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a b s t r a c t

This paper is about how to estimate the integrated covariance ⟨X, Y ⟩T of two assets over a fixed time
horizon [0, T ], when the observations of X and Y are ‘‘contaminated’’ and when such noisy observations
are at discrete, but not synchronized, times. We show that the usual previous-tick covariance estimator is
biased, and the size of the bias ismore pronounced for less liquid assets. This is an analytic characterization
of the Epps effect. We also provide the optimal sampling frequency which balances the tradeoff between
the bias and various sources of stochastic error terms, including nonsynchronous trading, microstructure
noise, and timediscretization. Finally, a two scales covariance estimator is providedwhich simultaneously
cancels (to first order) the Epps effect and the effect of microstructure noise. The gain is demonstrated in
data.
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1. Introduction

This paper is about how to estimate the integrated covariance
⟨X, Y ⟩T over a fixed time horizon [0, T ], when the observations of
X and Y are ‘‘contaminated’’ and when such noisy observations of
X and of Y are at discrete, but not synchronized, times.

Consider the price processes of two assets, {Xt} and {Yt}, both in
logarithmic scale. Suppose both {Xt} and {Yt} follow an Itô process,
namely,

dXt = µX
t dt + σ X

t dB
X
t , (1)

dYt = µY
t dt + σ Y

t dB
Y
t , (2)

where BX and BY are standard Brownian motions, with correlation
corr(BX

t , B
Y
t ) = ρt . The drift coefficient µt , and the instantaneous

variance σ 2
t of the returns process Xt will be stochastic processes,

which are assumed to be locally bounded.
Our interest is to estimate the integrated covariation ⟨X, Y ⟩T ,

⟨X, Y ⟩T =

∫ T

0
σ X
t σ Y

t d⟨B
X , BY

⟩t , (3)

✩ The author would like to thank the editors and referees for their helpful and
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using the ultra-high frequency observations of X and Y within the
fixed time horizon [0, T ]. Inference for (3) is a well-understood
problem if X and Y are observed simultaneously and without con-
tamination (say, in the form of microstructure noise). A limit the-
orem in stochastic processes states that

∑
i:τi∈[0,T ]

(Xτi − Xτi−1)

(Yτi − Yτi−1), commonly called realized covariance, is a consistent
estimator for ⟨X, Y ⟩T as the observation intervals get closer; fur-
thermore its estimation error follows a mixed normal distribution,
see, for example, Jacod and Protter (1998), Barndorff-Nielsen and
Shephard (2002a), Zhang (2001), and Mykland and Zhang (2006).
For a glimpse of the econometric literature on this inference prob-
lem when X = Y , one can read Andersen and Bollerslev (1998),
Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002b),
and Gençay et al. (2002), among others.

In ultra-high frequency data, the exact observation times of
X and Y are rarely simultaneous, and estimating ⟨X, Y ⟩T in this
asynchronous case becomes a relevant and pressing problem.
This lack of synchronicity often causes some undesirable features
in the inference. In particular, as documented by Epps (1979),
correlation estimates tend to decrease when sampling is done
at high frequencies. Even in daily data, asynchronicity can cause
difficulties (Scholes and Williams, 1977). Lo and MacKinlay
(1990) propose a solution based on a stochastic model of
censoring. In practice, most nonparametric estimation procedures

http://dx.doi.org/10.1016/j.jeconom.2010.03.012
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for ⟨X, Y ⟩T start with creating an approximately synchronized pair
(X, Y ) by either previous-tick interpolation or linear interpolation,
then construct the estimator on the basis of the synchronized
approximations. These interpolation-based estimators are often
biased, as witnessed in empirical studies (Dacorogna et al., 2001).

A different issue when one deals with high frequency data is
the existence of microstructure noise. In the early papers (Aït-
Sahalia et al., 2005; Zhang et al., 2005), they found that when the
microstructure noise is present in the observed prices, then the
realized variance estimator for ⟨X, X⟩T – a special case of realized
covariance – is biased and this bias can get progressively worse
as more high frequency data is employed.1 However, it is not well
understood how an estimator for the covariation ⟨X, Y ⟩T behaves,
when the estimation uses ultra-high frequency noisy data.

In this paper, we are concerned with the behavior of the
previous-tick approach to estimation of ⟨X, Y ⟩T when the obser-
vation times of X and Y are not synchronized and when the mi-
crostructure noise is present in the observed price processes. We
show that asynchronicity leads to a bias in the previous-tick es-
timator for ⟨X, Y ⟩T , thus giving an analytic form of the Epps ef-
fect. The variance of the estimator, meanwhile, comes from three
sources—discrete observation/transaction times, nonsynchroniza-
tion, and the microstructure noise. We provide the optimal sam-
pling frequency to balance the tradeoff among different error
sources, and present the explicit expression for the asymptotic bias
and variance when the observations times of X and Y follow Pois-
son process.

A further advantage of the previous-tick estimator is that it
permits easy analysis of microstructure noise. It is here shown that
in the presence of noise, one can create two andmultiscale versions
of the previous-tick estimator. As we shall see in Section 8, the bias
due to asynchronicity cancels in the same way as the bias due to
microstructure noise, while the variance asymptotically behaves
as if there is no asynchronicity (in the subsample of previous ticks).
Thus, while the previous-tick approach does throw away data, it
can retain rate efficiency.

In terms ofmicrostructure noise, this paper provides a two- and
multiscale alternative to the multivariate autocovariance-based
estimator of Barndorff-Nielsen et al. (2008b). Other work investi-
gating the combination of asynchronicity andmicrostructure noise
includes Lunde and Voev (2007) and Griffin and Oomen (2007).

The paper is organized as follows: we introduce the concepts
and notations in Section 2.1, and give a preview of the main
findings in Section 2.2. Sections 3 and 4 provide the asymptotic
stochastic bias and variance of the previous-tick estimator,
assuming the absence of microstructure noise in the price
processes. Section 5 deals with the case when the trading times
are random. An application when the transaction times follow
Poisson processes is provided in Section 6. Section 7 focuses on
the inference when themicrostructure noise is present. Two scales
estimation is presented in Section 8. Finally, Section 9 concludes.

2. Setting, and some main findings

2.1. Setup and notations

Our interest is to estimate the covariation ⟨X, Y ⟩T between two
returns in a fixed time period [0, T ], when X and Y are observed
asynchronously.

Let the observation/transaction times of X be recorded in Tn,
and those of Y in Sm. At themoment we assume X and Y are free of

1 Recent developments on volatility estimation include multiscale estimation
(Zhang, 2006; Aït-Sahalia et al., 2011), kernel methods (Barndorff-Nielsen et al.,
2008a, 2011), and pre-averaging (Podolskij and Vetter, 2009; Jacod et al., 2009).
microstructure noise (in short, noise). Later in Section 7 we study
the cases when these two price processes are observed with noise
ϵX and ϵY respectively. We denote the elements in Tn by τn,i, and
the elements in Sm by θm,i. Specifically, 0 = τn,0 ≤ τn,1 ≤ · · · ≤

τn,n = T , 0 = θm,0 ≤ θm,1 ≤ · · · ≤ θm,m = T . For the ease of the
notation, we often suppress the subscript n andm from the τ s and
θs unless the context is misleading. The τ and θ sequences may
be irregular and random but independent of the price process, so
long as the spacings are not allowed to be too large. An extension
to more general random times is considered in Section 5.

We focus on a particular type of covariance estimator called
previous-tick estimator. Intuitively, it is a sample covariance
estimator based on the prices that immediately precede (or are at)
the pre-specified sampling points. One can view this previous-tick
approach as a special way to subsample the raw data.

To formulate the previous-tick covariance estimator, we
introduce the concepts related to sampling points. Let

N = n + m,

write n andm as nN andmN from here on.
We consider a subset of [0, T ] which satisfies the following.

VN ⊂ [0, T ]; 0, T ∈ VN , also VN is finite for each N. (4)

We use vi to denote the elements in VN , VN = {v0, v1, . . . , vMN },
with v0 = 0 and vMN = T , where MN is the sampling frequency. A
simple case of V would be a regular grid, where the elements are
equally spaced out in time, that is, vi−vi−1 = 1v, ∀i. This sampling
scheme is the most common one in analyzing time-dependent
data, for example, typical sampling interval in high-frequency
financial application includes every 5 min, 15 min, 30 min and
hourly.

An alternativeway of setting the gridVN is to let the vi’s depend
on the observation times, for example by setting vi to be the
maximum of min{τ ∈ Tn : τ > vi−1} and min{θ ∈ Sm : θ > vi−1}.
This is the concept of refresh time, as introduced by Barndorff-
Nielsen et al. (2008b). One can also implement this for more than
two stocks.

We assume the following regarding the relation between vis,
τis, and θis:

Condition C1. There is at least one pair of (τ , θ) in between the
consecutive vis.

Under Condition C1, the previous ticks are then defined as:

ti = max{τ ∈ Tn : τ ≤ vi}, and
si = max{θ ∈ Sm : θ ≤ vi},

(5)

so that the tis and the sis are the sampling points in X and Y ,
respectively, according to the previous-tick sampling scheme. We
note that Condition C1 holds so long as there are sufficiently many
data in both X and Y within the time window [0, T ]. A sufficient
criterion for C1 is provided by Conditions C2 and C3 below. C1
is also valid (without C3) when the v’s are the refresh times
mentioned above.

We need more assumptions to pursue the analysis for the
covariance estimator. We assume that the transaction times of X
and Y satisfy:

Condition C2. supi |θm,i−θm,i−1| = O
 1
N


, and supi |τn,i−τn,i−1|

= O
 1
N


.

Note that Condition C2 implies that on the one hand lim infN→∞
mN
N > 0 and lim infN→∞

nN
N > 0; on the other hand, it is obvious

that mN
N ≤ 1 and nN

N ≤ 1. In particular, nN = O(mN) and
mN = O(nN). We sometimes assume that the sampling frequency
MN satisfies:
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Condition C3. supi |vN,i − vN,i−1| = O


1
MN


, and MN = o(N).

Conditions C2 and C3 imply Condition C1 when N is large
enough.

There are two reasons for imposing C3. One is technical, it arises
naturally in connectionwith both two scales estimation (Section 8)
and bias–variance tradeoffs (Sections 4.3, 6.2 and 7.1). The other
is more conceptual: the observation times are often not known
exactly or incorrectly recorded. If one assumes that the times are
known up to, say, order O(N−α), having the distance between
consecutive grid points inV , vi −vi−1, bigger than O(N−α) ensures
the previous-tick estimator to be consistent.

Definition 1. At last, the previous-tick estimator for the covaria-
tion is defined as

[X, Y ]T =

MN−
i=1

(Xti − Xti−1)(Ysi − Ysi−1), (6)

where the tis and sis are the previous ticks in (5).

2.2. Some main findings

We here summarize the most important results from the
practitioner point of view. First of all, the bias in the estimator (6)
is given by

−

∫ T

0
⟨X, Y ⟩

′

udFN(u) + Op


1
N


, (7)

where FN(t) =
∑

i:max(ti,si)≤t |ti − si|. Typically, FN(t) and the
bias are of order Op(MN/N). See Theorem 1 for precise statements.
Second, when Condition C3 is in place, then

[X, Y ]T = [X, Y ]T −

∫ T

0
⟨X, Y ⟩

′

udFN(u) + Op(N−1/2) (8)

where [X, Y ]T is the unobserved value of the synchronized
estimator

[X, Y ]T =

MN−
i=1

(Xvi − Xvi−1)(Yvi − Yvi−1). (9)

See Theorem 4 (in Section 4.1) for details. Under Condition C3,
therefore, one can behave as if observations were synchronously
obtained at times vi, provided that one can deal with the bias.
This has important consequences. On the one hand, it provides an
analytic characterization of the Epps (1979) effect. As described
further in Section 3.2, the Epps effect is essentially the bias (7), and
it is typically negative for positively associated processes (X, Y ).
Also, from (8), the Epps effect is only a matter of bias; except at
the highest sampling frequencies, it does not substantially affect
the variance of the estimator. On the other hand, (8) suggests that
when suitably adapted, existing theory for the synchronized case
can be applied to the asynchronous case.

We shall show two types of applications. In Sections 4.3, 6.2 and
7.1, we carry out a bias–variance tradeoff to remove the effect of
asynchronicity. In Section 8 we show that both asynchronicity and
microstructure noise can be removed with the help of two scales
estimation, along the lines of Zhang et al. (2005).

3. Previous-tick covariance estimator under zero noise

We start with an idealized world, where the mechanics of the
trading process is perfect so that there is nomicrostructure noise in
both X and Y . We shall see that [X, Y ]T can be decomposed based
on the impact of different data structure.
3.1. Decomposition for the estimator [X, Y ]T

Let X and Y be Itô processes satisfying (1)–(2). Let [X, Y ]T
be the previous-tick covariance estimator in (6). From the
Kunita–Watanabe inequality, ⟨X, Y ⟩t is absolutely continuous in
t . Assuming Condition C1, we can therefore decompose [X, Y ]T
into:

[X, Y ]T =

−
i

∫ min(ti,si)

max(ti−1,si−1)

⟨X, Y ⟩
′

udu  
drift term

+

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2]  
LN , discretization error

+ RN
asynchronicity error

, (10)

where the tis and sis are the previous ticks defined in (5), and see
Lemma 1 in Appendix for the exact form of RN . We have used the
following symbol (cf. McCullagh, 1987):

Notation 1. The symbol ‘‘[2]’’ is used as follows: if (a, b) is an
expression in a and b, then (a, b)[2] means (a, b) + (b, a), so that
(Xu − Xmax(ti−1,si−1))dYu[2] means (Xu − Xmax(ti−1,si−1))dYu + (Yu −

Ymax(ti−1,si−1))dXu.

Each component in (10) plays different role in the distribution
of [X, Y ]T . To proceed the discussion, we need first to define
stochastic bias and stochastic variance of an estimator.

Definition 2. Consider a semimartingale Z . Let Ẑ be an estimator
for Z . Suppose that Zt − Ẑt has the following Doob–Meyer
decomposition, for t ∈ [0, T ],

Ẑt − Zt = At + Mt ,

where {Mt} is a martingale and {At} is a predictable process. Then
for fixed t , t ∈ [0, T ], we call At the stochastic bias of Ẑt , denoted
as SBias(Ẑt); we call the quadratic variation ⟨M,M⟩t of Mt the
stochastic variance of Ẑt .

Note that if At is nonrandom, it is also the exact bias; if ⟨M,M⟩t is
nonrandom, it gives the exact variance.

In light of Definition 2 and the decomposition equation (10), the
stochastic bias of [X, Y ]T is−

i

∫ min(ti,si)

max(ti−1,si−1)

⟨X, Y ⟩
′

udu − ⟨X, Y ⟩T ;

meanwhile, both the discretization error LN and the asynchronicity
error RN contribute to the stochastic variance of [X, Y ]T . It
is apparent that, in the situation when X and Y are traded
simultaneously, the asynchronicity error RN becomes zero. When
the trading is not synchronous, however, it is not obvious to see
the relative impact and the tradeoff between LN and RN . We pursue
these next. First, we need the following concept.

Definition 3. A sequence of càdlàg processes GN(t), 0 ≤ t ≤

T is said to be relatively compact in probability (RCP) if every
subsequence has a further subsequence GNk so that there is a
processG(t), whereGNk(t) converges in probability toG(t) at every
continuity point t ∈ [0, T ] of G(t).



36 L. Zhang / Journal of Econometrics 160 (2011) 33–47
For applied purposes, if the sequence GN is RCP, one can act as if
the limit exists, cf. the discussion on p. 1411 of Zhang et al. (2005).

3.2. Stochastic bias: The Epps effect

Theorem 1. Let X and Y be Itô processes satisfying (1)–(2), with µt
and σt locally bounded. Let [X, Y ]T be the previous-tick covariance
estimator. Let VN = {0 = v0, v1, . . . , vMN } be a collection of
sampling points which span across [0, T ], and let ti and si be the
transaction times of X and Y , respectively, that immediately precede
vi. Then, under Conditions C1 and C2, the stochastic bias of [X, Y ]T is

−

∫ T

0
⟨X, Y ⟩

′

udFN(u) + Op


1
N


, (11)

where

FN(t) =

−
i:max(ti,si)≤t

|ti − si|.

Furthermore, the sequences N
MN

FN(t) and N
MN

 T
0 ⟨X, Y ⟩

′
tdFN(t) are

RCP in the sense of Definition 3. �

The function FN takes non-negative value and it will play a
central rôle in our narrative. To see an example of a limit of
N
MN

FN(t), we refer to the Poisson example in Corollary 4 (Section 6).
From Theorem 1, one should note that FN(t) = 0 – thus the

previous-tick estimator is unbiased – when the two processes
X and Y are traded simultaneously, or more generally if the
selected subsample has synchronized observation times. If the two
assets X and Y are not traded simultaneously, the stochastic bias
typically has orderMN/N , the previous-tick estimator [X, Y ] is then
asymptotically unbiased under Condition C3.

However, there is a finite sample effect in (11), and (11) is
an analytic representation of the Epps effect in cases where the
subsampling is moderate (see the discussion in Section 2.2). Also
Theorem 1 implies themagnitude of the bias−

 T
0 ⟨X, Y ⟩

′
udFN(u) is

greater for less liquid assets (large |ti − si| on average).

Remark 1. When the previous-tick estimator is used for all of
[X, Y ]T , [X, X]T , and [Y , Y ]T , the correlation estimator is no larger
than one in absolute value. If one uses a different type of estimator
for [X, X]T , and [Y , Y ]T , the estimated correlation should just be
truncated at 1 or −1 as appropriate. Similar comments apply
when a covariation matrix ⟨X, X⟩T is estimated for a vector
process X . If a different estimator is used to compute the diagonal
elements, one can take the estimated matrix and write ⟨X, X⟩T =

Γ ΛΓ ∗, where Γ is orthogonal and Λ is a diagonal matrix. If
one sets Λ+ as the matrix Λ with negative elements replaced
by zero, a nonnegative definite estimator of ⟨X, X⟩T is given by
⟨X, X⟩T = Γ Λ+Γ ∗. Asymptotically all these procedures have the
same properties when the true ⟨X, X⟩T is positive definite, since
then Λ is eventually positive with probability one as N → ∞.

3.3. Stochastic variance

Theorem 2. Under the same conditions and setup as in Theorem 1,
the following processes

U (dis)
N,u =

−
i:ti,si≤u

(min(ti, si) − max(ti−1, si−1))
2

T/MN
,

U (nonsyn)
N,u

=

−
i:si,ti≤u

(si − si−1)(ti − ti−1) − (max(ti−1, si−1) − min(ti, si))2

T/N
,

are RCP in the sense of Definition 3, and the process

M3/2
N QN,u[2] = 2

−
i:ti,si≤u

⟨X, X⟩
′

ti

∫ min(ti,si)

max(ti−1,si−1)

(min(ti, si) − u)

× (Yu − Ymax(ti−1,si−1))dYu[2]

+ 2
−

i:ti,si≤u

⟨X, Y ⟩
′

ti

∫ min(ti,si)

max(ti−1,si−1)

(min(ti, si) − u)

× (Xu − Xmax(ti−1,si−1))dYu[2]

is tight. Also, the leading terms in the stochastic variance of [X, Y ]T −

⟨X, Y ⟩T are

T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dU (dis)

N,u

+QN,T [2] +
T
N

∫ T

0
⟨X, X⟩

′

u⟨Y , Y ⟩
′

udU
(nonsyn)
N,u . (12)

Finally,

U (dis)
N,u = u − 2FN(u) + O(1/MN) + O((MN/N)2). � (13)

As we shall see from the proof of Theorem 2 (in Appendix), the
1/MN term and 1/M3/2

N term (i.e. QN,T ) in (12) correspond to the
first- and the second-order effect, from the quadratic variation of
the discretization error in (10), whereas the 1/N term comes from
the quadratic variation of the asynchronous error.We can callU (dis)

quadratic covariation of time due to discretization, and call U (nonsyn)

quadratic covariation of time due to nonsynchronization.

Remark 2. In the special case where X and Y are traded simulta-
neously, U (nonsyn) becomes zero, and the total asymptotic variance
in (12) reduces to

T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dH(u), (14)

whereH(u) = U(u) = lim
∑

τMN ,i≤u
(τMN ,i−τMN ,i−1)

2

T/MN
is the quadratic

variation of time. A further specialization is when X = Y , (12) be-
comes

T
MN

∫ T

0


2(⟨X, X⟩

′

u)
2 dH(u), (15)

both (14) and (15) are consistent with the results in Mykland and
Zhang (2006).

Note that in (12), the relevant component in QT [2] is the end-
point of a martingale with quadratic variations as follows:

⟨QN [2],QN [2]⟩ =
2
3
lim

MN−
i=1

(min(ti, si) − max(ti−1, si−1))
4

× {(⟨X, X⟩
′

ti−1
)2(⟨Y , Y ⟩

′

ti−1
)2

+ 6(⟨X, X⟩
′

ti−1
)(⟨Y , Y ⟩

′

ti−1
)(⟨X, Y ⟩

′

ti−1
)2

+ (⟨X, Y ⟩
′

ti−1
)4} × (1 + op(1)). (16)

When taking expectation (which is relevant when the trading
times are random), the QT [2] term yields zero, thus it disappears
in the final expression for the variance.

4. The case whenMN = o(N)

We shall see in this section that under C3, the 1/MN term (i.e.
the discretization effect) in (12) is the sole leading term in the
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asymptotic variance of the previous-tick estimator. The source of
the second-order term in the asymptotic variance depends on the
exact order of MN . An interesting case is when MN = O(N2/3).
This choice is optimal in the sense of minimizing mean squared
error of [X, Y ]T , when the stochastic bias of [X, Y ]T is Op(MN/N)
(Theorem 1) and the stochastic variance is Op(1/MN) (Theorem 2).
We can see that in this scenario the 1/N term and the 1/M3/2

N term
in (12) share the second-order effects. We shall elaborate on the
higher-order behaviors in this Section.

We emphasize that regardless of the order of MN , the
interaction between the discretization and the asynchronous effect
is atmost a third-order effect, with order 1/(MN

√
N) (see the proof

of Theorem 2).

4.1. First order behavior

This is an immediate conclusion from Theorem 2:

Corollary 1. Assume C2–C3. Then U (dis)
u exists and equals the scaled

quadratic variation of the grid points V . In the case of equispaced
grid points, U (dis)

u = u. The total variance term of the previous-tick
estimator is, to first order,

T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dU (dis)

u . (17)

Corollary 1 says that when the data (X , Y ) arrive faster than
the sampling frequency, the asynchronization effect disappear and
only the discretization effect U (dis) remains in the variance term.

We can also assert something about the asymptotic distribution
of the estimator. Let LN be the discretization term in (10). Then, in
view of Theorem 1 and Lemma 1 (in the Appendix),

[X, Y ]T − ⟨X, Y ⟩T = −

∫ T

0
⟨X, Y ⟩

′

udFN(u) + LN + Op(N−1/2). (18)

The quantity in (17) is simply the asymptotic version of ⟨LN , LN⟩T .
By extending the arguments above to all time points t ∈ [0, T ] and
using the theory in Chapters VI and IX of Jacod and Shiryaev (2003),
we thus obtain

Theorem 3. Assume the conditions of Theorem 1. Under Condi-
tion C2–C3, M1/2

N LN converges in law to

Z

T
∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dU (dis)

u

1/2

, (19)

where Z is standard normal, and independent of X and Y .

Note that the convergence is stable, in the sense of Rényi (1963),
Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde
(1980), Rootzén (1980) and Section 2 (pp. 169–170) of Jacod and
Protter (1998). For the connection to this type of high frequency
data problem, see Zhang et al. (2005) and Zhang (2006).

By using the same methods, we relate the estimator to the
hypothetical unobserved ‘‘gold standard’’ (9):

Theorem 4. Assume the conditions of Theorem 1. Under Condi-
tion C2–C3,

[X, Y ]T = [X, Y ]T −

∫ T

0
⟨X, Y ⟩

′

udFN(u) + Op(N−1/2). (20)

The result also holds if [X, Y ]T is defined with wi = max(ti, si)
replacing vi.

One can, in fact, deduce Theorem 3 from this result using
the standard theorems for synchronous observation in Barndorff-
Nielsen and Shephard (2002a), Jacod and Protter (1998), Mykland
and Zhang (2006) and Zhang (2001).
4.2. Higher order behavior

We can also say something about the higher order terms in the
variance. First the non-martingale part.

Corollary 2. Assume Condition C2–C3. In addition to the conclusions
of Corollary 1, we also have that

U (nonsyn)
N,u = 2

N
MN

FN(u) + o(1). (21)

If we for the moment ignore the martingale QN [2], we can
therefore assert that the effect of nonsynchronization is to high
order fully characterized by the function FN(u), since this is the
quantity one encounters in both the bias, the U (dis)

N,u and U (nonsyn)
N,u

terms.
Theorem 2 put together with Corollary 2 then yields

stochastic variance =
T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 du

− 2
T
MN

∫ T

0
(⟨X, Y ⟩

′

u)
2dFN(u)

+QN [2] + op(N−1)

+ op(M
−3/2
N ) + op(MN/N2). (22)

Putting this in turn together with Theorem 1, one obtains that
the stochastic MSE (bias2 + variance) of [X, Y ]T − ⟨X, Y ⟩T is

stoch MSE =

∫ T

0
⟨X, Y ⟩

′

udFN(u)
2

+
T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 du

− 2
T
MN

∫ T

0
(⟨X, Y ⟩

′

u)
2dFN(u)

+QN [2] + op(N−1) + op(M
−3/2
N ) + op(MN/N2). (23)

Recall thatQN [2] = Op(M
−3/2
N ).What about the termdue toQN [2]?

First order answers can be provided by considering the case when
the quadratic variations ⟨X, X⟩, ⟨Y , Y ⟩ and ⟨X, Y ⟩ are nonrandom.
In this case, by taking the expected MSE, the martingale term QN
disappears. One can behave as if theMSE is the first three elements
of (23). We return to the question of the meaning of QN [2] in later
Section 4.4.

4.3. Bias–variance tradeoff

In view of Theorem 1, ‘‘typical’’ behavior is that

N
MN

FN(u) → F(u) as N → ∞, (24)

where F is a nondecreasing function. (In particular, every
subsequence will have a further subsequence displaying this
behavior). In this case, we obtain

stoch MSE =


MN

N

2 ∫ T

0
⟨X, Y ⟩

′

udF(u)
2

+
T
MN

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 du

− 2
T
N

∫ T

0
(⟨X, Y ⟩

′

u)
2dF(u)

+QN [2] + op(N−1) + op(M
−3/2
N ) + op(M2

N/N2).(25)
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A tradeoff between bias2 (the first term) and variance (the later
terms) is therefore obtained by setting (MN/N)2 = O(M−1

N ),
yielding MN = O(N2/3). Thus the first order terms in the MSE is
given by the two first terms in (23) or (25).

4.4. The meaning of the martingale QN

LetKN be themartingale (non-drift) term in (10). In otherwords,
[X, Y ]T − ⟨X, Y ⟩T = −

 T
0 ⟨X, Y ⟩

′
udFN(u) + KN + Op(N−1). By the

same methods as before, we obtain.

Corollary 3. Assume Condition C2–C3. Then, in probability,

M3
N⟨QN [2],QN [2]⟩ →

2
3
T 3
∫ T

0


(⟨X, X⟩

′

u)
2(⟨Y , Y ⟩

′

u)
2

+ 6(⟨X, X⟩
′

u)(⟨Y , Y ⟩
′

u)(⟨X, Y ⟩
′

u)
2
+ (⟨X, Y ⟩

′

u)
4

du (26)

and

⟨M1/2
N KN ,M3/2

N QN [2]⟩ →
1
3
T 2
∫ T

0


5⟨X, X⟩

′

u⟨Y , Y ⟩
′

u⟨X, Y ⟩
′

u

+ (⟨X, Y ⟩
′

u)
3

du. (27)

In fact, the corollary asserts that [X, Y ]T −⟨X, Y ⟩T is correlatedwith
its own stochastic variance! What could this possibly imply?

Again, to get a first order answer, by considering what would
happen if the quadratic variations ⟨X, X⟩, ⟨Y , Y ⟩ and ⟨X, Y ⟩ are
nonrandom. We then obtain that the third cumulant of KN is given
by

cum3(KN) = 3cov(KN , ⟨KN , KN⟩)

= 3M−2
N cov(M1/2

N KN ,QN [2]) + o(M−2
N )

= 3M−2
N E⟨M1/2

N KN ,QN [2]⟩ + o(M−2
N )

= M−2
N T 2

∫ T

0
{5⟨X, X⟩

′

u⟨Y , Y ⟩
′

u⟨X, Y ⟩
′

u + (⟨X, Y ⟩
′

u)
3
}du (28)

(for the first transition, cf. Eq. (2.14) (p. 23) of Mykland (1994)).
Similar methods can be used to compute the fourth cumulant.

Thus, the QN is more of a contribution to the Edgeworth
expansions of our estimator, rather than an adjustment to variance.

5. When trading times are random

It is often natural to assume that the trading times τ and θ can
bedescribed as the event times of a counting process. Let the arrival
times τ s have intensity λX (t) and the θs have intensity λY (t). For
the moment we assume that both these intensities can be random
(but predictable) processes.

This type of model requires some modification on the earlier
development. For one thing, the counts m and n are random, so is
N = m+n. Also, andmore seriously, Conditions C1 and/or C2may
not be satisfied. We consider these issues in turn.

First of all, to get an asymptotic framework, we assume the
following.

Condition C4. There is a sequence of experiments indexed by
nonrandom α, α > 0, so that λX

= λX
α and λY

= λY
α . In general, the

intensities can be any function of α, but we suppose that there are
constants c̄ and c , independent of α, 0 < c ≤ 1 ≤ c̄ < ∞, so that
for all t ∈ [0, T ],

αc ≤ λX
α(t) ≤ αc̄ and αc ≤ λY

α(t) ≤ αc̄. (29)
Remark 3 (Asymptotic Framework). We do asymptotics as α →

∞. Note that since N/α = Op(1) but not op(1), this is the same
as supposing that N → ∞. The same argument yields the same
orders form and n.

The assumption that will run into trouble is Condition C2. This
is a natural assumption for developing analytical results when the
trading/sampling times are nonrandom, but ConditionC2 is neither
true nor necessary if the sampling times are random. In fact, if the
intensities λX

α and λY
α are independent of time t , then conditionally

on m and n, the sampling times for the X and Y processes are like
the order statistics from a uniform distribution on [0, T ] (see, for
example, Theorem 2.3.1 (p. 67) of Ross (1996)). Thus supi |θm,i −

θm,i−1| = O(logN/N), but notO(1/N), and similarly for the τ ’s (see
Devroye (1981, 1982), Aldous (1989), Shorack andWellner (1986),
for example). By the subsampling argument used in the proof of
Theorem 5 below, this extends to all sampling schemes covered by
Condition C4.

Fortunately, this problem does not affect us in view of the
upcoming Theorem 5. A restriction that ensures Condition C1 to be
satisfied (eventually as N → ∞) is sufficient. For this, we require
that the size of the regular grid satisfies

Mα = op(α/ logα). (30)

Theorem 5. Let X and Y be Itô processes satisfying (1)–(2), and
let µt and σt be locally bounded. Let [X, Y ]T be the previous-tick
covariance estimator. Let Vα = {0 = v0, v1, . . . , vMα } be a collection
of nonrandom time points which span across [0, T ]. Let ti and si
be the transaction times of X and Y , respectively, that immediately
precede vi. Assume Condition C3, C4 and (30). Then the conclusions
of Theorems 1, 2 and 4 remain valid (with Mα replacing MN ).

6. Application: trading times follow a Poisson process

We now consider an application where the transaction times
for assets X and Y follow two independent Poisson processes with
(constant) intensities λX

α and λY
α , respectively. The meaning of

Condition C4 is now simply that λX
α and λY

α have the same order
as index α → ∞.

6.1. Stochastic bias and variance in the case of Poisson arrivals

Corollary 4. In the setting of Theorem 5, suppose that the consec-
utive sampling points vi’s are evenly spaced. Also, suppose that the
transaction times for assets X and Y follow two independent Poisson
processes with intensities λX

α and λY
α (constant for each α), respec-

tively. Also suppose that λX
α/α → ℓX and λY

α/α → ℓY , as α → ∞.
Then

N
Mα

FN(t) → t


ℓY

ℓX
+

ℓX

ℓY


(31)

in probability.

Since the stochastic bias is given by SBias([X, Y ]T ) = −
 T
0

⟨X, Y ⟩
′
tdFN(t) + Op(N−1), we obtain that

N
Mα

SBias([X, Y ]T ) → −⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY


. (32)

It is obvious that the bias has opposite sign with the covariation
between X and Y , and its magnitude reaches its minimum when
ℓX

= ℓY (for given value of ℓ = ℓX
+ ℓY ).

We now move on to the asymptotics of stochastic variance
in the case of Poisson processes. In analogy with the result in
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Section 4.2, we obtain:

Corollary 5. In the setting of Corollary 4, then the asymptotic
stochastic variance of the previous-tick estimator becomes (leaving
out the term that is due to QN in Theorem 2)

T
Mα

∫ T

0
(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

udu

− 2
T
N


ℓY

ℓX
+

ℓX

ℓY

∫ T

0
(⟨X, Y ⟩

′

u)
2du. � (33)

The QN term is excluded for the reasons discussed in Sections 4.2
and 4.4.

6.2. Bias–variance tradeoff

Assuming that the observed (X, Y ) are true (efficient) logarith-
mic prices, we have demonstrated that the previous-tick estimator
has an asymptotically bounded bias. This bias is induced by asyn-
chronous trading of two assets. Naturally the variance estimator in
this case is unbiased as the price series is inherently synchronized
with itself.

In analogywith thedevelopment in Section4.3,we cannow find
an optimal sampling frequency. In this Poisson application, we can
obtain very straightforward expressions.

Recall from Corollary 5 that the variance of the previous-tick
estimator consists of two terms, the 1/Mα term and 1/N term.
Under Condition (30), the latter is of smaller order. So the main
terms in the mean squared error (MSE) are:

Mα

N
⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY

2

+
T
Mα

∫ T

0


(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

u


du. (34)

Setting ∂MSE/∂Mα = 0 givesMα = O(N2/3). In particular,

M∗

α =

T
 T
0 (⟨X, Y ⟩

′
u)

2
+ ⟨X, X⟩

′
u⟨Y , Y ⟩

′
udu

2(⟨X, Y ⟩T )2


ℓY

ℓX
+

ℓX

ℓY

2


1/3

N2/3.

With this choice in the sampling frequency, the MSE becomes

3(2−2/3)


⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY


T
∫ T

0


(⟨X, Y ⟩

′

u)
2

+ ⟨X, X⟩
′

u⟨Y , Y ⟩
′

u


du

2/3

N−2/3.

Note that our assumption is that Mα is nonrandom while N is
random. We are using N for simplicity of notation only, to stand
in for (λX

α + λY
α)T . We can do this since N/(λX

α + λY
α)T → 1 in

probability as α → ∞.

7. Effect of microstructure noise

Like many other applications, financial data usually are noisy.
In the finance literature, this noise is commonly referred to as
microstructure noise. One can also view microstructure noise as
observation or measurement error caused by ‘‘imperfect trading’’.

A simple yet natural way to view high frequency transaction
data is to use a hidden semimartingale argument. One model is
to write the logarithmic price process of the observables as the
sum of a latent process (say, efficient price), which follows a
semimartingale model, and a microstructure noise process. That
is,

Xo
τn,i

= Xτn,i + ϵX
τn,i

and Y o
θm,i

= Yθm,i + ϵY
θm,i

(35)

where Xo and Y o are the observed transaction prices in logarithmic
scale, X and Y are the latent efficient (log) prices which satisfy the
Itô-process models (1) and (2), respectively. Following the same
notations as in Section 2.1, we suppose Xo is observed at grid Tn,
Tn = {0 = τn,0 ≤ τn,1 ≤ · · · ≤ τn,n = T }, suppose Y o is sampled
at grid Sm, Sm = {0 = θm,0 ≤ θm,1 ≤ · · · ≤ θm,m = T }.

In the following, we present two approaches to handling
microstructure noise. One is the classical bias–variance tradeoff.
We then turn to two scales estimation in the next section.

It should be emphasized that the main recommendation is to
use two- or multiscale estimation. The purpose of carrying out the
tradeoff below is mainly to show that the effect of microstructure
can be integrated into the same scheme as the Epps effect, also for
the purpose of sampling frequency.

7.1. Tradeoff between discretization, asynchronization, and mi-
crostructure noise

To demonstrate the ideawithout delving into themathematical
details,we let thenoise be independent of the latent processes, that
is, ϵXyX , ϵYyY , also ϵX and ϵY are independent. A simple structure
for the ϵ’s is white noise. We note that this model structure can
be extended to incorporate the correlation structure between the
latent prices and the noises, as well as that of the noises from two
securities, but we shall not consider this here. (We shall use more
relaxed assumptions in Section 8 below).

As was argued in Section 2 of Zhang et al. (2005), to
rigorously implement a bias–variance tradeoff in the presence of
microstructure noise, one needs to work with a shrinking noise
asymptotics: E(ϵX )2 and E(ϵY )2 will be taken to be of order o(1)
as N → ∞. See also Zhang et al. (2011). A similar approach was
used in Delattre and Jacod (1997).

Similar to the definition and notations in (6), the previous-tick
estimator for covariation now becomes the cross product of Xo and
Y o:

[Xo, Y o
]T =

MN−
i=1

(Xo
ti − Xo

ti−1
)(Y o

si − Y o
si−1

), (36)

where the tis and the sis are the corresponding time ticks
immediately preceding the sampling point vi. (Because of the law
of large numbers, we shall in this section identifyMα and MN ).

Our question in this section is, given the observations Xo and
Y o at the nonsynchronized discrete grids and assuming the model
(35), how close is [Xo, Y o

]T to the latent quantity [X, Y ]T? How
well can [Xo, Y o

]T estimate the target ⟨X, Y ⟩T? We next study
[Xo, Y o

]T − [X, Y ]T , termed as the error due to noise.

7.1.1. Signal-noise decomposition
When the microstructure noise is present in the observed price

processes, we can decompose the covariation estimator into those
induced by the latent prices and those related to the noise. From
(36), we get
[Xo, Y o

]T = [X, Y ]T + [X, ϵY
]T [2] + [ϵX , ϵY

]T ,

where [X, Y ]T is the same as (6), [ϵX , ϵY
]T =

∑MN
i=1(ϵ

X
ti −ϵX

ti−1
)(ϵY

si −

ϵY
si−1

), and

[X, ϵY
]T [2] =

MN−
i=1

(Xti − Xti−1)(ϵ
Y
si − ϵY

si−1
)

+

MN−
i=1

(Ysi − Ysi−1)(ϵ
X
ti − ϵX

ti−1
).
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We shall see that the main-order term in the above decomposition
is from the noise covariation [ϵX , ϵY

] and from the signal-noise
interaction [X, ϵY

]T [2]. To see this, write

[X, ϵY
]T =

MN−
i=1

(Xti − Xti−1)ϵ
Y
si −

MN−
i=1

(Xti − Xti−1)ϵ
Y
si−1

.

Because of the white-noise property in ϵY , we obtain E[([X, ϵY
]T )

2

|X] = 2[X, X]TE(ϵY )2 + Op(E(ϵY )2M−1
N ) where the order op

(E(ϵY )2) is from the cross term. To find the exact formula for
the cross term, we refer to the method in Zhang et al. (2005). So
far we have [X, ϵY

]T = Op

[E(ϵY )2]1/2


, similarly, [Y , ϵX

]T =

Op

[E(ϵX )2]1/2


.

For the noise variation, notice that

[ϵX , ϵY
]T = 2

MN−
i=1

ϵX
ti ϵ

Y
si −

MN−
i=1

ϵX
ti ϵ

Y
si−1

[2] + ϵX
t0ϵ

Y
s0 − ϵX

tM ϵY
sM , (37)

where we recall that ϵX
ti ϵ

Y
si−1

[2] = ϵX
ti ϵ

Y
si−1

+ ϵX
ti−1

ϵY
si . Because ϵX

and ϵY are bothwhite noisewithmean zero, and uncorrelatedwith
each other, we have

var(ϵX
ti ϵ

Y
si ) = var(ϵX

ti ϵ
Y
si−1

) = var(ϵX
ti−1

ϵY
si ) = E(ϵX )2E(ϵY )2.

Hence, var([ϵX , ϵY
]T ) = 6MNE(ϵX )2E(ϵY )2. Therefore, the pure

noise variation [ϵX , ϵY
]T has order [MNE(ϵX )2E(ϵY )2]1/2. In

summary,

[Xo, Y o
]T = [X, Y ]T  

Op(1)

+ [X, ϵY
]T [2]  

Op([E(ϵX )2]1/2)+Op([E(ϵY )2]1/2)

+ [ϵX , ϵY
]T  

Op([MN E(ϵX )2E(ϵY )2]1/2)

.

7.1.2. The tradeoff
We study the tradeoff when the observation times of X and of Y

follow Poisson processes with intensities λX
α and λY

α , respectively.
As in Section 6.2, we shall for ease of exposition identify N and
(λX

α + λY
α)T (by the law of large numbers, these two quantities are

interchangeable in our formulas in this section).
We note that the previous-tick estimator is asymptotically

unbiased, with order MN/N . As far as its variance is concerned,
the part due to asynchronicity and discretization decreases
with sampling frequency (Theorem 2) whereas the part due
to microstructure noise increases (Section 7.1.1). It would be
desirable to balance the terms between the bias and the variance
terms, in the sense that minimizes the MSE. We do so in the
following. We let ν2

N represent the order of the variance of ϵX and
ϵY , so that O(E(ϵX )2) = O(E(ϵY )2) = O(ν2

N). For µX
= µY

=

0, [X, ϵY
]T [2] is the end point of a martingale and it has zero

covariation with the pure noise. Then, the leading terms in MSE
of [Xo, Y o

] is,
MN

N
⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY

2

+
T
MN

∫ T

0


(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

u


du

+ 2⟨X, X⟩TE(ϵY )2 + 2⟨Y , Y ⟩TE(ϵX )2 + 6MNE(ϵX )2E(ϵY )2.

In order to capture all three effects consisting of microstructure
noise, discretization variance and nonsynchronization bias, we
have elected to let the size of the microstructure go to zero as
N → ∞ in such a way that the variance due to noise will have
the same size as the discretization and nonsynchronization MSE.
To this effect, we can selectMN = O(N2/3), and ν2

N = O(N−2/3). To
be specific, suppose that r , rX and rY are nonnegative constants to
that

MN = rN2/3, E(ϵX )2 = rXN−2/3, and E(ϵY )2 = rYN−2/3.

Note that r , rX and rY regulate the triangular array type of
asymptotics described just before Section 7.1.1. Only r is assumed
to be controllable by the econometrician; rX and rY are given by
nature.

Setting ∂MSE/∂MN = 0, we get

2
N2

[
⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY

]2
MN

−
T
 T
0


(⟨X, Y ⟩

′
u)

2
+ ⟨X, X⟩

′
u⟨Y , Y ⟩

′
u


du

M2
N

+ 6E(ϵX )2E(ϵY )2

= 0,

yielding an optimal choice of r satisfying

rX rY =
1
6


r−2T

∫ T

0


(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

u


du

− 2r
[
⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY

]2
.

(This equation uniquely defines r). Hence, the optimal mean
squared error is

MSE = N−2/3


2r−1T

∫ T

0


(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

u


du

− r2
[
⟨X, Y ⟩T


ℓY

ℓX
+

ℓX

ℓY

]2
+ 2⟨X, X⟩T rY + 2⟨Y , Y ⟩T rX


.

8. Two scales estimation with previous-tick covariances

We here continue to look at the case (35) where there is
microstructure noise on top of X and Y . In this section, we do not
make the assumptions from Section 7.1 above. (In particular, there
is no need to take noise to be ‘‘shrinking’’).

8.1. Definition and analysis of two scales estimation

First, the average lag K previous-tick realized covariance is
defined by

[Xo, Y o
]
(K)
T =

1
K

MN−
i=K

(Xo
ti − Xo

ti−K
)(Y o

si − Y o
si−K

).

In analogy with development in Zhang et al. (2005), we can now
define a previous tick two scales realized covariance (TSCV) by

⟨X, Y ⟩T = cN


[Xo, Y o

]
(K)
T −

n̄K

n̄J
[Xo, Y o

]
(J)
T


where cN is a constant that can be tuned for small sample precision
and for our purposes must satisfy that cN = 1 + op


M−1/6

N


(see,

in particular, Section 4.2 of Zhang et al. (2005)), and n̄K = (MN −

K + 1)/K , and similarly for n̄J .
The two scales are chosen such that 1 ≤ J ≪ K . Specifically, for

the asymptotics, we require K = KN = O(N2/3). J can be fixed or
go to infinity with N . In the classical two scales setting, J = 1.

If we assume that the sequence (ϵX
ti , ϵ

Y
si ) is independent of the

latent X and Y processes, has bounded fourth moments, and is
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exponentially α-mixing, it follows from the proof of Lemma A.2 in
Zhang et al. (2005) that

⟨X, Y ⟩T =


[X, Y ]

(K)
T −

n̄K

n̄J
[X, Y ]

(J)
T



+
1
K


MN−
i=J

ϵX
ti ϵ

Y
si−J

[2] −

MN−
i=K

ϵX
ti ϵ

Y
si−K

[2]


+ op


M−1/6

N


(38)

where ‘‘ϵX
ti ϵ

Y
si−J

[2]’’ means ϵX
ti ϵ

Y
si−J

+ ϵY
si ϵ

X
ti−J

(see Notation 1 in
Section 3).

We now use the results in this paper to analyze the first term
in (38). If we assume Conditions C1 and C2, and if also J → ∞,
it follows that Condition C3 is satisfied for the subsamples, and so
from (8),

[X, Y ]
(K)
T −

n̄K

n̄J
[X, Y ]

(J)
T = [X, Y ]

(K)

T −
n̄K

n̄J

[X, Y ]
(J)

T + op

M−1/6

N


where [X, Y ]

(K)

T is the averaged subsampled version of the
(unobserved) synchronized estimator [X, Y ]T . This is because the
bias cancels to the relevant order! Specifically, the bias in [X, Y ]

(K)
T

is the expression in (7), multiplied by 1/K , and similarly for
[X, Y ]

(J)
T . Hence, in the end,

⟨X, Y ⟩T =


[X, Y ]

(K)

T −
n̄K

n̄J

[X, Y ]
(J)

T



+
1
K


MN−
i=J

ϵX
ti ϵ

Y
si−J

[2] −

MN−
i=K

ϵX
ti ϵ

Y
si−K

[2]


+ op


M−1/6

N


. (39)

It can be verified directly that this is also true when J is fixed as
n → ∞, using the more complicated Theorems 1 and 2.

Two things have been achieved in this development. On
the one hand, we have shown that in this case, previous-tick
estimation reduces, for purposes of analysis, to using synchronized
observations. The other is that we do not need to be overly
concerned with the precise dependence structure between ϵX

ti and
ϵY
si .
From (39), we can now obtain the asymptotic mixed normality

of M1/6
N ( ⟨X, Y ⟩T − ⟨X, Y ⟩T ) by just recycling the results in Zhang

et al. (2005). We again stress that Condition C3 is not required on
the original grid V , so that one can takeMN = O(N).

A concrete limit theorem would be as follows:

Theorem 6. Assume that (Xt) and (Yt) are Itô processes given
by (1)–(2), with σ X

t and σ Y
t continuous, and µX

t and µY
t locally

bounded. Observables Xo
τn,i

and Y o
θm,i

are given by (35), and the grid
V satisfies C1–C2, with MN/N → c1 > 0 as N → ∞. The scales
J = JN and K = KN satisfy that KN/N2/3

→ c2 and JN/N2/3
→ 0 as

N → ∞. Assume that J = limN→∞ JN is either infinity, or exists and
is finite. Also assume that the noise processes are independent of (Xt)
and (Yt), and that the process (ϵX

ti , ϵ
Y
si ) is stationary and exponentially

α-mixing, with EϵX
= EϵY

= 0. Also suppose that ϵX
ti and ϵY

si
have finite (4 + δ)th moment for some δ > 0. Finally, define hi
as in Eq. (43) in Zhang et al. (2005), with vi replacing ti, and set
Gn(t) =

∑
vi+1≤t hi1vi. Assume that Gn converges pointwise to G.

Then: N1/6( ⟨X, Y ⟩T − ⟨X, Y ⟩T ) converges stably in law to ωZ, where
Z is standard normal (independent of X and Y), and

ω2
=

1
2
c−1
1 c2T

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dG(t)

+ c−2
2 c1


γ0,J + γ0,∞ + 2

∞−
i=1

(γi,J + γi,∞)


,
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Fig. 1. Average estimator [Xo, Y o
]
(K)
T as a function of K .

where γi,j = Cov(ϵX
t0ϵ

Y
s−j

[2], ϵX
ti ϵ

Y
si−j

[2]) (the precise form is rather
tedious and is given in (52)) and γi,∞ = limj→∞ γi,j, given by

γi,∞ = 2Cov(ϵX
t0 , ϵ

X
ti )Cov(ϵ

Y
s0 , ϵ

Y
si )

+ 2Cov(ϵX
t0 , ϵ

Y
si )Cov(ϵ

Y
s0 , ϵ

X
ti ). (40)

Note that the functions Gn(t) and G(t) are exactly as in Zhang et al.
(2005), and as argued on p. 1411 in that paper, G(t) always exists
under Condition C2, if necessary by using subsequences. If the vis
are equidistant, we have G′(t) ≡ 4/3.

The assumption of stationarity of subsequences is one of
convenience, and is not required, at the cost of more complicated
expressions for the asymptotic variance. The deeper result is (39),
which is not dependent on stationarity.

8.2. An illustration of behavior in data

We here provide an instance of how the estimators behave
in data. The daily covariance of Microsoft (MSFT) and Google
(GOOG) were estimated based on the previous-tick method from
the transactions reported in the TAQ database. The grid points V
were based on the refresh time method (Barndorff-Nielsen et al.
(2008b); see Section 2.1 above for a description). Figs. 1 and 2 give
the average of the daily estimates from the trading days of October
2005. In Fig. 1, subsampling and averagingwas used; Fig. 2 is based
on the two scales estimator.

From Fig. 1, one can see that the Epps effect does kick in at
the highest frequencies (at very small K , the estimator sharply
drops from 4 × 10−5 to 1.1 × 10−5), while at more moderately
small K , there is an upward bias which is presumably due to
microstructure. The Epps effect is substantially removed in the
two scale covariance estimator. In Fig. 2, the TSCV is stable around
4 × 10−5 for large enough K . Regardless of the choice in K and J , it
looks like that TSCV fluctuates in amuch narrower range (between
4 × 10−5 to 5.4 × 10−5).

9. Conclusion: the Epps effect and its remedies

This paper is about how to estimate ⟨X, Y ⟩T when the
observation times of X and Y are not synchronized and when
the microstructure noise is present in the observed price
processes. Using the previous-tick estimator for ⟨X, Y ⟩T , we show
in Theorem 1 that for positively associated assets X and Y ,
nonsynchronization induces a negative bias in the estimator. The
magnitude of this bias increases in sampling frequency, up to a
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point; On the other hand, it decreases for more liquid assets. This
is an analytic characterization of the Epps effect (Epps (1979)).

To cope with this effect, the paper offers two approaches. On
the one hand, the effect can be controlled through a bias–variance
tradeoff. This tradeoff provides a optimal scheme for subsampling
observations. The scheme can incorporate microstructure noise.

A more satisfying approach is two or multiscale estimation.
Section 8 shows that this approach eliminates, at the same time, the
biases due to asynchronicity and microstructure noise. The rate of
convergence is the same as that achieved in the scalar process case,
where there is no asynchronicity.

The principles outlined can be applied similarly to multiscale
estimation (Zhang, 2006), thus achieving rate efficiency. A full
development of this approach is deferred to later work.

Appendix. Proofs

Proof of Theorem 1. Assume first that µX
= 0 and µY

= 0. We
know that the stochastic bias of [X, Y ]T is

MN−
i=1

∫ min(ti,si)

max(ti−1,si−1)

⟨X, Y ⟩
′

udu − ⟨X, Y ⟩T =

∫ T

0
⟨X, Y ⟩

′

ud[GN(u) − u],

where

GN(t) =

∫ t

0

MN−
i=1

I(max(ti−1, si−1) < v < min(ti, si))dv

=

−
i:min(ti,si)≤t

(min(ti, si) − max(ti−1, si−1)) + (t − t)

=

−
i:min(ti,si)≤t

(min(ti, si) − max(ti−1, si−1)) + Op


1
N


where t = max{l ∈ T ∪ S : l ≤ t}. Hence (11) follows since

GN(t) − t = −max(t1, s1) −

−
i:max(ti,si)≤t

(max(ti, si) − min(ti, si)),

= −

−
i:max(ti,si)≤t

(max(ti, si) − min(ti, si)) + Op


1
N


.

To see why N
MN

 T
0 ⟨X, Y ⟩

′
tdFN(t) is RCP, note that under C2, 0 ≤

vi − ti ≤ inf{τ > vi : τ ∈ Tn} − ti ≤
c1
N for some positive constant

c1. Similarly, vi − si ≤
c2
N for some positive constant c2.
Set 0 ≤ δt
i = N(vi − ti) ≤ c and set 0 ≤ δs

i = N(vi − si) ≤ c
for some c . Then,

N
MN

FN(t) =
1
MN

−
i:max(ti,si)≤t

[max(δt
i , δ

s
i ) − min(δt

i , δ
s
i )]

=
1
MN

−
i:vi≤t

[max(δt
i , δ

s
i ) − min(δt

i , δ
s
i )] + op(1) = Op(1).

Hence, N
MN

FN(t) is RCP by Helly’s Theorem (Ash, 1972, p 329).
The same result for the stochastic bias follows since ⟨X, Y ⟩

′
t is

continuous.
If we do not assume that µX

= 0 and µY
= 0, it is easy

to see that the contribution to the bias from such terms is
asymptotically negligible. To see this, we refer to Girsanov’s
Theorem and the device used at the beginning of the proof of
Theorem 2 in Zhang et al. (2005) (Section A.3, p. 1410). This works
unless the instantaneous correlation between X and Y is one. In
this latter case, one should use the methods of Mykland and Zhang
(2006). �

Lemma 1. Let X and Y be Itô processes satisfying (1)–(2). Let vi,
ti, and si be the i-th sampling point, and the previous ticks in
X and in Y , respectively, as defined in Section 2.1. Let RN =∑

i(R1,i, R2,i and R3,i), where

R1.i = (Xti − Xmin(ti,si))(Ysi − Ysi−1)

R2,i = (Xmax(ti−1,si−1) − Xti−1)(Ysi − Ysi−1)

R3,i = (Xmin(ti,si) − Xmax(ti−1,si−1))

× [(Ysi − Ymin(ti,si)) + (Ymax(ti−1,si−1) − Ysi−1)].

Then, under Conditions C1 and C2, U (nonsyn)
N,u is RCP in the sense

of Definition 3, and

RN = Op


1

√
N


, (41)

in particular, its quadratic variation

⟨RN , RN⟩ =
T
N

∫ T

0
⟨Y , Y ⟩

′

u⟨X, X⟩
′

udU
(nonsyn)
u + op


1
N


, (42)

through any subsequence for which U (nonsyn)
u (the limit of U (nonsyn)

N,u )
exists. �

Proof of Lemma 1. U (nonsyn)
N,u is RCP by the same methods as in the

proof of Theorem 1.
Note that the leading terms in R1,i–R3,i are martingale incre-

ments, with order root N . This is because−
i

R1,i,
−

i

R1,i


=

−
i

(Ysi − Ysi−1)
2
∫ ti

min(si,ti)
d⟨X, X⟩u

=

−
i

(⟨Y , Y ⟩si − ⟨Y , Y ⟩si−1)

∫ ti

min(si,ti)
d⟨X, X⟩u + op


1
N


=

−
i

⟨Y , Y ⟩
′

si⟨X, X⟩
′

si(si − si−1)(ti − min(si, ti)) + op


1
N


.

Similarly,−
i

R2,i,
−

i

R2,i


=

−
i

⟨Y , Y ⟩
′

si−1
⟨X, X⟩

′

si−1
(max(ti−1, si−1) − ti−1)

× (si − si−1) + op


1
N


.
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At last, for
∑

i R3,i:

⟨R3,i, R3,i⟩ =

−
i

∫ si

min(ti,si)
(Xmin(ti,si) − Xmax(ti−1,si−1))

2d⟨Y , Y ⟩u

+

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Ymax(ti−1,si−1) − Ysi−1)
2d⟨X, X⟩u

=

−
i

⟨X, X⟩
′

ti⟨Y , Y ⟩
′

ti(min(ti, si) − max(ti−1, si−1))

× [(si − min(si, ti)) + (max(ti−1, si−1) − si−1)]

+ op


1
N


.

The first transition in above is because−
i

∫ si

min(ti,si)
(Xmin(ti,si) − Xmax(ti−1,si−1))dYu,

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Ymax(ti−1,si−1) − Ysi−1)dXu


= 0.

Now, left to compute that covariations between the different
terms. As it turns out, the covariations are either zero or of order
op
 1
N


. In particular, it follows directly from the definitions of R1,i,

R2,i and R3,i that on the one hand−
i

R1,i,
−

i

R2,i


= 0 and

−
i

R1,i,
−

i

R3,i


= 0,

while on the other hand,−
i

R2,i,
−

i

R3,i


=

−
i

∫ si

min(ti,si)
(Xmax(ti−1,si−1) − Xti−1)

× (Xmin(ti,si) − Xmax(ti−1,si−1))d⟨Y , Y ⟩u

=

−
i

⟨Y , Y ⟩
′

ti(si − min(ti, si))
∫ min(ti,si)

max(ti−1,si−1)

(Xmax(ti−1,si−1)

− Xti−1)dXu + op


1
N


,

whose main order has a quadratic variation−
i

(⟨Y , Y ⟩
′

ti)
2(si − min(ti, si))2

∫ min(ti,si)

max(ti−1,si−1)

(Xmax(ti−1,si−1)

− Xti−1)
2d⟨X, X⟩u

=

−
i

(si − min(ti, si))2(⟨Y , Y ⟩
′

ti)
2(⟨X, X⟩

′

ti)
2(min(ti, si)

− max(ti−1, si−1))(max(ti−1, si−1) − ti−1) + op


1
N


= op


1
N


the order in the final step is because: under Conditions C1 and
C2, 0 ≤ vi − si ≤ inf{τ > vi : τ ∈ Tn} − si ≤ c1/N for
some c1, and vi − ti ≤ c2/N for some c2. Hence, |si −

min(ti, si)| = O(1/N), |max(ti−1, si−1) − ti−1| = O(1/N), and
|min(ti, si) − max(ti−1, si−1)| ≤ |min(ti, si) − vi| + |vi − vi−1| +

|vi−1 − max(ti−1, si−1)| = O(1/M). Therefore,
∑

i R2,i,
∑

i R3,i

=

Op(N−3/2) = op(N−1).
Put together the above results, we have−
i

(R1,i + R2,i + R3,i),
−

i

(R1,i + R2,i + R3,i)



=

−
i

(⟨R1,i, R1,i⟩ + ⟨R2,i, R2,i⟩ + ⟨R3,i, R3,i⟩) + op


1
N


=

−
i

⟨X, X⟩
′

ti⟨Y , Y ⟩
′

ti


(si − si−1)(ti − ti−1)

− (max(ti−1, si−1) − min(ti, si))2

+ op


1
N


,

taking the limit (for convergent subsequences), Lemma 1 follows
from the theory in Chapter VI in Jacod and Shiryaev (2003). �

Proof of Theorem 2. Note that

[X, Y ]T =

−
i

(Xmin(ti,si) − Xmax(ti−1,si−1))

× (Ymin(ti,si) − Ymax(ti−1,si−1)) +

−
i

(R1,i + R2,i + R3,i).

Invoking Itô’s formula on the first term, we obtain,−
i

(Xmin(ti,si) − Xmax(ti−1,si−1))(Ymin(ti,si) − Ymax(ti−1,si−1))

=

−
i

(⟨X, Y ⟩min(ti,si) − ⟨X, Y ⟩max(ti−1,si−1))

+

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2]

=

−
i

∫ min(ti,si)

max(ti−1,si−1)

⟨X, Y ⟩
′

udu

+

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2].

The asymptotic variance of [X, Y ]T has two components, one –∑
i(R1,i + R2,i + R3,i) – comes from the nonsynchronization, while

the other –
∑

i

 min(ti,si)
max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2] – is because
of the discrete trading (or recording) time. The former is analyzed
in Lemma 1. Now we are left to show the result in the latter term
and the interaction between the two terms.

We start with the quadratic variation of
∑

i

 min(ti,si)
max(ti−1,si−1)

(Xu −

Xmax(ti−1,si−1))dYu[2].−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2],

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2]



=

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))
2d⟨Y , Y ⟩u

+

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Yu − Ymax(ti−1,si−1))
2d⟨X, X⟩u

+ 2
−

i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))

× (Yu − Ymax(ti−1,si−1))d⟨X, Y ⟩u

=

−
i

⟨X, X⟩
′

ti⟨Y , Y ⟩
′

ti(min(ti, si) − max(ti−1, si−1))
2

+

−
i

(⟨X, Y ⟩
′

ti)
2(min(ti, si) − max(ti−1, si−1))

2

+QN,T [2] + op


1

M3/2
N


,
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where

QN,T [2] = 2
−

i

⟨X, X⟩
′

ti

∫ min(ti,si)

max(ti−1,si−1)

(min(ti, si) − u)

× (Yu − Ymax(ti−1,si−1))dYu[2]

+ 2
−

i

⟨X, Y ⟩
′

ti

∫ min(ti,si)

max(ti−1,si−1)

(min(ti, si) − u)

× (Xu − Xmax(ti−1,si−1))dYu[2].

By the results and the methods in Lemma 2 (with αi = max
(ti−1, si−1) and βi = min(ti, si)), we obtain that the quadratic
variation of QN [2] is as follows:

⟨QN [2],QN [2]⟩ =
2
3

MN−
i=1

(min(ti, si) − max(ti−1, si−1))
4

×

(⟨X, X⟩

′

ti−1
)2(⟨Y , Y ⟩

′

ti−1
)2 + 6(⟨X, X⟩

′

ti−1
)(⟨Y , Y ⟩

′

ti−1
)

× (⟨X, Y ⟩
′

ti−1
)2 + (⟨X, Y ⟩

′

ti−1
)4


× (1 + op(1)).

Under Condition C2, we know that QN,T [2] = Op


1

M3/2
N


.

By continuity, and using (13)−
i

⟨X, X⟩
′

ti⟨Y , Y ⟩
′

ti(min(ti, si) − max(ti−1, si−1))
2

+

−
i

(⟨X, Y ⟩
′

ti)
2(min(ti, si) − max(ti−1, si−1))

2

∼
T
M

∫ T

0


⟨X, X⟩

′

u⟨Y , Y ⟩
′

u + (⟨X, Y ⟩
′

u)
2 dU (dis)

N,u .

For a rigorous proof of similar statements under lesser regularity
conditions, see Propositions 1 and 3 in Mykland and Zhang (2006).

To see Eq. (13), let δs
i and δt

i be as defined in the proof of
Theorem 1, and set 1v = T/MN . We then get that

min(ti, si) − max(ti−1, si−1) = 1v − N−1(max(δt
i , δ

s
i )

− min(δt
i−1, δ

s
i−1)).

Hence,

U (dis)
N,u =

MN

T

−
i:ti,si≤u


(1v)2 − 2

1v

N
(max(δt

i , δ
s
i )

− min(δt
i−1, δ

s
i−1)) + O(N−2)


= u − 2FN(u) + O(M−1

N ) + O((MN/N)2),

proving (13).
Next we study the interaction term. Since

∑
i

 min(ti,si)
max(ti−1,si−1)

(Xu−

Xmax(ti−1,si−1))dYu[2] is symmetric, we only need to show the
interaction between

∑
i

 min(ti,si)
max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu and∑
i(R1,i + R2,i + R3,i). First, it is obvious that−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu,
−

i

R1,i


= 0.

For the rest, we have−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu,
−

i

R2,i



=

−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))
× (Xmax(ti−1,si−1) − Xti−1)d⟨Y , Y ⟩u

=

−
i

(Xmax(ti−1,si−1) − Xti−1)

∫ min(ti,si)

max(ti−1,si−1)

⟨Y , Y ⟩
′

ti−1

× (min(ti, si) − u)dXu × (1 + op(1)),

which has a quadratic variation−
i

(Xmax(ti−1,si−1) − Xti−1)
2(⟨Y , Y ⟩

′

ti−1
)2

×

∫ min(ti,si)

max(ti−1,si−1)

(min(ti, si) − u)2d⟨X, X⟩u × (1 + op(1))

≤
1
3
sup
t

(⟨Y , Y ⟩
′

t)
2 sup

t
(⟨X, X⟩

′

t)
2
−

i

(max(ti−1, si−1) − ti−1)

× (min(ti, si) − max(ti−1, si−1))
3
× (1 + op(1))

= Op


1

NM2


.

Hence−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu,
−

i

R2,i



= Op


1

√
NM


.

By same method,−
i

∫ min(ti,si)

max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu,
−

i

R3,i



= Op


1

√
NM


.

In sum, the interaction term is negligible. Theorem 2 is proved. �

For next Lemma, we use the notation

XdY [2] =


XdY +

YdX .

Lemma 2. Let X and Y be Itô processes satisfying (1)–(2). Let N and
MN be as defined in Section 2.1. Denote

QN = 2
MN−
i=1

⟨Y , Y ⟩
′

αi

∫ βi

αi

(βi − u)(Xu − Xαi)dXu,

and

RN =

MN−
i=1

⟨X, Y ⟩
′

αi

∫ βi

αi

(βi − u)(Xu − Xαi)dYu[2].

Assuming Condition C1, then
MN−
i=1

∫ βi

αi

(Xu − Xαi)
2d⟨Y , Y ⟩u

=
1
2

MN−
i=1

⟨X, X⟩
′

αi
⟨Y , Y ⟩

′

αi
(βi − αi)

2
+ QN + op


1

M3/2
N


,

where QN has quadratic variation

1
3

MN−
i=1

(⟨X, X⟩
′

αi
)2(⟨Y , Y ⟩

′

αi
)2(βi − αi)

4
× (1 + op(1)).

Similarly,
MN−
i=1

∫ βi

αi

(Xu − Xαi)(Yu − Yαi)d⟨X, Y ⟩u
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=
1
2

MN−
i=1

(⟨X, Y ⟩
′

αi
)2(βi − αi)

2
+ RN + op


1

M3/2
N


,

where RN has quadratic variation

1
6

MN−
i=1

(⟨X, Y ⟩
′

αi
)2(⟨X, X⟩

′

αi
)(⟨Y , Y ⟩

′

αi
)(βi − αi)

4
× (1 + op(1)). �

Proof of Lemma 2. We first show that∫ βi

αi

∫ u

αi

(Xv − Xαi)dXvdu,
∫ βi

αi

∫ u

αi

(Xv − Xαi)dXvdu


=
1
12

(⟨X, X⟩
′

αi
)2(βi − αi)

4
× (1 + op(1)). (43)

Use integration by parts on the outer integration, we get∫ βi

αi

∫ u

αi

(Xv − Xαi)dXvdu = (βi − αi)

∫ βi

αi

(Xu − Xαi)dXu

−

∫ βi

αi

(u − αi)(Xu − Xαi)dXu

=

∫ βi

αi

(βi − u)(Xu − Xαi)dXu,

which has quadratic variation∫ βi

αi

(βi − u)2(Xu − Xαi)
2d⟨X, X⟩u

=

∫ βi

αi

(βi − u)2(⟨X, X⟩u − ⟨X, X⟩αi)d⟨X, X⟩u × (1 + op(1))

= (⟨X, X⟩
′

αi
)2
∫ βi

αi

(βi − u)2(u − αi)du × (1 + op(1))

=
1
12

(⟨X, X⟩
′

αi
)2(βi − αi)

4
× (1 + op(1)).

Next, invoke Itô’s formula,

MN−
i=1

∫ βi

αi

(Xu − Xαi)
2d⟨Y , Y ⟩u

=

MN−
i=1

⟨Y , Y ⟩
′

αi

∫ βi

αi

(Xu − Xαi)
2du + op(M

−3/2
N )

=

MN−
i=1

⟨Y , Y ⟩
′

αi

∫ βi

αi

(⟨X, X⟩u − ⟨X, X⟩αi)du

+ 2
MN−
i=1

⟨Y , Y ⟩
′

αi

∫ βi

αi

∫ u

αi

(Xv − Xαi)dXvdu + op(M
−3/2
N )

=
1
2

MN−
i=1

⟨X, X⟩
′

αi
⟨Y , Y ⟩

′

αi
(βi − αi)

2
+ QN + op(M

−3/2
N ) by (43).

Similarly,

MN−
i=1

∫ βi

αi

(Xu − Xαi)(Yu − Yαi)d⟨X, Y ⟩u

=

MN−
i=1

⟨X, Y ⟩
′

αi

∫ βi

αi

(Xu − Xαi)(Yu − Yαi)du + op(M
−3/2
N )

=

MN−
i=1

⟨X, Y ⟩
′

αi

∫ βi

αi

(⟨X, Y ⟩u − ⟨X, Y ⟩αi)du
+

MN−
i=1

⟨X, Y ⟩
′

αi

∫ βi

αi

∫ u

αi

(Xv − Xαi)dYv[2]

du + op(M

−3/2
N )

=
1
2

MN−
i=1

(⟨X, Y ⟩
′

αi
)2(βi − αi)

2
+ RN + op(M

−3/2
N ). �

Proof of Theorem 4. Since in this case, U (nonsyn)
N,t → 0, it follows

from the proof of Theorem 2 that we can take LN in Theorem 3
to be

∑
i

 min(ti,si)
max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2]. Now set L̃N =∑
i

 max(ti,si)
max(ti−1,si−1)

(Xu − Xmax(ti−1,si−1))dYu[2]. To assess L̃N − LN =∑
i

 max(ti,si)
min(ti,si)

(Xu − Xmax(ti−1,si−1))dYu[2], note that−
i

∫ max(ti,si)

min(ti,si)
(Xu − Xmax(ti−1,si−1))dYu,

−
i

∫ max(ti,si)

min(ti,si)
(Xu − Xmax(ti−1,si−1))dYu



=

−
i

∫ max(ti,si)

min(ti,si)
(Xu − Xmax(ti−1,si−1))

2d⟨Y , Y ⟩u

=

−
i

⟨X, X⟩
′

max(ti−1,si−1)
⟨Y , Y ⟩

′

min(ti,si)

×

∫ max(ti,si)

min(ti,si)
(u − max(ti−1, si−1))du(1 + op(1))

≤
1
N

∫ T

0
⟨X, X⟩

′

t⟨Y , Y ⟩
′

tdt

= Op(1/N),

and similarly for the second term. This shows the result for wi =

max(ti, si). The result for vi follows similarly. �

Proof of Corollary 2. To show Eq. (21), define δt
i and δs

i as in the
proof of Theorem 1. We then obtain that (with 1v = T/MN )

N
T

−
i:si,ti≤u

(si − si−1)(ti − ti−1)

=
N
T

−
i:si,ti≤u

((1v)2 − N−11v(δs
i − δs

i−1) − N−11v(δt
i − δt

i−1)

+N−2(δs
i − δs

i−1)(δ
t
i − δt

i−1))

=
N
T

−
i:si,ti≤u

(1v)2 + o(1) (44)

(by telescope sum) and

N
T

−
i:si,ti≤u

(max(ti−1, si−1) − min(ti, si))2

=
N
T

−
i:si,ti≤u

((1v)2 − 2N−11v(max(δs
i , δ

t
i )

− min(δs
i−1, δ

t
i−1))) + o(1)

=
N
T

−
i:si,ti≤u

(1v)2 − 2
N
MN

FN(u) + o(1). (45)

Since U (nonsyn)
N,u is defined as the difference between the two above

terms, the result (21) follows. �

Proof of Theorem 5. The proof is similar to that of the earlier
results; the main difference lies in verifying that the relevant
sequences are RCP in the sense of Definition 3. We here provide
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the argument in the case of the bias; entirely similar considerations
apply to the variance.

Consider first the term
α

Mα

−
i

(vi − max(si, ti))

≤
α

Mα

−
i

(vi − si) +
α

Mα

−
i

(vi − ti). (46)

Suppose one considers the following subsampling scheme: every
time τi occurs, it is sampled with probability cα/λX

α(τi). By
standard considerations, the subsampled times τ ′

i are derived from
a Poisson process with intensity cα. Suppose that the number of
such τ ′

i is n
′. If t ′i = max{τ ′

j ≤ vi} one obtains that

α

Mα

−
i

(vi − ti) ≤
α

Mα

−
i

(vi − t ′i). (47)

Note that by the Poisson property of the τ ′

i , the expectation of the
right hand side of (47) is bounded by 1/c , hence (47) is Op(1). By
using the same argument on the sis, one thus obtains that (46)
is Op(1). Finally, if N ′

= m′
+ n′, by the law of large numbers,

N ′/α → 2cT asα → ∞. Hence N
MN

FN(T ) isOp(1). Again, by Helly’s
Theorem (Ash (1972, p. 329)), N

MN
FN(t) is RCP. The rest of the proof

follows similarly. �

Proof of Corollary 4. Let vi, si, and ti be the same as in Section 2.1.
Since X and Y are Poisson with intensities λX

α and λY
α , respectively,

we get vi − ti ∼ exp(λX
α),2 and vi − si ∼ exp(λY

α), thus

vi − max(ti, si) = min ((vi − ti), (vi − si)) ∼ exp(λX
α + λY

α).

Also, since

vi − min(ti, si) = max (vi − ti, vi − si)
= (vi − ti) + (vi − si) − min (vi − ti, vi − si)

∼ exp(λX
α) + exp(λY

α) − exp(λX
α + λY

α) (48)

then,

FN(vk) = −

k−
i=1

[−(vi − min(ti, si)) + (vi − max(ti, si))]

+Op


1
N


. (49)

Under our assumptions,

E[FN(vk)] = −k


−
1
λX

α

−
1
λY

α

+
2

λX
α + λY

α


+ O


1
α


.

Also note that N/(λX
αT + λY

αT ) → 1 in probability. By appropriate
normalization, it follows that (31) holds in expectation. By
observing that (49) is an independent sum, it also follows that (31)
holds in probability. Thus, (32) yields accordingly. �

Proof of Corollary 5. This is a direct consequence of Theorem 2
and Corollaries 2 and 4. We here provide an independent proof as
an addition. Again use the relation (48), we obtain

E[vi − min(ti, si)|vi] =
1
λX

α

+
1
λY

α

−
1

λX
α + λY

α

, (50)

2 X ∼ exp(λ) means X follow exponential distribution with intensity λ.
and

E

((min(ti, si) − vi)

2
|vi)


=
2

(λX
α)2

+
2

(λY
α)2

+
2

(λX
α + λY

α)2
+

2
λX

αλY
α

− 2E[(vi − ti)min(vi − ti, vi − si)|vi][2]

=
2

(λX
α)2

+
2

(λY
α)2

+
2

(λX
α + λY

α)2
−

2
λX

αλY
α

+
2

(λX
α + λY

α)2


λX

α

λY
α

+
λY

α

λX
α


(51)

where E[(vi − ti)min(vi − ti, vi − si)|vi][2] = E[((vi − ti) + (vi −

si))min(vi−ti, vi−si)|vi]. The first step is due to the independence
between X and Y , and the second step is because

E[(vi − si)min(vi − ti, vi − si)|vi] = −
λY

α

λX
α

1
(λX

α + λY
α)2

+
1

λX
αλY

α

.

Thus, by independent increment and by (50)–(51), we get

E[(min(ti, si) − max(ti−1, si−1))
2
|vi]

= E

(min(ti, si) − vi) + (vi − vi−1)

+ (vi−1 − max(ti−1, si−1))
2
|vi


=


T
Mα

2 
1 + 2

Mα

T


2

λX
α + λY

α

−
1
λX

α

−
1
λY

α


+ O


1
α2


.

Therefore,

EU (dis)
N,vk

= k
T
Mα

[
1 + 2

Mα

T


2

λX
α + λY

α

−
1
λX

α

−
1
λY

α


+ O


1
α2

]
.

Similarly, E[(si−si−1)] = E[(si−vi)+(vi−vi−1)+(vi−1−si−1)|vi] =
T
Mα

= E[(ti − ti−1)|vi], thus,

E

U (nonsyn)
N,vk


= 2(λX

α + λY
α)k

×

[
T
Mα


−

2
λX

α + λY
α

+
1
λX

α

+
1
λY

α


+ O


1
α2

]
.

By the same argument as in the proof of Corollary 4 and the
results in Theorem 2, the asymptotic stochastic variance due to
discretization is

T
Mα

∫ T

0
(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

udu

− 2
T
N


ℓY

ℓX
+

ℓX

ℓY

∫ T

0
(⟨X, Y ⟩

′

u)
2
+ ⟨X, X⟩

′

u⟨Y , Y ⟩
′

udu,

whereas the asymptotic stochastic variance due to nonsynchro-
nization is

2
T
N

∫ T

0
⟨X, X⟩

′

u⟨Y , Y ⟩
′

udu


ℓY

ℓX
+

ℓX

ℓY


.

Adding up, (33) follows by the law of large numbers. �

Proof of Theorem 6. Consider separately the signal and noise
terms in (39). This is legitimate since the two terms are indepen-
dent. It is easy to see that the term involving the semimartingales X
and Y is handled exactly in analogy with the similar development
(Theorem 3) in Zhang et al. (2005), integrating the methodology
from Theorem 2 in the current paper. The constant appears as fol-
lows: the constant c from the earlier paper is here c ∼ KN/M2/3

N ∼

c2c
−2/3
1 .
For the noise term, replace normalization by N1/6/KN byM−1/2

N

(thus creating a constant of c1/21 c−1
2 , which is squared in the vari-

ance). We now have to deal with two suitably normalized mixing
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sums. The asymptotic normality follows as in Chapter 5 of Hall and
Heyde (1980). It is easy to verify that the two sums are asymp-
totically uncorrelated. If one sets γi,j = Cov(ϵX

t0ϵ
Y
s−j

[2], ϵX
ti ϵ

Y
si−j

[2]),
the asymptotic variance of the ‘‘J ’’ term thus gets the form γ0,J +

2
∑

∞

i=1 γi,J , and similarly for the ‘‘K ’’ term (let J → ∞ if it isn’t
already there). To see the expression for γi,j, note that

γi,j = Cov

ϵX
t0ϵ

Y
s−j

+ ϵY
s0ϵ

X
t−j

, ϵX
ti ϵ

Y
si−j

+ ϵY
si ϵ

X
ti−j


= 2Cov


ϵX
t0 , ϵ

X
ti


Cov


ϵY
s0 , ϵ

Y
si


+ 2Cov


ϵX
t0 , ϵ

Y
si


Cov


ϵY
s0 , ϵ

X
ti


+ Cov


ϵX
t0 , ϵ

Y
si−j


Cov


ϵY
s−j

, ϵX
ti


+ Cov


ϵY
s0 , ϵ

X
ti−j


Cov


ϵX
t−j

, ϵY
si


+ Cov


ϵX
t0 , ϵ

X
ti−j


Cov


ϵY
s−j

, ϵY
si


+ Cov


ϵY
s0 , ϵ

Y
si−j


Cov


ϵX
ti , ϵ

X
t−j


+ cum


ϵX
t0 , ϵ

X
ti , ϵ

Y
s−j

, ϵY
si−j


+ cum


ϵY
s0 , ϵ

Y
si , ϵ

X
t−j

, ϵX
ti−j


+ cum


ϵX
t0 , ϵ

X
ti−j

, ϵY
s−j

, ϵY
si


+ cum


ϵX
ti , ϵ

X
t−j

, ϵY
s0 , ϵ

Y
si−j


.

(52)

Obviously, as j → ∞, γi,j tends to the expression in (40). �
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