsen and Shephard (2004b, 2006), Barndorff-Nielsen, Graversen, Jacod, Podolskij,
and Shephard (2006a,b)), or by truncation45 (Mancini (2001), Aı̈t-Sahalia and Jacod (2007, 2008,
2009, 2012), Jacod and Todorov (2010), Lee and Mykland (2008, 2012), Jing, Kong, Liu, and

45For the case of removal by truncation, please consult Section 6.3.
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Mykland (2012)), as appropriate. See also Zhang (2007), Christensen, Oomen, and Podolskij
(2011), and Bajgrowicz, Scaillet, and Treccani (2013). We emphasize that θ can be a general
semimartingale,46 so that, for example, the Lévy driven volatility model in Barndorff-Nielsen and
Shephard (2001) is covered by the examples. We either observe Xti at times ti, i = 0, · · · , n
spanning [0, T ], or we observe Yti , which is a version of Xti that is contaminated by microstructure
noise.

In implementation, we assume that Θ̂(S,T ] is the forward estimator from Section 6.1. For
examples with irregular observations, we assume the previous-tick scheme from Section 6.2, and in
particular that (82) is satisfied. We shall omit the subscript n on t: ti means tn,i.

Remark 16. (Two Types of Conditions.) To see how our examples fit into the theory, we need
to check two classes of conditions. One is on the martingale Mn,t, and they are all in Condition 1
or in the alternative Condition 4. We recall that they are

nαMn
L→ L stably, nαMn is P-UT, [L,L]T ∈ G, and L is a martingale conditionally on [L,L]T .

(91)
The edge effects have various conditions attached to them depending on their order of magnitude.
They all need to satisfy that ẽTi = op(n−α). The small edge conditions are in Sections 3.2-3.3. The
easiest condition to satisfy is (29) in Theorem 4, which makes the two scales AVAR and ̂[θ, θ]T−
consistent. This condition also implies (22) in Theorem 3 for the choice of Kn that satisfies the
balance condition (30). If (29) does not hold, one has hard edge effects, and need to attempt
Condition 2 for Theorems 6-7. We underline that the multi-scale estimator from Section 4.2 is
valid under both soft and hard edge conditions (Theorem 7). When we say in an example that
TSAVAR will be consistent, then implicitly, so will the multi-scale estimator. 2

Example 1. (Realized Volatility, No Microstructure Noise.) The parameter is θt = σ2
t .

The convergence rate is α = 1/2. In the straightforward X-is-continuous case, a popular estimator
for the

∫ t
0 θds is the standard realized volatility (RV),

∑
ti+1≤t(Xti+1 −Xti)

2 (Andersen, Bollerslev,
Diebold, and Ebens (2001a); Andersen, Bollerslev, Diebold, and Labys (2001b); Barndorff-Nielsen
and Shephard (2002a)). There is no edge effect, i.e., ẽTn,i,∗ ≡ 0. By Remark 16, we need to check
(91). The stable convergence has been shown by Jacod and Protter (1998) using discretization.
We here use interpolation just because it gives the P-UT property directly. The interpolated
semimartingale has the form Mn,t =

∑
tn,j+1≤t(Xtn,j+1 −Xtn,j )

2 + (Xt −Xtn,∗)2 −
∫ t

0 σ
2
sds, where

tn,∗ = maxj{tn,j ≤ t}. See Zhang (2001); Mykland and Zhang (2006, 2012). The requirements
[L,L] ∈ G, and that L be a martingale conditional on G, also follow from the construction in the
cited papers. and all theorems in the current paper can be used. 2

Example 2. (Bipower Variation, No Microstructure Noise.). The bipower variation
Θ̂(0,T ] = π

2

∑
0<ti≤T |∆Xti−1 ||∆Xti | (and more generally, Multipower Variation, Barndorff-Nielsen

and Shephard (2004b, 2006)) estimates the integrated volatility in a way that is robust to jumps.
46In all our examples, the spot values of θt exists. See Section 6.3 for further discussion of this.
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Since jumps are of the essence in this model, we specify that dXt = µtdt+ σtdWt + dJt, where Jt
is a semimartingale for which [J, J ]t is purely discontinuous.

The parameter is θt = σ2
t . The convergence rate is α = 1/2. We here study the case of

equidistant sampling, tn,i − tn,i−1 = ∆tn = T /n, and for convenience we take ∆Tn = ∆tn. Our
semimartingale is

Mn,Ti =
π

2

i∑
j=2

|∆Xtj−1 ||∆Xtj | −
∫ Ti−1

0
σ2
t dt. (92)

The papers by Barndorff-Nielsen and Shephard (2004b, 2006), Barndorff-Nielsen, Graversen, Jacod,
Podolskij, and Shephard (2006a,b), and Barndorff-Nielsen, Shephard, and Winkel (2006c) have
shown stable convergence and the other conditions of (91), with the exception of P-UT property.

P-UT property. Consequently, we here show that n1/2Mn is P-UT. We make the following
assumptions: (i) µt is locally integrable and σ2

t is continuous,47 and (ii)

n∑
j=1

|∆Jtj−1 ||∆Jtj | = Op(n−1/2). (93)

Note that the final equation is, in particular, satisfied when Jt = J
(1)
t +J

(2)
t , where J (1) has finitely

many jumps and J (2) is a purely discontinuous Itô-semimartingale (see, for example, Jacod and
Protter (2012, Definition 2.1.1, p. 35, see also Theorem 2.1.2, p. 37)).

Proof of P-UT property. Without changing either assumptions or conclusions, we absorb
the µtdt term into dJt, so that dXt = σtdWt+dJt. [J, J ]t is unchanged, and so is the statement (93).
From (93) as well as Jacod and Shiryaev (2003, Definition VI.6.1 and the additivity VI.6.4, both p.
377), it follows that to verify P-UT of the original Mn, it is enough that the P-UT property holds on
a modified M̃n which has the same form as (92) but with X replaced by Xc, where dXc

t = σtdWt.
For this process, it is easy to verify P-UT under the contiguous sequence of measures Qn from
Mykland and Zhang (2009, Section 3, pp. 1416-1421). and using the big block-small block device
(Mykland, Shephard, and Sheppard (2012, Appendix A.5, 32-33)), again using Definition VI.6.1
from Jacod and Shiryaev (2003). But this definition is invariant to contiguous change of measure,
and hence M̃n is P-UT under the original measure P . It follows that the original n1/2Mn is P-UT.

Q.E.D.

Edge Effect. There is some variability between proofs of whether the integral in (92) has
upper limit Ti−1 or Ti. In the latter case, there is no edge effect. In the former case, by Remark 17
below, ave(ẽ2

Ti
) = Op((∆Tn)3), by (105).

In conclusion, all theorems and estimators in the current paper can be used to estimate the
AVAR of Bipower Variation. 2

47The spot volatility is also a semimartingale since θt = σ2
t . The continuity assumption is merely for convenience

and can be reduced to an assumption that σ2
t be locally bounded.
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Example 3. (Classical Two-Scales Realized Volatility.). The parameter remains θt = σ2
t .

There is now microstructure noise, and observations are of the form

Yti = Xti + εti (94)

which we here for simplicity take to be iid, or to be stationary with fast mixing dependence. Xt is
assumed to be a continuous Itô-semimartingale.

The classical Two-Scales Realized Volatility (TSRV; Zhang, Mykland, and Aı̈t-Sahalia (2005),
Aı̈t-Sahalia, Mykland, and Zhang (2011)) has a convergence rate of α = 1/6. It is easy to see
that Conditon 1 is satisfied. Edge effects, whether alone or by averages, are of order Op(n−2α),
cf. Zhang, Mykland, and Aı̈t-Sahalia (2005, eq. (A.21), p. 1409), whence Theorem 4 applies.
The two-scales AVAR and ̂[θ, θ]T− are thus consistent. In fact, Theorem 3 is valid so long as
n2αKn∆Tn →∞. 2

Example 4. (Pre-averaging followed by TSRV). The parameter remains θt = σ2
t . The

observations are as in (94). The convergence rate is α = 1/4. The estimator is constructed as
follows (Mykland and Zhang (2015a)). One preaverages observations across blocks of size O(n1/2)
observations, and then calculates a (j, k) TSRV on the basis of the preaveraged observations, where
1 ≤ J < K are finite. It is shown in (Mykland and Zhang (2015a)) that this estimator of integrated
volatility converges stably at rate α = 1/4, the semimartingale is P-UT, and the edge effects are
benign, of exact order Op(n−1/2). The edge effects are thus small enough to satisfy the small edge
conditions (22) and (29) in Theorems 3-4 (Section 3.2). We have used this method in Figure 1.
Note that in the terms of Section 6.5 and Remark 17 above, M = k.

It is conjectured that the same type of situation pertains to classical pre-averaging (Jacod, Li,
Mykland, Podolskij, and Vetter (2009a); Podolskij and Vetter (2009b)), but we have not investigated
this. 2

Example 5. (Multi-Scale and Kernel Realized Volatility.) The parameter remains θt =
σ2
t . The observations are as in (94). The convergence rate is α = 1/4. We here show that

the Multi-Scale Realized Volatility (MSRV, Zhang (2006)) is covered by our current development.
Following Bibinger and Mykland (2013), the result also covers Realized Kernel estimators (RK,
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)).

We shall go through this case in some detail since it illustrates many of the issues. From
equation (15), p. 1024, and eq. (51), p. 1039, in Zhang (2006),

Mn,t = M
(1)
n,t +M

(2)
n,t +M

(3)
n,t , (95)
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where48

M
(1)
n,t = −2

Mn∑
i=1

an,i
1
i

∑
ti+1≤t

εtn,j εtn,j−i ,

M
(2)
n,t =

Mn∑
i=1

an,i[X,X](n,i)t −
∫ t

0
σ2
sds, and

M
(3)
n,t = 2

Mn∑
i=1

an,i[X, ε]
(i)
t . (96)

The edge effects, e and ẽ, are given by (Ibid., eq. (51), p. 1039, and rewritten form (53), p. 1040)

en,0 =
Mn−1∑
j=0

$n,jε
2
tj − Eε

2 and ẽn,tk =
Mn−1∑
j=0

$n,jε
2
tk−j
− Eε2, where $n,j =

Mn∑
i=j+1

an,i
i
. (97)

With these definitions, and with Mn = O(n1/2), eq. (13) in the current paper is satisfied up to
Op(n−1/2) (ibid., Proposition 1, p. 1023).

The terms in (97) are of order Op(n−1/4), and so Condition 1 is violated. Since this magnitude
of edge effects is in any case undesirable, we propose to amend the MSRV by estimating the edge
effects:

adjusted MSRVn,tk
= original MSRVn,tk

− ên,tk + ên,0, where

ên,tk =
Mn−1∑
j=0

$n,j

(
Ytk−j − Ȳtk

)2 − 1
2

[X,X](n,1)
T , (98)

and similarly for ên,0, where Ȳtk is the mean of Ytk−Mn+1
, · · · , Ytk . Since. from Zhang (2006,

Condition 1 (p. 1023) and eq. (54) (p. 1040)),

Mn−1∑
j=0

$n,j = 1 and
Mn−1∑
j=0

$n,j = Op(M−1
n ), (99)

we obtain

ên,tk = ẽn,tk +Op(n−1/2). (100)

Hence,
adjusted MSRVn,tk

= Mn,tk +Op(n−1/2), (101)

and so the new edge effect is of size Op(n−1/2). Under the conditions of Ibid., Theorem 4 (p. 1031),

48Except that we useMn to denote the number of scales (called Mn in Zhang (2006). The square brackets in (96)
are discrete sums. The an,i are given by Ibid., eq. (21)-(22) p. 1026.
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including Mn/n
1/2 → c, it is easy to see that Condition 1 is satisfied.49The edge effects are thus

small enough to satisfy the small edge conditions (22) and (29) in Theorems 3-4 (Section 3.2).

Similar arguments would extend to the dependent but mixing noise in Aı̈t-Sahalia, Mykland,
and Zhang (2011). 2

Remark 17. (Edge Effects in Block Based Estimation.) Estimators are often based on
rolling blocks of Mn observations.50 This is the case in the following Examples 6, 7, 9, and 10.51

See also Section 6.5 to the effect that our Kn is unrelated to Mn.

Rolling block estimators frequently have the common feature that the edge effect is (exactly or
approximately) on the form ẽTi = −Θ(Ti−Mn+1,Ti]. We here present a general strategy for dealing
with edge effects on this form, and we shall comment on specifics in connection with individual
examples. For simplicity, we assume that observations are an equidistant sample every ∆tn = T /n
units of time, and we also set ∆Tn = T /n. (This is the case for all the papers we cite on block
estimation.) Assume that the conditions (91) on the martingale Mn,t are satisfied.

First of all, use (B.32) in Appendix B to write ẽTi = Θ′′(Ti−Mn+1,Ti]
− θTi(Mn − 1)∆Tn, where

Θ′′(Ti−Mn+1,Ti]
is as defined in (11) in Section 2.3. Then absorb −θTi(Mn − 1)∆Tn in the semi-

martingale Mn, so that
Madjusted
n,Ti

= Moriginal
n,Ti

− θTi(Mn − 1)∆Tn, (102)

and redefine the edge effect as
ẽTi = Θ′′(Ti−Mn+1,Ti]

. (103)

So long as52

Mn∆Tn = o(n−α), (104)

the limiting martingale and the mode of convergence is unchanged (Jacod and Shiryaev (2003,
Lemma VI.3.31, p. 532)). P-UT property is also not affected (ibid., Remark VI.6.4, p. 377). Also,
by the same methods as in the Proof of Theorem 1 (see Appendix B), ẽTi = Op(Mn∆Tn) = op(n−α).
Hence, Condition 1, or alternative Condition 4, is satisfied.

As an application of Theorem 9 in Appendix A (the proof is similar to that of Theorem 2
49The second term in (98) is only available at time T . This means that it can be used to estimate the MSRV at

time T . For the intermediate calculations at times Tn,i or Tn,i,∗, this is not a concern, however, since the term is
constant in i and thus will cancel then computing Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti]. For purposes of verifying the conditions

of our results, we therefore proceed as if 1
2
[X,X]

(n,1)
T is replaced by Eε2.

50Many papers use kn or Mn to denote what we here callMn. We use the latter symbol to avoid overlap with our
own notation.

51The block structure is also present in most of our other examples, even if we have not used the structure explicitly.
To some extent this is a question of technique of proof.

52See Jacod and Rosenbaum (2013a) and Theorem 3.1 in Jacod and Rosenbaum (2013b) for an important contri-
bution on what can happen otherwise.
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(Appendix B), we obtain that

ave(ẽ2
Ti) =

{
1

3T ((Mn − 1)∆Tn)3 [θ, θ]T −(1 + op(1)) when Mn →∞ as n→∞, and
Op((∆Tn)3) when Mn remains finite as n→∞,

(105)

whence assumption (29) in Theorem 4 is satisfied. The two scales AVAR and ̂[θ, θ]T− are thus
consistent. Depending on the size of Mn, further small edge conditions are satisfied. 2

Example 6. (Block Estimation of Higher Powers of Volatility.) The parameter is
θt = g(σ2

t ), with g not being the identity function. In the absence of microstructure noise, the
convergence rate is α = 1/2. If microstructure noise is present, the convergence rate is α = 1/4. We
are here concerned with the former case.53 The estimation of integrals of σpt goes back to Barndorff-
Nielsen and Shephard (2002a), who showed that the case g(x) = x2 is related to the asymptotic
variance of the realized volatility. See also Barndorff-Nielsen, Graversen, Jacod, Podolskij, and
Shephard (2006a), Mykland and Zhang (2012, Proposition 2.17, p. 138) and Renault, Sarisoy, and
Werker (2013) for related developments.

Block estimation (Mykland and Zhang (2009, Section 4.1, p. 1421-1426)) has the ability to
make these estimators approximately or fully efficient. One path is to keep the block size Mn

finite. This avoids bias. When using overlapping (rolling) blocks (or moving windows), however,
the asymptotic variance is hard to compute (Mykland and Zhang (2012, Ch. 2.6.2, pp. 170-172)).
This is an instance where the observed AVAR would seem to be particularly appealing. Conditions
(91) are clearly satisfied, by the derivation in the cited papers. Also, by Remark 17, we can use all
of small edge results: Theorem 3-5. and Remark 8.

Another path is to let the block size increase with n, cf. Mykland and Zhang (2011, Section
5, pp. 224-229), and Jacod and Rosenbaum (2013a,b). As seen in the cited papers, for increasing
block size, there is a bias that can be corrected for. In Jacod and Rosenbaum (2013b), the corrected
estimator is (in their notation) V ′(g)n, eq. (3.7), p. 1469, which satisfies assumptions (91). We
now discuss how to verify these assumptions. The stable convergence is stated in ibid., Theorem
3.2 (pp. 1469-1470). The P-UT condition is satisfied by noting that in the proof of their Lemma
4.4 (p. 1478-1480), each of the four components obviously also satisfies our equation (90), by being
bounded term-wise. In their Lemma 4.5 (pp. 1478, 1480-1481), they proceed by verifying the
conditions of Jacod and Shiryaev (2003, Theorem IX.7.28, p. 591), and it is easy to see that the
second part of (our) eq. (89) is satisfied, guaranteeing P-UT also for this term in view of Section
7.2.

The edge effect is part of V n,2
t in Jacod and Rosenbaum (2013b, p. 1478). Ibid., assumption

(3.6) (p. 1469) yields that condition (104) in Remark 17 is satisfied, whence at least the two scales
AVAR and ̂[θ, θ]T− are consistent.

As a final comment, n is typically given for fixed data. When this is the case, it is entirely in
53Inference in the presence of noise in considered in Jacod and Protter (2012, Section 16.4-16.5, pp. 512-554).
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the mind of the econometrician whether the block size is finite or not as n → ∞. This raises the
question of which asymptotics to use. This conundrum may also be a reason for using the observed
asymptotic variance, and other small sample methods. 2

Example 7. (High Frequency Regression, and ANOVA.) We are here concerned with sys-
tems on the form dVt = βtdXt+dZt, where Vt and Xt can be observed at high frequency, either with
or without microstructure noise. The coefficient process βt can either be the “beta” from portfolio
optimization, with Zt in the role of idiosyncratic noise, or βt can be the hedging “delta” for an
option, with Zt as tracking error. Nonparametric estimates can be used directly, or for forecasting,
or for model checking. Xt can be multidimensional. The regression problem seeks to estimate or
make tests about

∫ T
0 βtdt (Mykland and Zhang (2009, Section 4.2, pp. 1424-1426), Kalnina (2012),

Zhang (2012, Section 4, pp. 268-273), Reiss, Todorov, and Tauchen (2014)). The ANOVA problem
seeks to estimate [Z,Z]T (Zhang (2001) and Mykland and Zhang (2006)). Convergence rates are
as for realized or other powers of volatility, with α = 1/2 when there is no microstructure noise,
and α = 1/4 otherwise. When there is no microstructure noise, Condition 1 is satisfied by a slight
extension of the derivations in the cited papers. Both regression and ANOVA have edge effects due
to blocking, as in Example 6. Since Mn is finite, and according to Remark 17, we can use all of
small edge results: Theorem 3-5. and Remark 8. 2

Example 8. (Estimation of Co-Volatility (Ex-Post Covariance)) from Asynchronous

Observations.) A popular estimator is due to Hayashi and Yoshida (2005), see also Podolskij
and Vetter (2009a), Christensen, Podolskij, and Vetter (2013), and Bibinger and Vetter (2014)
for micro-structure, jumps, and asymptotic distributions. Alternatives include the Previous-Tick
estimator (Zhang (2011), Bibinger and Mykland (2013)), and Quasi-Likelihood (Shephard and Xiu
(2012)). The estimator in Mykland and Zhang (2012, Chapter 2.6.3, p. 172-175) is a hybrid of
Hayashi-Yoshida and Quasi-Likelihood. The asymptotic distributions, however, are often quite
complex, and the estimation of AVAR is daunting. In comparison, the approach of observed AVAR
offers a pleasing alternative to assessing the asymptotic variance of co-volatility. In all these cases,
it is quite clear that the stable convergence holds, and that the current paper’s Condition 1 is
satisfied, including the P-UT property. In terms of edge effects, the Previous-Tick Two-Scales
Covariance (TSCV, Zhang (2011)) has exactly the same properties as the classical TSRV (Example
3). This is because of the strong representation property of one in terms of the other (Zhang (2011,
eq. (39), p. 41, see also eq. (8), p. 35). The two-scales AVAR and ̂[θ, θ]T− based on the Previous-
Tick TSCV are thus consistent. Due to the large number of covariance estimators, however, we
have not investigated edge effects for the full spectrum of these. 2

Example 9. (Continuous Leverage Effect, with or without Microstructure Noise.)

The parameter is θt = d[σ2, Xc]t/dt. If there is no microstructure noise, the convergence rate is
α = 1/4. If microstructure noise is present, the convergence rate is α = 1/8. The estimation of
leverage effect is discussed in Mykland and Zhang (2009, Section 4.3, pp. 1426-1428) and Wang and
Mykland (2014) for the case where Xt is continuous, and in Aı̈t-Sahalia, Fan, Laeven, Wang, and
Yang (2013) and Kalnina and Xiu (2015) for the case where the process Xt can also have jumps.54

54Aı̈t-Sahalia, Fan, and Li (2013) discusses leverage effect in the parametric framework.
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Wang and Mykland (2014) and Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013) study both the
case where there is microstructure noise, and where there is none. All estimators are based on
blocks.

We here study the procedure of Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013). Jumps
are removed as in Jacod and Todorov (2010). The relevant central limit theorems are Theorem
5.1 (no microstructure noise) and Theorem 7.2 (with microstructure noise). The conditions (91)
are satisfied by a slight extension of the proofs of these results. The optimal rates (α = 1/4 and
α = 1/8) are attained in both cases (with choice of parameter b = 1/2). The edge effects are
essentially on the form described in Remark 17, cf. D(2)nt (p. 42, for the no-microstructure case,
and p. 50 for the case with microstructure noise). In both cases Mn (called kn in this paper) is of
order O(n2α). Thus condition (104) in Remark 17 is satisfied. The two scales AVAR and ̂[θ, θ]T−
are thus consistent. 2

Example 10. (Volatility of Volatility, no Microstructure Noise.) The process X is
assumed to be a continuous Itô-semimartingale, with volatility σ2

t = d[X,X]t/dt which is itself
assumed to be a continuous Itô-semimartingale. The parameter is θt = d[σ2, σ2]t/dt. The conver-
gence rate is α = 1/4. The results in the literature on this inference problem are Vetter (2011,
Theorems 2.1 and 2.5) and Mykland, Shephard, and Sheppard (2012, Theorem 7 and Corollary 2).

We here focus on the estimator of Vetter (2011). It is on the form (25) in Section 3.2 above,
with AVARn replaced by the quarticity estimator of Barndorff-Nielsen and Shephard (2002a, 2004a).
The estimator is thus a special case of Theorem 3.

Turning to the question of whether the estimator satisfies the conditions of this paper, observe
that this is also a rolling block estimator. The conditions (91) are satisfied by a slight extension
of the proof of Vetter (2011, Theorems 2.1). Mn is of order O(n1/2), and hence condition (104)
in Remark 17 is satisfied. The two scales AVAR and ̂[θ, θ]T− (the estimator of the volatility of the
volatility of the volatility) are thus consistent, as are the multi-scale estimators.

It should be noted that by computing the (two-scales or multi-scale) estimate ̂[θ, θ]T − for any
of the estimators in Examples 3-5, one obtains an estimator of [σ2, σ2]T − that is consistent in the
presence of microstructure. 2

9 A New Application: Nearest Neighbor Truncation

To illustrate the ease with which the current theory can be applied to a new problem, we con-
sider the nearest neighbor truncation developed in the important paper by Andersen, Dobrev, and
Schaumburg (2012), where estimators are defined and studied for the case where there is no mi-
crostructure noise. See also Andersen, Dobrev, and Schaumburg (2014) on quarticity. In both
cases, pre-averaging is actually used on the data, but not taken account of in the asymptotics.
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We here adapt the estimation problem from Andersen, Dobrev, and Schaumburg (2012) to the
setting where microstructure noise is present in the model. To get a point estimator, we extend their
estimator with the help of pre-averaging and a two scales construction, which is straightforward.
We then show that the Observed Asymptotic Variance can be used to assess the statistical error,
and hence to create a feasible estimator.

Suppose for simplicity that observations are of the form Ytj = Xtj + εj , where the εj are i.i.d.,
and the efficient log price process Xt is an Itô semimartingale with finite activity jumps, as assumed
by Andersen, Dobrev, and Schaumburg (2012). Using pre-averaging, and in analogy with Equation
(4) of their paper, we consider an estimator based on

MedRVM,n =
bn/Mc−2∑

i=3

med(∆ȲM,i−2,∆ȲM,i,∆ȲM,i+2)2 (106)

where ∆ȲM,i = ȲM,i − ȲM,i−1 and ȲM,i = 1
M

∑iMn

j=(i−1)Mn+1 Yj . For simplicity, suppose that the
tj are equidistant, i.e., tj − tj−1 = ∆t = T /n for all j.55 The statistic ȲM,i is thus based on
observations in the time interval (τi−1, τi], where τi = iM∆t, and ∆τ = M∆t. When taking the
median, we have used every second ∆ȲM,i to avoid autocorrelation. As n → ∞, we let M = Mn,
with Mn/

√
n→ c.

To suitably adjust (106), and to verify the conditions of our current theorems, we invoke re-
sults on contiguity for pre-averaged processes. Set Y c

tj = Xc
tj + εj , and similarly Ȳ c

i , where Xc
t

is the continuous part of the latent process. Following Mykland and Zhang (2015b,c), there is
a contiguous (sequence of) probability measures Qn, and “super-blocks” of 2M Ȳ c

i ’s, with start-
ing points λn,l = 2lMMn∆t, so that, conditionally on sigma-field at the start of each block,
∆τ−1/2∆Ȳ c

lM+1, · · · ,∆τ−1/2∆Ȳ c
(l+1)M is a Gaussian MA(1) process with marginal variance 2

3σ
2
λl

+

2 ν2

c2T , where ν2 = Var(ε). Thus, if (Ft) is the filtration generated by the Xc
t s and the εs,

EQn


2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2,∆Ȳ

c
Mn,i,∆Ȳ

c
Mn,i+2)2 |Fλl

 = (2M−8)∆τ(
2
3
σ2
λl

+2
ν2

c2T
)
6− 4

√
3 + π

π

(107)
in analogy with Andersen, Dobrev, and Schaumburg (2012): if Z1, Z2, Z3 are i.i.d. N(0, 1), then
Emed(Z1, Z2, Z3)2 = (6 − 4

√
3 + π)/π. One now needs to dispose of the nuisance parameter ν2.

To stay in the sprit of Andersen, Dobrev, and Schaumburg (2012), we adjust by using the MedRV,
but doubling the block size: ∆Ȳ2Mn,i = (∆ȲMn,2i−1 + ∆ȲMn,2i)/2 (which is based on observations

55Otherwise, a correction factor applies, cf. Mykland and Zhang (2015b).



Observed Asymptotic Variance for High Frequency Data, September, 2015 47

in (τ2i−2, τ2i]. Now observe that, also under Qn,

EQn


(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2,∆Ȳ

c
2Mn,i,∆Ȳ

c
2Mn,i+2)2 |Fλl

 = (M−4)(2∆τ)(
2
3
σ2
λl

+2
ν2

(2c)2T
)
6− 4

√
3 + π

π
,

(108)
where we have in both cases used samples from the time interval (τ2lM+4, τ2(l+1)M−4] ⊂ (λn,l, λn,l+1].

Eq. (108) − 1
4
× Eq. (107) = 2(M− 4)∆τ

2
3
σ2
λl

3
4

6− 4
√

3 + π

π

= (τ2(l+1)M−4 − τ2lM+4)σ2
λl

6− 4
√

3 + π

2π
. (109)

In view of the development in Mykland and Zhang (2015b,c), the aggregated (over M) terms

(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2,∆Ȳ

c
2Mn,i,∆Ȳ

c
2Mn,i+2)2 − 1

4

2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2,∆Ȳ

c
Mn,i,∆Ȳ

c
Mn,i+2)2

− (τ2(l+1)M−4 − τ2lM+4)σ2
λl

6− 4
√

3 + π

2π
(110)

satisfy stable convergence and also the other conditions of Conditions 1-2 and Proposition 1 under
Qn, with α = 1/4. One can take the Ti to be the same as the λi. This is easily seen to carry
over to the original measure. The left out terms (around the boundaries λl) are handled with the
big-block-small-block device described in Mykland and Zhang (2012, Chapter 2.6.2, pp. 170-172).
Also, the jumps are negligible since assumed to be of finite activity. The interface between jumps
and the P-UT condition is handled as in Example 2 in Section 8.

The edge effects are essentially on the form described in Remark 17 in Section 8, and is (singly
and by averages) of order Op(n−2α) as in many other cases involving pre-averaging (such as Ex-
amples 4, 9, and 10, also in the same section). It follows that assumption (29) in Theorem 4 is
satisfied. In conclusion:

Proposition 9. (Median Realized Volatility under Microstructure Noise.) Let Θ
be the integrated volatility on [0, T ]. A pre-averaged extension of the median realized volatility of
Andersen, Dobrev, and Schaumburg (2012) is given by56

Θ̂ =
2π

6− 4
√

3 + π

(
MedRV2Mn,n −

1
4
MedRVMn,n

)
, (111)

Then, with the Ti taken to be the same as the τi, Condition 1 is satisfied, as well as the assumptions
of Theorem 4 and Theorem 7. In particular, both the two-scales and multi-scale AVAR and ̂[θ, θ]T−
are consistent.

56The estimator can be small sample adjusted as in the original paper, without affecting the conclusion of this
proposition. One can also use the average of rolling windows.
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10 Envoi

The paper introduces a nonparametric estimator of estimation error which we call the observed
asymptotic variance. In analogy with the “observed information” of parametric inference, our
statistic estimates the asymptotic variance without needing a formula for the theoretical quantity.
As we have seen in our examples, the estimator is consistent in all of them.

We emphasize that the method has a strong applied motivation, and that it meets a need.
Assessing the standard error of a high-frequency-based estimator is challenging to implement. We
hope our proposed methodology will be a useful tool at the disposal of everyone who works with
high frequency data.

On the mathematical side the basic insight is Equation (5) in Section 2.2. To operationalize
this insight, the two main tools are the Integral-to-Spot Device (Section 2.3), and the mathematical
similarity between edge effects and microstructure noise (Section 4). The estimation of asymptotic
variance (AVAR) is implemented with the help of two- and multi-scale methods in Sections 3.2 and
4.2, and examples are given in Sections 8-9. Practical and theoretical guidance to how to use the
procedure is given in Sections 6-7.

The observed AVAR can also be used for the selection of tuning parameters, also in the non-
obvious case of stable convergence and random variance (Section 5). As part of the theoretical
development, we show how to feasibly disentangle the impact of estimation error Θ̂(0,T ] − Θ(0,T ]

and the variation [θ, θ]T − in the parameter process alone. For the latter, we also obtain a new
estimator of quadratic variation of target parameters. The methods generalize readily to several
dimensions.

A number of issues have been left for later. Consistency is the only first order requirement on
estimators of AVAR, but a main question still remains of how to optimize the number and position
of scales K in Section 4.2. This may involve the convergence rate and the AVAR of the AVAR, and
perhaps one can iterate the observed AVAR procedure. As the likelihood movement of the 1980s
and 90s has shown, however, statistical accuracy may not only be about the efficiency of estimates
of AVAR. There is also room for a more complete theory of tuning parameter selection, and of
multivariate inference. Additional insight may be gained by letting ∆T → 0 for fixed δ = K∆T .
It would also be interesting to extend Observed AVAR to the case where the spot process θt is not
a semimartingale, and to the case where it does not exist (see Section 6.3).
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APPENDIX: PROOFS AND TECHNICAL ISSUES

A General Results on the Triangular Array Convergence of the

Quadratic Variation of Semimartingales.

Definition 5. (Orders in Probability.) For a sequence α(n)
t of semimartingales, we say that

(α(n)
t ) = Op(1) if the sequence is tight, with respect to convergence in law relative to the Skorokhod

topology on D (Jacod and Shiryaev (2003, Theorem VI.3.21, p. 350)), and also P-UT (ibid.,
Chapter VI.3.b, and Definition VI.6.1, p. 377). For scalar random quantities, Op(·) and op(·) are
defined as usual, see, e.g., Pollard (1984, Appendix A).

Condition 5. Let α(n)
t and β

(n)
t be sequences (in n) of semimartingales. Each of these sequences

are (separately) assumed to be Op(1).

Definition 6. (Notation). The symbol F will refer to a collection of nonrandom functions
f

(l,n)
· ∈ D[0, T ], n ∈ N, and l = 1, ..., 2Kn satisfying

|f (l,n)
t | ≤ 1 for all t, l, and n. (A.1)

Similarly, G will refer to a collection g
(l,n)
t with the same size and properties.

Given F and G, set

α
(l,n)
t =

∫ t

0
f

(l,n)
s− dα(n)

s and β(l,n)
t =

∫ t

0
g

(l,n)
s− dβ(n)

s for l = 1, ..., 2Kn. (A.2)

Also,
i ≡ L[2K] means that i = 2Kj + L, where j is an integer. (A.3)

Definition 7. (Decomposition of F and G by Block.) Recall that Bn is the set of basic
blocks, and that ∆Tn = T /Bn. With reference to the collection F: For given (l, n), the function
f

(l,n)
t is allowed to jump at times TKnj+l but must otherwise satisfy certain compactness properties.

Specifically, for each n ∈ N, and l = 1, ..., 2Kn, define, for j ∈ N ∩ [1, (Bn − l)/(Kn + 1)],

f
(l,j,n)
t =


f

(l,n)
TKnj+l

for t ∈ [0, TKnj+l)

f
(l,n)
t for t ∈ [TKnj+l, T(Kn+1)j+l)

limt↑T(Kn+1)j+l
f

(l,n)
t for t ∈ [T(Kn+1)j+l), T ]

(A.4)

The set of such f (l,j,n)
t will be denoted F′. G′ is defined similarly.

Theorem 9. Consistency of triangular array rolling quadratic variation.) Under
Condition 5, assume (A.1), and that the sets F′ and G′ (from Definition 7) are relatively compact
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for the Skorokhod topology.57 Also suppose that Kn∆Tn → 0 as n→∞. Then,

1
2Kn

2Kn∑
l=1

∑
Kn≤i≤Bn−Kn,i≡l[2Kn]

(α(l,n)
Ti+Kn

− α(l,n)
Ti−Kn

)2 =
1

2Kn

2Kn∑
l=1

[α(l,n), α(l,n)]T + op(1). (A.5)

and similarly for β. Also,

1
2Kn

2Kn∑
l=1

∑
Kn≤i≤Bn−Kn,i≡l[2Kn]

(α(l,n)
Ti+Kn

−α(l,n)
Ti−Kn

)(β(l,n)
Ti+Kn

−β(l,n)
Ti−Kn

) =
1

2Kn

2K∑
l=1

[α(l,n), β(l,n)]T +op(1).

(A.6)

Remark 18. (Uniformity in ∆T .) Theorem 9 does not impose any requirement on ∆Tn, except
that ∆Tn > 0 and Kn∆Tn → 0. See the final comment in the proof of the theorem. 2

Before proving our results, we recall the following useful concept.

Definition 8. (The Canonical Decomposition of α.) We shall be using the canonical de-
composition of αt (Jacod and Shiryaev (2003, Chapter II.2a pp. 75-76)), which is defined for a
general semi-martingale (Ibid. Definition I.4.21, p. 43), by writing

αt = α0 + α(h)t +B(h)t + ᾰ(h)t. (A.7)

Compared to the notation in our reference work, their X is our α, their M(h) is our α(h), while their
B(h) is the same as ours. Also, let C̃t = 〈α(h), α(h)〉. This is the “second modified characteristic”
(Ibid., Definition II.2.16, p. 79). For the case of no truncation function, α can similarly be
decomposed into a local martingale and a finite variation process At. See also Ibid, p. 84, for
further clarification of the relationship between the untruncated and the truncated processes. We let
TV denote total variation,58 and set

D(α)(h)t = TV (ᾰ)t − TV (ᾰ)0 + TV (B(h))t − TV (B(h))0. (A.8)

Similar notation applies to α(n), β(n), etc. 2

Proof of Theorem 9. We prove (A.5). The result (A.6) is obtained similarly but with
longer notation. For (A.6), we specifically need that α(n) and β(n) be tight, which is assumed,
and that D(α(n)(h)T , D(β(n)(h)T , 〈α(n)(h), α(n)(h)〉T , 〈β(n)(h), β(n)(h)〉T , and 〈β(n)(h), α(n)(h)〉T
be tight. The first four of these follow from the P-UT property of α(n) and β(n) (Jacod and
Shiryaev (2003, Theorem VI.6.15)), the final one since |〈β(n)(h), α(n)(h)〉T | ≤ (〈α(n)(h), α(n)(h)〉T +
〈β(n)(h), β(n)(h)〉T )/2.

57A criterion can be found in Jacod and Shiryaev (2003, Theorem VI.1.14(b), p. 328). The condition is satisfied
in all our applications (B.24), (C.38), and (C.43).

58As in Condition 1 above. Jacod and Shiryaev denotes the total variation by V ar.
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In analogy with (A.2), define α(l,,j,n)
t =

∫ t
0 f

(l,j,n)
s− dα

(n)
s . Also, define

Zn,l(t) =
∑

Ti+Kn≤t,i≡l[2K]

(α(l,n)
Ti+Kn

− α(l,n)
Ti−K

)2 + (α(l,n)
t − α(l,n)

T∗,L
)2 − [α(l,n), α(l,n)]t (A.9)

where T∗,L = max{Ti : Ti+Kn ≤ t, i ≡ L[2Kn]}, so that

dZn,l(t) = 2(α(l,n)
t− − α(l,n)

T∗,l
)dα(l,n)

t . (A.10)

For given truncation function h, define the processes α(l,n)
t (h) =

∫ t
0 f

(l,n)
s dα(n)(h)s, ᾰ

(l,n)
t (h) =∫ t

0 f
(l.n)
s dᾰ(h)s, etc. (The truncation is done on the original jumps, those of α(n)

t , and not starting
with the process α(l,n)

t . This assures uniformity in the following argument.) Similarly, define
dZl,n(h)(t) = 2(α(l,n)

t− − α(l,n)
T∗,l

)dα(l,n)(h)t, starting at Zl,n(h)(0) = Zl,n(0) = 0. Also set

Zn(t) =
1

2Kn

2Kn∑
l=1

Zl,n(t) and Zn(h)(t) =
1

2Kn

2Kn∑
L=1

Zl,n(h)(t) (A.11)

Observe that Zn(T ) = the left hand side of (A.5).

To bound the difference between Zn(t) and Zn(h)(t), note that

|Zl,n(h)(t)− Zl,n(t)| ≤ 2
∫ t

0
|α(l,n)
s− − α

(l,n)
T∗,l
|dD(n)(h)t (A.12)

where D(n)(h) is defined as in (A.8), and with the original α(n). Also, in the notation of Jacod and
Shiryaev (2003, Vi.1.8, p. 326), it follows from (A.1) that for all t ∈ [0, T ] and all s ∈ [T∗,L, t]

|α(l,n)
s− − α

(l,n)
T∗,l
| ≤ 2 max

j
w′T (α(l,j,n),Kn∆Tn) + sup

T∗,L<s<t
|∆α(n)

s |

≤ 2 max
j
w′T (α(l,j,n),Kn∆Tn) + vn(t−) (A.13)

where vn(t−) = supT∗∗<s<t |∆α
(n)
s |, with T∗∗ = max{Ti : Ti+2Kn ≤ t, }, so that

sup
0≤t≤T

|Zn(h)(t)− Zn(t)| ≤ 4 max
l,j

w′T (α(l,j,n)(h),K∆T )D(n)(h)(T ) + 2
∫ T

0
vn(t−)dD(n)(h)t.

(A.14)

This is because the right hand side bounds sup0≤t≤T |Zl,n(h)(t) − Zl,n(t)| for each l, and thus the
average.
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Meanwhile, to assess the size of Zn(h)t, by similar argument,

〈Zn(h), Zn(h)〉T ≤ 8
(

4 max
l,j

w′T (α(l,j,n),K∆T )2C̃
(n)
T +

∫ T
0
v2
n(t−)dC̃(n)

t

)
. (A.15)

This is because the same bound applies to each 〈Zn,l1(h), Zn,l2(h)〉T .

We now seek to describe the asymptotic behavior of maxl,j w′T (α(l,j,n)(h),Kn∆Tn) and vn(t−)
so as to control the asymptotic behavior of (A.14)-(A.15).

On the one hand, since F′ from Definition 7 is relatively compact for the Skorokhod topology
(ex. hyp.), we obtain from Jacod and Shiryaev (2003, Theorem VI.3.21, p. 350, and Theorem
VI.6.22, p. 383) that

max
l,j

w′T (α(l,j,n)(h),Kn∆Tn)
p→ 0 as n→∞. (A.16)

On the other hand, we bound vn(t−) as follows. Let ε > 0 be arbitrary. Since α(n) is tight, we
shall without loss of generality be working with a convergent subsequence so that α(n) L→ α. Redo
the canonical decomposition (Definition 8) with a specific truncation function given by hε(x) = x

if |x| ≤ ε, and = ε sgn(x) otherwise:

α
(n)
t = α

(n)
0 + α(n)(hε)t +B(n)(hε)t + ᾰ(n)(hε)t and

αt = α0 + α(hε)t +B(hε)t + ᾰ(hε)t. (A.17)

Set vn,ε(t−) = supT∗∗<s<t |∆ᾰ
(n)(hε)s| and observe that

vn(t−) ≤ vn,ε(t−) + ε. (A.18)

Let τn,i be the ith jump time of ᾰ(n)(hε)t, with τn,0 = 0. Similarly, τi is the ith jump time of
ᾰ(hε)t. We note that, for given t ∈ [0, T ], and for any δ > 0

{vn,ε(t−) = 0} ⊇ ∪i{τn,i ≥ t ≥ τn,i−1 + 2Kn∆Tn}
⊇ ∪i{τn,i ≥ t ≥ τn,i−1 + δ} (A.19)

as soon as δ ≥ 2Kn∆Tn (and this does happen eventually, by assumption). By invoking Jacod and
Shiryaev (2003, Proposition VI.3.15, p. 349) with τn,i as Ti(ᾰ(n)(hε), ε2) and τi as Ti(ᾰ(hε), ε2), the

proposition yields that (τn,1, · · · , τn,k)
L→ (τ1, · · · , τk) as n → ∞ for any k. This is because, the

process ᾰ(n)(hε) converges in law to ᾰ(hε) in view of ibid., Proposition VI.3.16, p. 349.

By approximating the indicator of the set {τn,i ≥ t ≥ τn,i−1} by a continuous function, and
then undoing the approximation, we obtain P{τn,i ≥ t ≥ τn,i−1 + δ} → P{τi ≥ t ≥ τi−1 + δ} as
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n→∞. Since the union (A.19) is disjoint, it follows that

lim inf
n

P{vn,ε(t−) = 0} ≥
k∑
i=1

P{τi ≥ t ≥ τi−1 + δ}

→ P{τk ≥ t} as δ ↓ 0

→ 1 as k →∞. (A.20)

Hence from (A.18), P{vn(t−) ≥ ε} → 0. Since ε was arbitrary, we obtain

∀ t ∈ [0, T ] : vn(t−)
p→ 0 and |vn(t−)| ≤ sup

0≤s≤T
|∆α(n)

s |, (A.21)

the latter statement assuring dominated convergence.

We can now combine (A.14)-(A.15) with (A.16) and (A.21) to obtain, as n→∞,

sup
0≤t≤T

|Zn(h)(t)− Zn(t)| p→ 0 and

〈Zn(h), Zn(h)〉T
p→ 0. (A.22)

The transition to (A.22) did not assume that D(n)(h)t or C̃(n)
T have a limit as n → ∞. By the

assumption that the α(n)
t is Op(1) and hence P-UT, however, Jacod and Shiryaev (2003, Theorem

VI.6.15, p. 380), yields that D(n)(h)T and C̃
(n)
T are tight.

From the second line in (A.22), by Lenglart’s inequality (Jacod and Shiryaev (2003, Lemma
I.3.30, p. 35)),

sup
0≤t≤T

|Zn(h)(t)| p→ 0. (A.23)

Combining (A.23) with the first line of (A.22) yields the result of the Theorem, since Zn(T ) = the
left hand side of (A.5). Since none of the bounds used depend on ∆Tn but only on Kn∆Tn, the
result does not impose any requirement on ∆Tn, except that ∆Tn > 0 and Kn∆Tn → 0. Q.E.D.

B Results on the Quadratic Variation of θ: Tightness and Con-

vergence Properties

Proof of Theorem 1. Because we shall use Theorem 9, we here let all quatities depend on index
n. Thus, unlike Definition 2 in Section 2, K = Kn, etc, though we shall often omit the subscript
when the meaning is obvious. For the purposes of the current proof, one can simply take n = B,
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but this will no longer be the case in later appendices. Set

f
(l,n)
t =

1
K∆T

∑
K≤i≤B−K;i≡l[2K]

((Ti+K − t)I{Ti+K > t ≥ Ti}+ (t− Ti−K)I{Ti > t ≥ Ti−K}) .

(B.24)
where i ≡ l[2K] means that i is on the form 2Ki + l. We note that f (l)

t = f
(l,n)
t depends on n

through ∆T , K, and B. It is easy to see that the family F = {f (l,n)} satisfies (A.1), and that the
set F′ (from Definition 7) is indeed relatively compact for the Skorokhod topology.

Define the processes θ(l,n)
t =

∫ t
0 f

(l,n)
s− dθs. To motivate the following development, note from

Theorem 2 in Section 2.3 that for fixed i ≡ l[2K],

1
K(∆T )

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti]) =
1

K(∆T )
(Θ′(Ti,Ti+K ] + Θ′′(Ti−K ,Ti])

=
∫ Ti+K

Ti−K

f
(l,n)
t dθ

= θ
(l,n)
Ti+K

− θ(l,n)
Ti−K

, (B.25)

whence

1
K2(∆T )2

∑
K≤i≤B−K,i≡l[2K]

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2 =

∑
K≤i≤B−K,i≡l[2K]

(θ(l,n)
Ti+K

− θ(l,n)
Ti−K

)2 (B.26)

and
1
2

1
K2(∆T )2

QVB,K(Θ) =
1

2Kn

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(θ(l,n)
Ti+K

− θ(l,n)
Ti−K

)2. (B.27)

We now wish to show that

1
2Kn

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(θ(l)
Ti+K

− θ(l)
Ti−K

)2 =
1

2K

2K∑
l=1

[θ(l,n), θ(l,n)]T + op(1)

=
∫ T

0
f

(n)
t d[θ, θ]t + op(1) , where (B.28)

f
(n)
t =

1
2K

2K∑
l=1

(f (l,n)
t )2

=
1

2K3(∆T )2

∑
K≤i≤B−K

(
(Ti+K − t)2I{Ti+K ≥ t > Ti}+ (t− Ti−K)2I{Ti ≥ t > Ti−K}

)
. (B.29)
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If K is finite, this is a simple matter of checking that∑
K≤i≤B−K,i≡l[2K]

(θ(l)
Ti+K

− θ(l)
Ti−K

)2 = [θ(l,n), θ(l,n)]T + op(1) for each l = 1, · · · , 2K,

where we recall that i ≡ l[2K] means that i is on the form 2Ki+ l. For the general case where K
can be finite or infinite, we proceed as follows. The class of functions f (l,n)

t given by (B.24) satisfies
the conditions of Theorem 9. So does α(n)

t = θt; since the process does not move with n, it is both
tight and P-UT. Theorem 9 therefore yields (B.29).

For t ∈ (Tj−1, Tj ] ⊆ (TK , TB−K ],

f
(n)
t =

1
2K3(∆T )2

 ∑
j−K≤i≤j−1

(Ti+K − t)2 +
∑

j≤i≤j+K−1

(t− Ti−K)2


=

1
3

(
1− 1

K2

)
+

1
2

1
K2

((
Tj − t
∆T

)2

+
(
t− Tj−1

∆T

)2
)

(B.30)

hence, eventually, on all [δ, T − δ], for any δ > 0. Since, for all t ∈ [0, T ], 0 ≤ f
(n)
t ≤ 1, and since

f
(n)
T = 0, Theorem 1 follows. Remark 18 in Appendix A continues to apply, for the same reasons.

Q.E.D.

Proof of Theorem 2: By Itô’s formula, d(T + δ− t)(θt − θT ) = (T + δ− t)dθt − (θt − θT )dt.
Integrating from T to T + δ yields

0 = Θ′(T,T+δ] −Θ(T,T+δ] + θT δ. (B.31)

Similarly d(t − (T − δ))(θT − θt) = −(t − (T − δ))dθt + (θT − θt)dt. Integrating from T − δ to T
yields

0 = −Θ′′(T−δ,T ] −Θ(T−δ,T ] + θT δ. (B.32)

Combining (B.31)-(B.32) yields the result. Q.E.D.

C Proof of Theorem 3, and a more General Result.

We here show a broader result of which Theorem 3 is a corollary. First of all, we replace the
“omnibus” Condition 1 by the weaker and more precise Condition 6. Also, it shows what happens
when one gives up on forcing negligibility in the form of conditions (22) and ∆T = o(n−α). The
former is conceptually important as it separates out what part of Condition 1 is required for the
convergence of quadratic variations (as opposed to being a valid asymptotic variance). The latter
is useful in case one were tempted to take K fixed in the discontinuous θt case. We first state and
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prove the more general Theorem 10, and then derive Theorem 3.

Condition 6. (Relative size of semi-martingale and edge effect in Θ̂ in (13).) We
assume that Mn,t is a sequence of semimartingales. We assume that there is a rate α > 0 (which
need not be known) so that the sequence of semimartingales (nαMn,t) = Op(1) in the sense of
Definition 5 in Appendix A. We assume that en,T = op(n−α) and ẽn,S = op(n−α) for any S and T .

Theorem 10. (More General Expansion of QVB,K(Θ̂). Assume that θt is a semimartingale
on [0, T ], and suppose that Condition 6 holds. Define

QVB,K(Θ,M) =
1
K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
(
(MTi+K −MTi)− (MTi −MTi−K )

)
,

QVB,K(M) =
1
K

B−K∑
i=K

(
(MTi+K −MTi)− (MTi −MTi−K )

)2
, and

Rn,K =
1
K

B−K∑
i=K

(ẽTi+K − eTi − ẽTi + eTi−K )2, (C.33)

and also

QV B,K(Θ̂) = QVB,K(Θ) + 2QVB,K(Θ,M) +QVB,K(M) (C.34)

Let K = Kn be positive integers, and assume that Kn∆Tn → 0. Then, in extension of (23),

1
2K

∑
K≤i≤B−K

(Θ̂(Ti−K ,Ti+K ] −Θ(Ti−K ,Ti+K ])
2 = [Mn,Mn]T +Rn,K +Op(n−αR

1/2
n,K). (C.35)

Also, in extension of (25),

QV B,K(Θ̂) = 2[Mn,Mn]T

+ (K∆T )2 2
3

(
1− 1

K2

)
[θ, θ]T − + (∆T )2

∫ T
0

((
t∗ − t
∆T

)2

+
(
t− t∗
∆T

)2
)
d[θ, θ]t

+ 2∆T
∫ T

0

(
1− 2

t− t∗
∆T

)
d[θ,Mn]t + op((Kn∆T )2) + op(n−2α) (C.36)

and
QV B,K(Θ̂) = QV B,K(Θ̂) +Rn,K +Op((K∆T + n−α)R1/2

n,K) (C.37)

The convergence in probability is uniform in ∆Tn, so long as ∆Tn > 0 and Kn∆Tn → 0.

For the proofs, set α(n)
t = θt, β

(n)
t = nαMn,t. Let f (l,n)

t is given by (B.24) above. We shall use
two different definitions of g(l,n)

t . For both cases, let α(l,n)
t and β

(l,n)
t be as given by (A.2) .
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Proof of (C.35) (Case 1 for g
(l,n)
t ). Set

g
(l,n)
t =

∑
K≤i≤B−K;i≡l[2K]

I{Ti+K > t ≥ Ti−K}. (C.38)

From Theorem 9,

1
2K

B−K∑
i=K

(β(n)
Ti+K

− β(n)
Ti−K

)2 =
1

2Kn

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(β(l,n)
Ti+K

− β(l,n)
Ti−K

)(β(l,n)
Ti+K

− β(l,n)
Ti−K

)

=
1

2K

2K∑
l=1

[β(l,n), β(l,n)]T + op(1)

= [β(n), β(n)]T + op(1) (C.39)

Thus, following (13), and using (C.39), write

1
2K

B−K∑
i=K

(
Θ̂(Ti−K ,Ti+K ] −Θ(Ti−k,Ti+K ])

)2

=
1

2K

B−K∑
i=K

(
n−α(β(n)

Ti+K
− β(n)

Ti−K
) + (ẽTi+K − eTi)

)2

= n−2α[β(n), β(n)]T +Rn,K +Op((K∆T + n−α)R1/2
n,K). (C.40)

by Cauchy-Schwartz. Since n−2α[β(n), β(n)]T = [Mn,Mn]T , (C.35) is proved. Remark 18 in Ap-
pendix A remains valid for the same reasons, and also in view of Proof of Theorem 1. Q.E.D.

Proof of the rest of Theorem 10 (Case 2 for g
(l,n)
t ). Recall that

Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti] = Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti]

+ (MTi+K −MTi)− (MTi −MTi−K ) + (ẽTi+K − eTi − ẽTi + eTi−K ) (C.41)

We obtain from Cauchy-Schwartz that

QV B,K(Θ̂) = QV B,K(Θ̂) +Rn,K +Op(QV B,K(Θ̂)1/2R
1/2
n,K) (C.42)

whence (C.37) follows from (C.36)

It remains to show (C.36). The first term in (C.34) is covered by Theorem 1 in Section 2.3.
Two handle the two remaining terms, we redefine

g
(l,n)
t =

∑
K≤i≤B−K;i≡l[2K]

(I{Ti+K > t ≥ Ti} − I{Ti > t ≥ Ti−K}) , (C.43)
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but keep the rest of the notation from the beginning of this section (Appendix C). Note that f (l,n)
t

is absolutely continuous, and that g(l,n)
t = −(K∆T )df (l,n)

t /dt (except at discontinuities), whence
by Fubini’s Theorem, where f (n)

t is given in equation (B.29),

2K∑
l=1

g
(l,n)
t f

(l,n)
t = −1

2
(K∆T )

d

dt

2K∑
l=1

(f (l,n)
t )2

= −(K2∆T )
d

dt
f

(n)
t

= 1− 2
t− t∗
∆T

(C.44)

eventually for all t ∈ [δ, T − δ], by (B.30). One can alternatively verify (C.44) directly.

From Theorem 9,

1
2
n2αQVB,K(M) =

1
2Kn

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(β(l,n)
Ti+K

− β(l,n)
Ti−K

)(β(l,n)
Ti+K

− β(l,n)
Ti−K

)

=
1

2K

2K∑
l=1

[β(l,n), β(l,n)]T + op(1)

= [β(n), β(n)]T + op(1) (C.45)

and

1
2K∆T

nαQVB,K(Θ,M) =
1

2Kn

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(α(l,n)
Ti+K

− α(l,n)
Ti−K

)(β(l,n)
Ti+K

− β(l,n)
Ti−K

)

=
1

2K

2K∑
l=1

[α(l,n), β(l,n)]T + op(1)

=
1

2K

2K∑
l=1

∫ T
0
g

(l,n)
t f

(l,n)
t d[θ, β(n)]t + op(1)

=
1

2K

∫ T
0

(
1− 2

t− t∗
∆T

)
d[θ, β(n)]t + op(1) (C.46)

by (C.44). Q.E.D.

Remaining Proof of Theorem 3. Condition 1 implies Condition 6. Eq. (22) is the same
as requiring that

∑
i e

2
Ti

= op(Knn
−2α) and

∑
i ẽ

2
Ti

= op(Knn
−2α), whence Rn,K = op(n−2α).

Expressions (23) and (25) them follow directly from Theorem 10 when assuming Condition 1. This
is because of (18) in Proposition 1. For expression (18), we also have invoked the assumption (24).

Q.E.D.
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Remark 19. (AVAR vs. AMSE.) There are situations of interest when Condition 6 is satisfied,
but the additional assumptions of Condition 1 are not. Most notably, consider the situation where
[L,L]T is not G-measurable but instead just integrable. For simplicity, assume that Ln,t = n−αMn,t

converges in law to Lt relative to the Skorokhod metric on D (as oppsed to just being tight). In
this case, (15) needs to be replaced by

AMSE(Θ̂−Θ) = n−2α[L,L]T + op(n−2α), (C.47)

where AMSE is the asymptotic mean squared error. This situation arises, for example, in the case of
endogenous sampling times for realized volatility (Li, Mykland, Renault, Zhang, and Zheng (2014)).
The same phenomenon occurs under direct estimation of skewness (Kinnebrock and Podolskij (2008,
Example 6), Mykland and Zhang (2009, Example 3, p. 1414-1416)). 2

D Proof of Theorem 6

The strategy is take the proof of Theorem 10 as a point of departure, but to intercept it at the
point of equation (C.42), which we write more generally as

QV B,K(Θ̂) = QV B,K(Θ̂) +Rn,K + 2QV (Θ, ẽ and e) + 2QV (M, ẽ and e). (D.48)

Since the behavior of QV B,K(Θ̂) is given in (C.36), we need to deal with the three last terms in
(D.48). The expressions, and the additional conditions, are given in Lemma 1 and Corollary 2
below, thus yielding Theorem 6. Q.E.D.

Lemma 1. (Representation of Rn,Kn). Assume Conditions 1-2, as well as the balance condition
(30). Let MAEEn and εn,K be given by (43) in Theorem 6. Then

Rn,Kn = 2T (Kn∆Tn)−1 (MAEEn + εn,Kn) + op(n−2α). (D.49)

Proof of Lemma 1. Without loss of generality we can go back and forth between e by e′.
Consider the main term consisting of terms of the form ẽ2

Ti
+ e2

Ti
+ ẽTieTi . The difference between

this term in Rn,Kn as defined in (C.33), and the representation 2T (Kn∆Tn)−1MAEEn is thus on
the overall edges (near 0 and T ). To see that the difference is negligible, note that

1
Kn

2Kn∑
i=0

(e2
Ti + ẽ2

Ti) = op(n−2α) and
1
Kn

Bn∑
i=Bn−2Kn+1

(e2
Ti + ẽ2

Ti) = op(n−2α) (D.50)

The reason for (D.50) is on the one hand that by Condition 1, for each i, n2α(e2
Ti

+ ẽ2
Ti

)
p→0. On the

other hand, by invoking (F.77) in Remark 20, we may, without loss of generality, take each term
to be bounded by 2Γ2, whence (D.50) follows by dominated convergence.
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The lagged terms behave smiliarly. Q.E.D.

We now turn to the Cross Terms QV (Θ, ẽ and e) and QV (M, ẽ and e). In analogy
with the development in Appendices A-B, it is easy to see that

QV (Θ, ẽ and e) =
1
K

B−K∑
i=K

(Θ′(Tn,i,Tn,i+K ] + Θ′′(Tn,i−K ,Tn,i])
(

(ẽ′Tn,i+K − e
′
Tn,i)− (ẽ′Tn,i − e

′
Tn,i−K )

)
=

1
K
K∆T

(
Bn∑
i=0

ẽTn,i

∫ Tn,i+K

Tn,i−2K

f̃(li,n)(t)dθt +
Bn∑
i=0

eTn,i

∫ Tn,i+2K

Tn,i−K

f(li,n)(t)dθt

)
, (D.51)

where |f(li,n)(t) ≤ 1 and |̃f(li,n)(t)| ≤, where li ≡ i[3K] in the sense of Definition 6. Also, we take θt
to be constant on the intervals (−∞, 0] and [T ,∞).

For example, away from the edge, t ∈ (T2K , TB−2K ], we have that when i ≡ l[3K],

f̃(l,n)(t) =


1

K∆T (t− Tn,i−2K) when t ∈ (Tn,i−2K , Tn,i−K ],
1 when t ∈ (Tn,i−K , Tn,i], and

1
K∆T (Tn,i+K − t) when t ∈ (Tn,i, Tn,i+2K ].

(D.52)

This is in analogy with the definition lf f (l,n) in (B.24).

A similar but more elementary derivation yields that

QV (M, ẽ and e) =
1
K

B−K∑
i=K

(
(MTn,i+K −MTn,i)− (MTn,i −MTn,i−K )

) (
(ẽ′Ti+K − e

′
Ti)− (ẽ′Ti − e

′
Ti−K )

)
=

2
K
n−α

(
Bn∑
i=0

ẽTi

∫ Ti+K

Ti−2K

g̃(li,n)(t)dLn,t +
Bn∑
i=0

eTi

∫ Ti+2K

Ti−K

g(li,n)(t)dLn,t

)
, (D.53)

where |g(li,n)(t) ≤ 1 and |g̃(li,n)(t)| ≤ 1, where li ≡ i[3K]. Also, we take Ln,t = nαMn,t, and let Ln,t
be constant on the intervals (−∞, 0] and [T ,∞).

Again, for example, away from the edge, t ∈ (T2K , TB−2K ], we have that when i ≡ l[3K]

g̃(l,n)(t) =

{
−1

2 when t ∈ (Tn,i−2K , Tn,i−K ] ∪ (Tn,i, Tn,i+2K ], and
1 when t ∈ (Tn,i−K , Tn,i].

(D.54)

The above situations both satisfy the conditions of the following lemma:

Lemma 2. (Sharper Bounds on the cross-term.) Assume that β(n)
t is an Op(1) sequence (in n) of

semimartingales.59 Let h(li,n) be nonrandom, càglàd,60 and satisfy |h(li,n)(t)| ≤ 1. Also, let H be
59Recall that Condition 1 implies that β

(n)
t is an Op(1) sequence (in n) of semimartingales.

60Left continuous with right limits. In other words, t→ h(li,n)(t+) is in D.
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the set of functions t → h(l,n)(t+), and construct H′ from H as in (A.4) except that T(Kn+1)j+l

is replaced by T(Kn+1)j+l−Jn. Assume that H′ is relatively compact for the Skorokhod topology.61

Assume Condition 2, and let Jn ≤ Kn, with Jn∆Tn = op(n−α). Also assume the the balance
condition (30). Then

nα
1
Kn

Bn∑
i=0

e′Ti

∫ Ti+2K

Ti−K

h(li,n)(t)dβ(n)
t = op(1). (D.55)

The corresponding ẽ′Tn,i sum has the same order.62

Hence

Corollary 2. (Sharper Bounds for the Cross Terms.) Assume that θ is a semimartigale.
Under Condition 2, let Jn ≤ Kn, with Jn∆Tn = op(n−α), and assume the balance condition (30).
Then QV (Θ, ẽ and e) and QV (M, ẽ and e) are both of order op(n−2α).63

Proof of Lemma 2. In conformity with Definition 8 in Appendix A, we use that β(n)
t has

decomposition β
(n)
t = β0

(n) + β(n)(h)t + β
(n,R)
t , where β(n,R)

t = Bn(h)t + β̆(n)(h)t. D(β(n))(h)t is
given in analogy with (A.8). By invoking (F.77) in Remark 20, we see that we can take, without
loss of generality,

|nαe′Ti | ≤ Γ. (D.56)

We shall assume this throughout the proof of this lemma.

We split the term (D.55) in four parts. First,

nα|
Bn∑
i=0

e′Ti

∫ Ti+J

Ti−J

h(li,n)(t)dβ(n,R)
t |

≤ Γ|e′Ti |
Bn∑
i=0

|
∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ(n,R)
t |

≤ Γ|
Bn∑
i=0

∫ Ti+Jn

Ti−Jn

|h(li,n)(t)|dD(β(n))t

≤ Γ3JnD(β(n))T
= Op(Jn) (D.57)

from Condition 2 and since D(β(n))T = Op(1) by Jacod and Shiryaev (2003, Theorem VI.6.15(i)
and (iii), p. 380).

61This is satisfied by the families f(l,n), f̃(l,n), g(l,n), and g̃(l,n) above.
62 If one does not assume Jn∆Tn = op(n

−α) and the balance condition, the right hand side of (D.55) is given by
(D.68) at the end of the proof of the lemma.

63 If one does not assume Jn∆Tn = op(n
−α) and the balance condition, the orders of QV (Θ, ẽ and e) and

QV (M, ẽ and e) are, respectively, Op(n
−α(Jn∆Tn)) and Op(n

−2α(Jn∆Tn)/(Kn∆Tn)). This is as per Footnote 62 to
Lemma 2.
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Second, by Hölder’s inequality,

nα|
Bn∑
i=0

e′Ti

∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ(n)(h)t|

≤ Γ
Bn−Jn∑
i=J

|
∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ(n)(h)t|

= Op(Jn). (D.58)

This is because the square of the second line in (D.58) is Lenglart dominated (Jacod and Shiryaev
(2003, Lemma I.3.20, p. 35)) by constant ×(2J2

nC̃
(n)
T , where C̃(n)

t is the second modified character-
istic of β(n)

t , cf. Definition 8 in Appendix A. C̃(n)
T = Op(1) by Jacod and Shiryaev (2003, Theorem

VI.6.15(ii), p. 380).

Third, consider

Sn,I = nα
1
Kn

I∑
i=0

e′Ti

∫ Ti−J

Ti−K

h(li,n)(t)dβ(n)
t , (D.59)

and set

h̃(l,n,−)(t) =

{
0 when t ∈ ∪i≡l[3Kn](Tn,i−J , Tn,i+2K ], and
h(l,n)(t) for all other t ∈ (0, T ].

(D.60)

Sn,I is a multi-lag martingale in the sense of Lemma 4 (with lag length N = 2J) in Appendix F.2.
We calculate in the notation of Lemma 4 (with N = 2J),

〈Sn, Sn〉(2J)
Bn
≤ Γ2 1

K2
n

I∑
i=0

(∫ Ti−J

Ti−K

h(li,n)(t)dβ(n)
t

)2

= Γ2 1
K2
n

I∑
i=0

(∫ Ti+2K

Ti−K

h(li,n,−)(t)dh(li,n,−)(t)t

)2

= Γ2

(
1
K2
n

3Kn∑
l=1

∫ T
0

h(li,n,−)(t)2d[β(n), β(n)]T

)
(1 + op(1))

≤ 3
1
Kn

Γ2[β(n), β(n)]T (1 + op(1)), (D.61)

in analogy with Theorem 9 (use 3Kn rather than 2Kn). We have here used the relative compactness
assumption on H′. Thus, by Lemma 4,

Sn,Bn = Op((Jn/Kn)1/2). (D.62)
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Fourth, set

h̃(l,n,−)(t) =

{
0 when t ∈ ∪i≡l[3Kn](Tn,i−K , Tn,i+J ], and
nαe′Tih

(l,n)(t) for all other t ∈ (0, T ].
(D.63)

Consider

nα
1
K

Bn∑
i=0

e′Ti

∫ Ti+2K

Ti+J

h(li,n)(t)dβ(n)
t

=
1
K

Bn∑
i=0

∫ Ti+2K

Ti−K

h(li,n,−)(t)dβ(n)
t

=
1
K

3K∑
l=1

∫ T
0

h(l,n,−)(t)dβ(n)
t

=
∫ T

0
h(n,−)(t)dβ(n)

t , (D.64)

where

h(n,−)(t) =
1
Kn

3K∑
l=1

h(l,n,−)(t). (D.65)

|h(l,n,−)(t)| ≤ Γ, and hence |h(n,−)(t)| ≤ 3Γ. Also, h(n,−)(t) is predicable. Now write

h(n,−)(t) =
1
Kn

Bn∑
i=0

nαe′Tih
(li,n)(t)I{t∈(Tn,i+J ,Tn,i+2K ]}

=
∑

i:t∈(Tn,i+J ,Tn,i+2K ]

nαe′Tih
(li,n)(t)

=
1
K

j−1−Jn∑
i=j−2Kn

nαe′Tih
(li,n)(t) when t ∈ (Tj−1, Tj ]. (D.66)

For fixed t, h(n,−)(t) is, therefore the endpoint of a multi-lag martingale in the sense of Lemma 4
(with lag length N = 2J) in Appendix F.2. As in the proof of Lemma 4 (with N = 2J), we see
that E(h(l,n,−)(t)2) ≤ (4Jn − 1)K−1

n Γ2.Thus, following Lenglart’s inequality (Jacod and Shiryaev
(2003, Lemma I.3.20, p. 35)), sup0≤t≤T |h(n,−)(t)| = Op((Jn/Kn)1/2). Hence, by Ibid., Corollary
VI.6.20(b) (p. 381), it follows that

(D.64) = Op((Jn/Kn)1/2). (D.67)

Combining (D.57), (D.58), (D.62), and (D.67) yields that (D.55) has order

Op

(
Jn
Kn

+
(
Jn
Kn

)1/2
)

= Op

(
(Jn∆Tn)1/2

Kn∆Tn

)
(D.68)
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by merely assuming that Jn ≤ Kn. By imposing the balance condition (30) along with Jn∆Tn =
op(n−α), the right hand side of (D.55) follows. Q.E.D.

E Properties and Convergence of the Edge Effect, and Consis-

tency of the Multi-Scale Method

E.1 About Condition 2 on the Edge Effects

The formulation means that the main edge effect at Ti is allowed to depend on observations in J

time periods on each side of Ti.

The specific conditions can be verified under mixing assumptions. The following is a complement
to out examples. This is not intended to provide minimal conditions, just to explain why our
conditions are reasonable.

The Decomposition eTi = e′Ti + e′′Ti and ẽTi = ẽ′Ti + ẽ′′Ti. We have chosen this way of stating the
conditions on the edge effect since, in our examples, this is readily verifiable. To tie the condition
to the literature, however, we observe that, subject to mixing conditions, we require (eTi , ẽTi) to
be a mixingale, see, e.g., McLeish (1975) and Hall and Heyde (1980, pp. 19-21, 41). As the name
suggests, it is tied up with the concept of mixing. See also Wu and Woodroofe (2004).

α- and φ- mixing. For a more general treatment, see McLeish (1975, p. 834) and Hall and
Heyde (1980, Chapter 5 and Appendix III). For simplicity, we here focus on φ-mixing.64 If A and
B are two sigma-fields, then the φ-fixing coefficient is

φ(A,B) = sup
A∈A,B∈B,P (A)>0

|P (B|A)− P (B)| (E.69)

The Decomposition, again. Set ẽ′′Ti = ẽTi −E(ẽTi | FTi−J ), and similarly for e′′Ti . The difference
ẽ′Ti = ẽTi − ẽ′′Ti will then have the martingale-like properties described, as will e′Ti .

Meanwhile, if we require, say, that supn
(
max0≤i≤Bn E|nαen,Ti |1+δ + maxE|nαẽn,Ti |1+δ

)
< ∞,

for some δ > 0, and also that
∑

i(Een,Ti)
2+(Eẽn,Ti)

2 = o(n−2α), then the lemma on McLeish (1975,
p. 834) assures that our conditions on (e′′Ti , ẽ

′′
Ti

) are satisfied provided∑
i

φ(FTi−Jn ,An,i)
2δ

1+δ = o(1), (E.70)

where An,i is the sigma-field generated by (eTn,i , ẽTn,i) (use p = 2 and r = 1 + δ). Normally,

64One can do similar things with α-mixing, using the definition and lemma on McLeish (1975, p. 834).
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however, the number of observations in each interval (Ti−Jn , Ti] will go to infinity with n, thus
under exponential mixing (in the original microstructure noise), (E.70) will normally hold.

E.2 Proof of Proposition 3

Proof of Proposition 3. We show (49) and the asymptotic uncorrelatedness below. From (49)
follows the first line of (47), by definition of εn,K . The worst case statements in (46), (47) and (48)
follow as in the proof of Lemma 1, using Condition 2.

One such term (and the others are all handled the same way) is C01
n,K = 1

Bn

∑Bn
i=K ẽTieTi−K . By

Condition 2, this term has the same asymptotic behavior (up to op(n−2α)) as 1
Bn

∑Bn
i=K ẽ

′
Ti
e′Ti−K .

We then invoke statement (F.77) in Remark 20. Now identify the sum
∑I

i=K ẽ
′
Ti
e′Ti−K with Sn,I in

Lemma 4 (with Hn,i = FTi+J , and N = 2J .). The multi lag angle bracket process is 〈Sn, Sn〉(N)
I =∑I

i=K

(
E((ẽ′Ti)

2|FTi−2Jn
)(e′Ti)

2
)
, which is in turn Lenglart-dominated by

VAEE′n,K =
I∑

i=K

(
E((ẽ′Ti)

2|FTi−2Jn
)E((e′Ti−K )2|FTi−K−2Jn

)
)
, (E.71)

which in turn is Lenglart-dominated by VAEEn (independent of K). Hence, as in Lemma 4,
SBn = Op((JnBnVAEEn)1/2), and so C01

n,Kn
= Op((Jn∆TnVAEEn)1/2). The rest of (49) follows by

the exact same reasoning. The uncorrelatedness arises since, by the same methods, C ··n,Kn,l and
C ··n,Kn,l+1

are small sample uncorrelated. This carries over asymptotically by uniform integrability.
Q.E.D.

E.3 Proof of Theorem 7 (Section 4.2) and Proposition 5 (Section 5)

Proof of Theorem 7 in Section 4.2. We first proceed in the hard edge case. Let K̄n be the
mean of the Kn,l, and set Dn = diag(1, K̄n∆Tn, (K̄n∆Tn)3). Rescale so that Yn = (K̄n∆Tn)−3Yn,
bn = (K̄n∆Tn)−3Dnβn, and Xn = XnD

−1
n . To spell out the latter two,

b∗n =
(

(K̄n∆Tn)−3MAEEn, (K̄n∆Tn)−2AVARn, [θ, θ]T −
)
, and (E.72)

X∗n =

 2T 2T · · · 2T
2(Kn,1/K̄n) 2(Kn,2/K̄n) · · · 2(Kn,m//K̄n)
2
3(Kn,1/K̄n)3 2

3(Kn,2/K̄n)3 · · · 2
3(Kn,m/K̄n)3

 . (E.73)

Also, let b̂n be the least squares estimator from the regression of Yn on Xn, i.e., b̂n = (X∗nXn)−1X∗nYn.

With this setup, Xbn = (K̄n∆Tn)−3Xnβn and X∗nXn = D−1
n X∗nXnD

−1
n , whence b̂n = (K̄n∆Tn)−3Dnβ̂n,
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and so
β̂
n
− β

n
= (K̄n∆Tn)3D−1

n (b̂n − bn). (E.74)

Equation (57) becomes, in view of (50),

Yn = Xnbn + op(1). (E.75)

Now let Bn, B̂n be the last two elements in, respectively bn and b̂n. Also let X ∗n be the submatrix
consisting of the two last rows of X∗n, and let Dn be the 2× 2 submatrix in the lower right corner
of Dn. Let H = I−m−1J, where I is the m×m identity matrix, and J is the m×m matrix all of
whose entires are 1.

Following Weisberg (1985, Chapter 2.2, p. 43-44), Bn = ((HXn)∗HXn)−1(HXn)∗HYn. Mean-
while, from (E.75), HYn = HXnbn+op(1) = HXnBn+op(1). Thus, B̂n−Bn = ((HX )∗nHXn)−1((HX )∗nHXn)Bn+
op(1) = Bn + op(1), since (HX )∗nHXn is nonsignular (uniformly in n) by condition (65). Since
B̂n − Bn = op(1) and in view of (E.74), the consistency (66) follows.

In the soft edge case, the conditions imposed guarantee Theorem 3 (in Section 3.2), and hence
(E.75) is valid with MAEEn ≡ 0. As above, Theorem 7 follows. Q.E.D.

Proof of Propositiion 5 in Section 5. Linear regression theory (e.g., Weisberg (1985, p.
203) yields that rn is the slope in the regression of the third on the two first columns of X. If we set
rn to be the slope in the comparable regression of the third on two first columns of X, we obtain

rn = rn(K̄∆Tn)2 and rn =
1

3K̄2
n

∑m
l=1(Kn,l − K̄n)K3

n,l∑m
l=1(Kn,l − K̄n)2

(E.76)

which is of exact orderO(1) by assumption (65) in Theorem 7. Thus, in the notation of the preceding

proof, MSQV (Θ̂n,c) = β̂
(1)

n
+ rnβ̂

(2)

n
, where we use β̂ = (β̂

(0)

n
, β̂

(1)

n
, β̂

(2)

n
)∗. Hence MSQV (Θ̂n,c) =

(K̄∆Tn)2
(
B̂(1)
n + rnB̂

(2)
n

)
. Hence, eventually, ĉn = c∗, and also (76) holds in view of the previous

proof. The validity of Proposition 4 holds by the same proof as of the original proposition. Q.E.D.

F Odds and Ends

F.1 Proofs of Propositions 6, 7, and 8

Proof of Proposition 7. Let f : D → R and g : R → R be bounded and continuous. Since
Ln,t is P-UT, Jacod and Shiryaev (2003, Proposition VI.2.1, p. 377 and Theorem VI.6.26, p.

384)) yields that (Ln, [Ln, Ln]T ) L→(L, [L,L]T ) (in the non-stable sense), i.e., Ef(Ln)g([Ln, Ln]T ) =
Ef(L)g([L,L]T ) + o(1). On the other hand, by the assumed convergence in probability,
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|Ef(Ln)g([Ln, Ln]T )− Ef(Ln)g(V )| ≤ supx |f(x)|E|g([Ln, Ln]T )− g(V )| → 0.

We now construct our extension as in Jacod and Protter (2012, p. 36): Ω̃ = Ω × D[0, T ] with
product sigma-field, where the sigma-field on D[0, T ] is derived from the Skorokhod topology (Jacod
and Shiryaev (2003, Theorem VI.1.14c, p. 328)). The transition probability is given as the regular
conditional probability Q(L|V ) (Ash (1972, Theorem 6.6.5, p. 265)), where Q is defined as the
joint distribution of (L, [L,L]T ) on D[0, T ]× R (with corresponding product sigma-field).

With these definitions, [L,L]T = V , and hence, from the above,

Ef(L)g(V ) = Ef(L)g([L,L]T ) = Ef(Ln)g([Ln, Ln]T ) + o(1) = Ef(Ln)g(V ) + o(1) as n→∞.

Hence, the stable convergence follows. The remaining statements of the proposition hold by con-
struction. Q.E.D.

Proof of Proposition 8. The only modification that is required in our proofs is to replace
our parameter process by θn,t = θtn,i for tn,i ≤ t < tn,i+1. Since (the original (Ft) adapted) θt is a
semimartingale, then so is θn,t. Also, θn,t converges in probability to θt in the Skorokhod topology
(Jacod and Shiryaev (2003, Proposition VI.6.37, p 387)) (and hence also in law). Also, θn,t is P-UT
(ibid, Definition VI.6.1, p.377) since the relevant predictable functions on filtration Ftn,i is a subset
of the corresponding predictable functions on filtration Ft.

For example, the proof of Theorem 1 in Appendix B goes through with θn,t in lieu of θt, because
Theorem 9 in Appendix A allows time varying θn,t. The times Tn,i are not changed in derivations
that do not involve microstructure noise.

Arguments involving only (en,Tn,i , ẽn,Tn,i) are directly converted to (en,Tn,i,∗ , ẽn,Tn,i,∗). Poten-
tially problematic interface between microstructure noise and actual time Ti occurs only in Theorem
6 and Proposition 3, but the proofs go through with the described convention. Q.E.D.

Proof of Proposition 6 in Section 6.2. This is a corollary to Proposition 8. If Condition
1 is valid (in its original form) for Mn,t, it certainly also holds when discretized as in Condition 4,
again using Jacod and Shiryaev (2003, Proposition VI.6.37, p 387). This shows the result. Q.E.D.

F.2 Technical Lemmae

To handle general moments, we shall use the following.

Lemma 3. (Truncating the Edge Effects.) Suppose Condition 2. Then, for any δ > 0, there
exists (possibly on an extension of the space) etr

n,Ti
and ẽtr

n,Ti
, and a nonrandom constant Γ, so that

1. For each n etr
n,Ti

= e′n,Ti and ẽtr
n,Ti

= ẽ′n,Ti for all i ∈ [0, Bn], on a measurable set An, and
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P (An) < δ;

2. etr
n,Ti

and ẽtr
n,Ti

satisfy the conditions in Condition 2 in lieu of e′n,Ti and ẽ′n,Ti; and

3. |etr
n,Ti
| ≤ Γn−α and |ẽtr

n,Ti
| ≤ Γn−α for all i and n.

Remark 20. (Using Lemma 3.) We shall use the lemma to assert, in various places, that

|nαe′n,Ti | and |nαẽ′n,Ti | can without loss of generality be taken to be bounded by a constant Γ.
(F.77)

Here is the specific mechanism that we refer to.

Let Yn be a sequence of random variables, involving a functional form of e′n,Ti and ẽ′n,Ti (as well
as any of the other random quantities in our setup). Let D be a countable set, D ⊂ (0, 1), with a
limit point at zero.

For given δ ∈ D, create Yn,δ by replacing the e′n,Ti and ẽ′n,Ti by the etr
n,Ti

and ẽtr
n,Ti

as described
by Lemma 3. Then Yn = Yn,δ on the set An. Suppose one can show that there is a random variable
Y (independent of δ) so that Yn,δ

p→Y as n→∞. Then, for any ε > 0, and since P (An) < δ,

P (|Yn − Y | > ε) ≤ P ({|Yn,δ − Y | > ε} ∩Acn) + P (An)

≤ P (|Yn,δ − Y | > ε) + δ

→ δ as n→∞. (F.78)

Since D has limit point at zero, it follows that Yn
p→Y as n→∞. 2

Proof of Lemma 3. For L = 1, · · · 2J , set S(L)
n,I =

∑
i∈[1,I] and i≡L[2J ] e

′
n,Ti

, where i ≡ L[N ] means

that i is of the form i = L + jN for some integer j. Then for each L and n, S(L)
n,I is a martingale

with respect to the filtration Hn,i = FTi+J . We now invoke the construction from Mykland (1994,
eq. (4.8), p. 27), which produces etr

n,Ti
(i ≡ L[2J ]). satisfying items (1), (2) and (3) in the Lemma,

with, say An,L,1 and ΓL,1, and with P (An,L,1) < δ/4J . We repeat this construction for all L, and
similarly for ẽ′n,Ti , in the latter case giving rise to An,L,2 and ΓL,2. By construction, the whole set
of etr

n,Ti
and ẽtr

n,Ti
satisfy items (1), (2) and (3) in the Lemma, with An = ∪An,L,r and Γ = max ΓL,r.

2

To handle cross-terms, we use the following.

Lemma 4. (Negligibility of Multi-lag martingales.) Let Sn,I =
∑I

i=1 ζn,i, where we sup-
pose that ζn,i is Hni -measurable and satisfies that E(ζni | Hi−N ) = 0.65 Define 〈Sn, Sn〉(N)

I =∑I
i=1E((ζn,i)2 | Hi−N ). (It’s an N’th lag angle bracket process.) Let αn be a nonrandom sequence

so that 〈Sn, Sn〉(N)
B′n

= op(αn). Then sup1≤|≤B′n |Sn,I | = op((Nαn)1/2).

65As convenient, we can take some ζ’s in the beginning to be zero if the sum starts at K or similar. Definitely
ζn,i = 0 for i < N . For an example of such a structure, one can take ζn,i = e′n,Ti

or = ẽ′n,Ti
, with Hn,i = FTi+J and

N = 2J . This construction is also used in Lemma 3.
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Proof of Lemma 4. For 0 ≤ L ≤ N − 1, let S(L)
n,I =

∑
i∈[1,I] and i≡L[N ] ζn,i, where i ≡ L[N ]

means that i is of the form i = L+ jN for some integer j.

Thus, Sn,I =
∑N

j=1 S
(L)
n,I . Since no two different S(L)

n,I change value for the same I, we also get

that [Sn, Sn]I =
∑N

j=1[S(L)
n , S

(L)
n ]I . Meanwhile,

E(Sn,I)2 = E
I∑

i=K

(ζn,i)2 + 2E
I∑

i=K

N−1∑
j=1

ζn,iζn,i−j

= E
I∑

i=K

(ζn,i)2 + 2E
N−1∑
j=1

I∑
i=K

ζn,iζn,i−j

≤ E
I∑

i=K

(ζn,i)2 + 2(N − 1)E[Sn, Sn]I (Cauchy-Schwarz)

= (2N − 1)E[Sn, Sn]I . (F.79)

Hence, (Sn,I)2 is Lenglart-dominated (Jacod and Shiryaev (2003, Section I.3c, pp. 35-36), Jacod
and Protter (2012, Section 2.1.7, p. 45)) by (2N−1)[Sn, Sn]I , and hence also by (2N−1)〈Sn, Sn〉(N)

I .
By the same reasoning as in the proof of Jacod and Protter (2012, Proposition 2.2.5, p. 574), the
result follows. 2
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