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Abstract

We develop regression for high frequency data. This regression is novel in that it can be for both

fixed and increasing dimension. Also, the data may have microstructure noise, and observations

(trades, or quotes) can be asynchronous, (i.e., the observations do not need to be synchronized

across dimensions). As is customary for high-frequency inference methods, we refer to our method

as “realized” regression.

In our methodology, spot beta becomes a key quantity in the nonparametric framework of high

frequency econometrics. The central contribution of this paper is a feasible estimator of spot beta,

which is robust to noise and asynchronicity. With the help of the spot-version of the Smoothed

TSRV estimator, spot beta can be consistently estimated. There are two direct applications of

the spot beta estimates in the current paper. In the first application, the integrated beta can be

consistently estimated by aggregating the spot beta estimates. After a bias-correction procedure, a

fixed dimension central limit theorem is established for the bias-corrected estimator, with convergence

rate which may be arbitrarily close to Op(n
−1/4). In the second application we assume time-varying

factor structure and conditional sparsity. The spot beta matrix estimator enables the estimation of

high dimensional spot covariance and precision matrices. The latter is obtained by thresholding the

spot residual covariance estimates, and convergence rates derived. As an empirical application, this

paper explores the hourly change in beta around earnings announcements of the S&P 100 constituents.
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1. Introduction

Regression is a main technique in scientific research, which is widely used in exploring the linear rela-

tionship between observable quantities, and in analyzing the structure of variability.

The connection between regression and finance originated from the capital asset pricing model

(CAPM, Markowitz (1952, 1959), Sharpe (1964), Lintner (1965), Black (1972)). Over time, the con-

nection has expanded to multiple factors, such as in Fama and MacBeth (1973), and Ross (1976). The

literature has gradually split into regression (observed factors) and principal component analysis (PCA,

unobserved factors). We are here concerned with the former. For literature reviews, see, e.g., Campbell

et al. (1997) and Cochrane (2005). Recent developments in high frequency PCA are reviewed in Chen

et al. (2020).

The importance of time-varying betas (regression coefficients) has received increasing attention in the

finance and econometrics literature. Such betas reflect time-varying conditional information. Research

in this direction includes Hansen and Richard (1987), Bollerslev et al. (1988), Jagannathan and Wang

(1996), Boguth et al. (2011), Ang and Kristensen (2012), Engle (2016), and Gagliardini et al. (2016).

WIth the advent of high-frequency data, a literature has started to develop where time-varying betas

are estimated from intraday data. Important empirical contributions are Andersen et al. (2006), who

investigated the persistence and predictability of time-varying beta estimates, and Patton and Verardo

(2012), who explored the effect of information flows on stock returns.

The purpose of this paper is to develop the theory for how to estimate betas in fixed and increasing

dimension, for high frequency data. If we let cX,Xt and cX,Yt be the (unobserved) spot (instantaneous)

covariance matrices of (latent) efficient prices (or other semi-martingales) X and Y, the spot and

integrated beta are given by1

βt =
(
cX,Xt

)−1
cX,Yt and

∫ T
0
βtdt, (1.1)

where [0, T ] is the fixed interval under observation. By considering data with microstructure noise, as

well as letting observations (such as transactions and quotes) happen asyncronously across dimensions,

we bring the theory to the point where it can accommodate real data.

1Cf. the development leading to eq. (3.4), below, as well as Bt in 4.10. Here, Y is a scalar process, and X is a
q-dimensional process, where q can be fixed, or tend in infinity with increasing data density.
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In finite dimension (Section 3), our theory focuses on the integrated beta. The integrated beta∫ T
0 βtdt is consistently estimated by aggregating estimates of spot beta. The aggregation is similar to

the constructions in the papers cited at the beginning of Section 1.1 We show asymptotic normality in

finite dimension (Theorem 2), preceded by a bias correction which is needed for this normality to hold.

In increasing dimension (Section 4), our theory estimates the spot (instantaneous) βt,
2 and from

there estimates the spot precision matrix, which has a role in determining asset allocation, cf. Fan et al.

(2016a). We derive the rate of convergence as the dimensions of X and Y tend to infinity.

Both these developments take as their points of departure spot covariance matrices that are calculated

by the S-TSRV procedure (pre-averaging followed by two-scales, Section 2 in this paper, and Mykland

et al. (2019)). The basic pre-averaging is done over time blocks of length ∆τn, and spot covariance

matrices are calculated over time blocks of length ∆Tn. To get a sense of the magnitudes we have in

mind, in the simulation we have used ∆Tn = 2340 seconds, and ∆τn is 5, 15 or 60 seconds. In the

empirical application, ∆τn = 5 seconds, and ∆Tn is (in most cases) hourly.

On the theoretical side, the rate of convergence in the CLT (Theorem 2) is a−1
n , which is allowed to

be arbitrarily close to n−1/4. The latter is previously known as the standard efficient rate for covariances

in estimation problems with microstructure.3 A precise explanation of the rate an is given in eq. (2.10)

and Remark 1 in Section 2.2. As described there, an is closely related to ∆τn.

In the increasing dimension setting, the rates of convergence also depend crucially on an, but we

defer discussion of this to Section 4.

1.1. Sketch of finite dimensional regression

Closely related literature. The theory of estimation the two betas in (1.1) has previously been studied in

the case of no microstructure noise and synchronous observations, in Mykland and Zhang (2006, 2008),

and Zhang (2012), with a jump-robust version in Aı̈t-Sahalia et al. (2020) and Aı̈t-Sahalia et al. (2021).

2There called Bt to emphasize that it is a matrix.
3 Going back to Jacod and Protter (1998), Engle (2000), Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002),

Zhang et al. (2005), Jacod et al. (2009) and others. Recent contributions include Bibinger and Mykland (2016), Bibinger
et al. (2017), and Mykland et al. (2019). An interesting variant over the this estimation problem involves using factor
structure to estimate higher dimensional covariance (co-volatility), and relevant literature is discussed in connection with
increasing dimension in Section 1.2.
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In this setting, the estimator of integrated beta is simply a sum of ordinary least squares regression esti-

mators (Mykland and Zhang, 2009, Section 4.2, pp.1424-1426). More generally, all proposed estimators

of (1.1) are local in time, so that covariance at time t is only compared with variance around t. This is

also the case for the estimators developed in the current paper.

In the presence of asynchronous and noisy observations, the development of a feasible spot beta

estimator has become increasingly necessary. As shown by Monte Carlo simulation (Table 5.1 in Section

5.2), integrated beta estimates become biased when the data is noisy. By applying the spot-version of

the smoothed TSRV (S-TSRV), this paper proposes feasible estimators for spot beta under both fixed

and increasing dimension.

Bias in the integrated beta. Expanding the Riemann sum of spot beta estimates to higher order,

a bias term naturally arises, which is analogous to the aggregated second order expansion term of the

non-linear functional of stochastic volatilities in Jacod and Rosenbaum (2013) and Aı̈t-Sahalia and Xiu

(2017). This bias term becomes the main barrier to the central limit theorem. By properly selecting

the range of the smoothing window ∆Tn over which the spot β is calculated, and then applying the

extended bias-correction technique based on Chen et al. (2020), the central limit theorem (CLT) for the

bias-corrected estimator (Theorem 2) follows.

An earlier approach to the assessment of integrated beta is to estimate

T
(∫ T

0
cX,Xt dt

)−1 ∫ T
0
cX,Yt dt. (1.2)

The theory for the estimation (1.2) would seem to go back to Barndorff-Nielsen and Shephard (2004),

and natural estimators were considered empirically by Andersen et al. (2006) and Patton and Verardo

(2012). The advantage of this formulation is that it permits results for covariance (co-volatility) matrices

to be directly extended to the estimation of integrated β. This reduces the problem to one that has

been given substantial consideration in the literature, and for which there are now already results that

cover noise and asynchronicity. (See Footnote 3.)

A main disadvantage of estimating (1.2) is that natural estimators are not local in time: if the time

interval is a day, then, for example, covariance at 10:45 am is compared with variance at 3:20 pm.

Notwithstanding the distinction between (1.1) and (1.2), the two quantities are similar if the time
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span T is comparatively short. They are also the same if βt is constant in t. Constancy tests for betas

have been proposed by Todorov and Bollerslev (2010), Kalnina (2012), Reiß et al. (2015) and Kong and

Liu (2018).

We also point out that the estimators in the current paper are based on the assumption that the

latent semi-martingales are continuous. This is substantially more complex for the case where there

is microstructure noise and asynchronous observation, and we hope to approach this topic in a later

paper.

1.2. Sketch of high (increasing) dimensional regression

When estimating a high dimensional spot (cross-sectional) covariance matrix, the rank of the estimated

matrix is bounded by 2∆Tn/∆τn + b,4 by construction. This is a severe constraint, even more so than

when estimating an integrated matrix. It is thus possible that the rank of the true spot covariance

matrix may grow much faster than the given bound.

To resolve such a contradiction, the main approach in the literature is to rely on sparsity. Our high

dimensional realized regression makes use of a time-varying (observed) factor model, where we treshold

the residual based on sparsity. This goes back to Bickel and Levina (2008). Our development of a

the large spot precision matrix estimator may be regarded as the “realized” and spot (high-frequency)

version of Fan et al. (2011).

An estimation theory for high dimensional high frequency integrated covariance matrices has been

derived with blockwise-diagonal residual covariance structure in Fan et al. (2016a), which was further

improved by considering the asynchronous and noisy observations in Dai et al. (2019). In both these

papers, the factor loadings are assumed to be time-invariant, which is unlike in the current paper.

1.3. Empirical application

As an application in Section 6, we use high-frequency beta estimation to study the variation of stock

betas on earnings announcement days. It is well known in the literature that stock betas tend to be

higher around the event days. For example, Ball and Kothari (1991) documented an increase in daily

4Here ∆Tn and ∆τn are as described above, and b is a very slowly growing number, cf. eq. 2.7 and Remark 1 in Section
2.2.
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average beta during the three-day earnings announcement period. Vijh (1994) found that after being

added to S&P 500 index between 1975 and 1989, those stocks displayed higher market beta at daily and

weekly frequency. More recently, Patton and Verardo (2012) estimated daily variations in betas around

earnings announcements for all the S&P 500 constituent stocks over the period 1996-2006. They found

that the beta increase on announcement day was short-lived and it reverted to average levels two to

five days later.

We investigate hourly beta variation within 5 days of the earnings announcement. Our study follows

the spirit of Patton and Verardo (2012). While the earlier paper uses daily betas, our current technology

permits us to find hourly betas, and thus to understand intra-day variation as well as overnight change

in beta. Also, the construction of the beta estimate differs. Patton and Verardo (2012) used 25-minute

intra-day returns (plus the overnight return from the previous day) to construct daily beta estimates. As

the authors mentioned, they used the 25-minute sampling interval to reduce the impact of microstructure

noise but at the cost of the accuracy of the estimate.

In the current paper, we construct beta estimates from 5-second pre-averaged returns of S&P 100

constituent stocks from 2007 to 2017, while taking account of the microstructure noise and the cross-

sectional asynchronicity. Our hourly betas are unbiased and consistent, thus can more precisely capture

the beta dynamics in a shorter time window around the announcements. With the definition of “Day

0” as the calendar day of each earnings announcement, we are able to separate the before- and post-

market announcement impact on beta change. When the earnings are released in the morning prior to

market open on “Day 0”, we observe substantial beta jump in the first hour (i.e. 10am). On the other

hand, when the earnings are announced after market close (4pm), we notice a significant beta jump the

following day, again at the first hour. Within the 5-day window (from “Day -2” to “Day +2”), most

hourly beta stays at the non-earnings level.

1.4. Organization and Notation

This paper is organized as follows: we first set up the general data structure and define the spot-version

of the Smoothed TSRV (S-TSRV, Mykland et al. (2019)) estimator in Section 2. For fixed dimension,

consistency and asymptotic normality are shown theoretically in Sections ??-3, and for high dimension,
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consistency is shown in Section 4. The results are corroborated by Monte Carlo simulation in Section

5.2. Section 7 conducts an empirical study that applies our methodology to the cross-sectional intraday

returns of the components of S&P 100 Index.

For a matrix Ap×q, (A)k,• denotes its k−th row, (A)•,r denotes its r−th column, A(r,k) denotes

its (r, k)−th element, dAt =
{
dA

(r,k)
t

}
1≤r≤p,1≤k≤q

and Aᵀ denotes its transpose. We denote the

largest and smallest eigenvalue of matrix A by λmax (A) and λmin (A), respectively. We denote by

‖A‖ , ‖A‖1 , ‖A‖F , ‖A‖max the spectral norm, L1-norm, Frobenius norm and elementwise max norm

of matrix A, defined as ‖A‖ = λ
1/2
max (AᵀA) , ‖A‖1 = maxj Σi

∣∣A(i,j)
∣∣ , ‖A‖F =tr1/2 (AᵀA) , ‖A‖max =

maxi,j
∣∣A(i,j)

∣∣. If A is a vector, then ‖A‖ and ‖A‖F are equal to its Euclidean norm. For two sequences,

we write xn � yn if xn = Op (yn) and yn = Op (xn).

A number of processes, such as the martingale the martingale M , is fully indexed as M
(r,s)
n,t , where

the superscript (r, s) refers to matrix element, and the subscript t refers to time, t ∈ [0, T ], and n is an

index referring to the number of observations. In order to not overburden the paper with super- and

subscripts, we do on occasion omit one or several of these. (i) Mn,t is a matrix martingale. Further

notation in this direction is introduced in Section 3. (ii) Meanwhile, we introduce dependence on n

when we gradually get close to asymptotics in eq. (2.11)-(2.12), and therefore also in the definition

(2.8). However, one should bear in mind that every ingredient in (2.8) depends on sample size n, with

the single exception of the latent process (2.1)-(2.2). (iii) In certain equations, such as in Remark 3, the

time variable t is omitted in the subscript of the martingale M
(r,s)
n,t , because the the quadratic variation

[·, ·]t is an operation on the entire path of the martingale, and t is conventionally moved to become a

subscript of the quadratic variation instead. Note in particular that M∞ (with possibly further indices)

always refers to a limit when n has gone to infinity. This is because time t is always finite (≤ T ). –

Similar considerations apply to other stochastic variables and processes in the following.
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2. Basic Setup

2.1. Data Description

We here provide a description of the data generating process, as well as assumptions that we make on

these processes.

The latent process. For two positive integers q, d ≥ 1, we work with data discretely sampled

from the continuous process

(Ξt)0≤t≤T =

Ξ
(1)
t , . . . ,Ξ

(q)
t︸ ︷︷ ︸

covariate process X

, Ξ
(q+1)
t , . . . ,Ξ

(q+d)
t︸ ︷︷ ︸

dependent variable process Y


0≤t≤T

. (2.1)

The separation of Ξt into an Xt and a Yt process is irrelevant in this section, which is concerned with

the estimation of the covariance (volatility) matrix process for Ξt, but it plays a rôle when studying

regression in subsequent sections.

We assume that the (Ξt) process is a (q + d)-dimensional continuous Itô process, i.e., of the following

form

Ξt = Ξ0 +

∫ t

0
µudu+

∫ t

0
σudWu, (2.2)

where W is a (q + d)-dimensional standard (Ft)0≤t≤T -Brownian motion, and X0 is F0-measurable. The

coefficients µu and σu are predictable and

µt and ct are locally bounded in ‖·‖max -norm, (2.3)

where we use
ct = (σσᵀ)t . (2.4)

Thus, the integrated covariance matrix of Ξt may be expressed as:

〈Ξ,Ξ〉t =

∫ t

0
cudu. (2.5)

The volatility matrix. We also suppose that c
(r,s)
t is itself an Itô process for any 1 ≤ r, s ≤ q+d.

In other words, it has the same structure as described above, but is a matrix and not a vector.
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The Observed Process. For 1 ≤ r ≤ q + d, the process
(

Ξ
(r)
t

)
0≤t≤T

is observed on the grid

G(r) =
{

0 = t
(r)
0 < t

(r)
1 < · · · < t

(r)

n(r) = T
}
, after contamination by microstructure noise ε

(r)

t
(r)
j

. This yields

an observed process Ξ∗ =
(
Ξ∗,(1), . . . ,Ξ∗,(q),Ξ∗,(q+1), . . . ,Ξ∗,(q+d)

)
, as follows:

Ξ
∗,(r)
t
(r)
j

= Ξ
(r)

t
(r)
j

+ ε
(r)

t
(r)
j

, for 1 ≤ r ≤ q + d.

Our assumptions on the data are summarized as follows:

Condition 1. (Structure of the data.) The data generating process and the observations are as laid out

in Section 2.1. The processes Ξt, µt and σt are adapted to a filtration (Ft). The observation times tn,j

are (Ft)-stopping times. For each (n, j), the noise εn,tn,j is Ftn,j -measurable, and supn,j Eε
2
n,tn,j < ∞,

and Eεn,tn,j = 0. The signal Ξt may not depend on n.

2.2. Estimator for the Integrated Covariance Matrix: The S-TSRV and its Decomposition.

In order to estimate the integrated covariance matrix 〈Ξ,Ξ〉t , we construct the smoothed TSRV (S-

TSRV) estimator 〈̂Ξ,Ξ〉t on a synchronous grid, as follows.

{0 = τn,0 < τn,1 < · · · < τn,N = T } . (2.6)

Denote M(r)
n,i = #

{
j : τn,i−1 < t

(r)
j ≤ τn,i

}
.

For 0 ≤ t ≤ T , 1 ≤ r, s ≤ q + d and a pair (J,K), set

K
˜[

Ξ̃(r), Ξ̃(s)
](K)

t
=

1

2

b−K∑
i=1

+

N∗(t)−b∑
i=b−K+1

+
1

2

N∗(t)−K∑
i=N∗(t)−b+1

(Ξ̃
(r)
i+K − Ξ̃

(r)
i

)(
Ξ̃

(s)
i+K − Ξ̃

(s)
i

)
,

where

N∗ (t) = max {1 ≤ i ≤ N : τn,i ≤ t} and b = K + J, (2.7)

and where, 1 ≤ i ≤ N and 1 ≤ r ≤ q + d, the pre-averaged price is defined as:

Ξ̃
(r)
i =

1

M(r)
n,i

∑
τn,i−1<t

(r)
j ≤τn,i

Ξ
∗,(r)
t
(r)
j

.
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We similarly define J
˜[

Ξ̃(r), Ξ̃(s)
](J)

by switching J and K.

The Smoothed-TSRV is defined as:

̂〈
Ξ(r),Ξ(s)

〉
n,t

=
1

(1− b/N) (K − J)

{
K

˜[
Ξ̃(r), Ξ̃(s)

](K)

t
− J

˜[
Ξ̃(r), Ξ̃(s)

](J)

t

}
. (2.8)

We assume the following about the block structure (imposed by the econometrician) and its interface

with the data.

Condition 2. (Structure of Blocks.) We assume that the block separation times τn,i are (Ft)-stopping

times that are “exogenous” (independent of the Ξ-process), and that for each n, there are nonrandom

∆τ+
n and M−n ≥ 1, so that ∆τ+

n ≥ maxi ∆τn,i and M−n ≤ miniMn,i. Assume that as n → ∞,

∆τ+
n ∝M−n /n, in which case the number of blocks N = Nn is of exact order O (n/M−n ) . Also assume

that Kn∆τ+
n → 0 as n→∞, and thatKn > Jn ≥ 1. Finally suppose that Kn−Jn = Op

(
(Nn/M−n )

2/3
)

,

and that

Nn/M−n →∞. (2.9)

See Remark 1 below for some clarification of Condition 2.

Condition 3. (Assumption on the interface between noise and blocks, and on averaged noise) We

suppose that E(ε̄n,i | Fτ i−J ) = 0, and that E supiE(ε̄2n,i | Fτ i−J ) = op(∆τ
+
n (K − J)1/2). Also let

ε̄n,i = ε̄i be the averaged noise across the block from τn,i−1 to τn,i. Assume that the εn,tn,j process is

stationary, exponentially α mixing, and that there is a constant κ > 0 so that Eε4+κ
n,tn,j

<∞.5

Define the sequence {an}n≥1 by

an =
[
(Kn − Jn) ∆τ+

n

] 1
2 , (2.10)

5Condition 3 is one of several ways to to assure Cov
(
ε̄
(s1)
i , ε̄

(s2)
i

)
=
(
M−n

)−1
ς(s1,s2) and

supi cum4

(
ε̄
(s1)
i , ε̄

(s1)
i , ε̄

(s2)
i , ε̄

(s2)
i

)
= Op

((
M−n

)−2
)

as n→∞, cf. McLeish (1975), Hall and Heyde (1980, Chapter 5 and

Appendix 3), Aı̈t-Sahalia et al. (2011), Zhang (2011), Mykland et al. (2019, Condition 4 and the subsequent discussion on
p. 109), and Chen et al. (2020, Assumption 2, p. 1963). For the relationship to the latter, observe that since E(ε̄n,i) = 0,

the fourth cumulant cum4

(
ε̄
(s1)
i , ε̄

(s1)
i , ε̄

(s2)
i , ε̄

(s2)
i

)
= Var

(
ε̄
(s1)
i ε̄

(s2)
i

)
.
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and note that an → 0 as the number of observations n → ∞ by Condition 2. Under Condition 1-3, it

follows from Mykland et al. (2019, Section 5, pp. 110-111)6 that

̂〈
Ξ(r),Ξ(s)

〉
n,t

=

∫ t

0
c(r,s)
u du+M

(r,s)
n,t + op (an) , (2.11)

where c(r,s) is the (r, s)−th element of c from (2.4), and there the Mn,t/an converges stably in law to a

continuous martingale limit.

Remark 1. (The meaning and size of Kn, Jn, and an.) We here explain that the order of convergence

an can be up to n−1/4, but that this rate cannot be attained within the development of this paper. To

see this, return to Condition 2, and consider the simplified case where Mn,i only depends on n, i.e.,

Mn,i =Mn. In this case, Kn−Jn = Op

(
(Nn/M−n )

2/3
)

is desirable since it assures an optimal tradeoff

between statistical error due to signal and to noise (Mykland et al., 2019, end of Section 5, p. 111). The

same discussion shows that if eq. (2.9) were removed from Condition 2, one might choose Nn and Mn

to be of exact order O(n1/2), and Kn and Jn would be finite. In this case, an is of exact order n−1/4.

However, assumption (2.9) is necessary for the representations (2.13)-(2.15), cf. Chen et al. (2020,

Appendix A). We believe that it is possible to create an asymptotic development that does not require

(2.9), since the finite sample calculations in Mykland et al. (2019) remain valid in this case, but this is

beyond the scope of this paper. Meanwhile, the current paper should be read with the understanding

that an is almost n−1/4, and that Kn and Jn are approximately finite (they grow arbitrarily slowly).

Remark 2. The selection of the tuning parameters (“scales”) Kn and Jn is an area which remains more

art than science. For low dimensional problems, one can proceed through signature plots on estimated

volatilities, introduced by Andersen et al. (2000) and their co-authors. Signature plot was used to

determine Kn and Jn in multiple dimensions in (Zhang, 2011, Fig. 2, p. 42). For moderate dimension

regression problems, one option is the signature plot of integrated beta, as in Fig. 5.2 in Section 5. For

truly high dimensional problems, an attractive approach is to use signature plots on eigenvalues (Chen

et al., 2020, Fig. 2, p. 13). We have not gone into this detail in this paper, but Figure 5.3 (also Section

5) plots the spectral norm (also an eigenvalue) of the error of the final precision matrix estimator (the

6Here and below, the effect of the drift term is negligible, cf. Mykland and Zhang (2009, Section 2.2, pp. 1407-1409).
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red curve in the plot). Finally, note that for the S-TSRV, the scales are expected to be approximately

finite (Remark 1 above), while for the original TSRV (Zhang et al. (2005)), especially Kn will grow with

sample size n.

We shall need a slightly sharper representation under the same assumptions. For 1 ≤ r ≤ q + d,

define ∆Ξ
(r)
τ i = Ξ

(r)
τ i − Ξ

(r)
τ i−1 , the estimation error can be written as follows:

̂〈
Ξ(r),Ξ(s)

〉
n,t
−
∫ t

0
c(r,s)
u du = M

(r,s)
t + ẽ

(r,s)
t − e(r,s)

0 , (2.12)

where the subscript n has been omitted on the right hand side, and below until eqn. (2.15), for notational

convenience, and where the martingale term may be expressed as:

M
(r,s)
t = M

X,(r,s)
t +M

ε,(r,s)
t + op (an) , where (2.13)

M
X,(r,s)
t =

K−J−1∑
p=1

(
K − J − p
K − J

) N∗(t)∑
i=J+p+1

∆Ξ(r)
τ i−p∆Ξ(s)

τ i [2],

M
ε,(r,s)
t =

1

K − J

N∗(t)∑
i=K+1

(
ε̄
(r)
i−J − ε̄

(r)
i−K

)
ε̄
(s)
i [2],

and the edge effect terms e
(r,s)
0 and ẽ

(r,s)
t has the order of Op

(
a2
n

)
, which may be further expressed as:

e
(r,s)
0 =

1

K − J

K∑
i=J+1

ε̄
(r)
i−J ε̄

(s)
i [2] +

K−J−1∑
p=1

K−J−p∑
i=1

(
K − J − p− i

K − J

)
∆Ξ(r)

τJ+i
∆Ξ(s)

τJ+i+p
[2]

+
K−J∑
i=1

(
K − J − i
K − J

)
∆Ξ(r)

τJ+i
∆Ξ(s)

τJ+i
+ op

(
a2
n

)
, and (2.14)

ẽ
(r,s)
t = − 1

K − J

K−1∑
i=J

ε̄
(r)
N∗(t)−i−J ε̄

(s)
N∗(t)−i[2]−

K−J−1∑
p=1

K−J−p∑
i=0

(
K − J − p− i

K − J

)
∆Ξ(r)

τN∗(t)−i−p
∆Ξ(s)

τN∗(t)−i
[2]

−
K−J∑
i=0

(
K − J − i
K − J

)
∆Ξ(r)

τN∗(t)−i
∆Ξ(s)

τN∗(t)−i
+ op

(
a2
n

)
. (2.15)
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The representation and rates in (2.13)-(2.15) follow from Chen et al. (2020, Appendix A).

Remark 3. (Assumption on Asymptotic Covariance) Let M
(r,s)
n,t be as defined in (2.12) and (2.13).

Since the above development guarantees that a−1
n M

(r,s)
n , 1 ≤ r, s ≤ q + d, converge jointly in law (as

continuous martingales) to a limit M
(r,s)
∞ . Following Jacod and Shiryaev (2003, Corollary 6.30, p. 385),

it is then also the case that for the optional (“observed”) quadratic variations,

a−2
n

[
M (r1,s1)
n ,M (r2,s2)

n

]
t

p−→
[
M (r1,s1)
∞ ,M (r2,s2)

∞

]
t
, for 1 ≤ r1, s1, r2, s2 ≤ q + d and 0 ≤ t ≤ T .

2.3. The estimation of the Spot Volatility Matrix

For the simplicity of discussion, we define the spot volatility estimator ĉ
(r,s)
∆Tn,t

for some ∆Tn > 0 as

follows:

ĉ
(r,s)
∆Tn,t

=
1

∆Tn

(
̂〈

Ξ(r),Ξ(s)
〉
t+∆Tn

− ̂〈
Ξ(r),Ξ(s)

〉
t

)
, (2.16)

where {∆Tn}n≥1 is a sequence of positive numbers satisfying

a−2
n ∆Tn →∞ and ∆Tn → 0 as n→∞. (2.17)

Moreover, to facilitate the theory development, we define

c̄
(r,s)
∆Tn,t

=
1

∆Tn

∫ t+∆Tn

t
c(r,s)
u du, π̄

(r,s)
∆Tn,t

= c̄
(r,s)
∆Tn,t

− c(r,s)
t and π̃

(r,s)
∆Tn,t

= ĉ
(r,s)
∆Tn,t

− c̄(r,s)
∆Tn,t

, (2.18)

and

π̌
(r,s)
∆Tn,t

=
1

∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
and η

(r1,s1,r2,s2)
∆Tn,t

= π̃
(r1,s1)
∆Tn,t

π̃
(r2,s2)
∆Tn,t

− π̌(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

. (2.19)

We now list several useful results of spot volatility estimator.

Lemma 1. Assume Conditions 1-3, as well as Condition (2.17). Then we have: (i)

sup
t,r1,r2,s1,s2

∣∣∣E (π̌(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

)∣∣∣ = Op
(
a2
n∆T−1

n

)
, (2.20)
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and

sup
t,r1,r2,s1,s2

∥∥∥π̌(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

− E
(
π̌

(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

)∥∥∥
2

= Op
(
a2
n∆T−1

n

)
. (2.21)

(ii)

sup
t,r1,r2,s1,s2

∣∣∣E (η(r1,s1,r2,s2)
∆Tn,t

)∣∣∣ = Op
(
a4
n∆T−2

n

)
, (2.22)

and

sup
t,r1,r2,s1,s2

∥∥∥η(r1,s1,r2,s2)
∆Tn,t

− E
(
η

(r1,s1,r2,s2)
∆Tn,t

)∥∥∥
2

= Op

(
a3
n∆T−3/2

n

)
. (2.23)

Proof. The proof of this lemma is collected in Appendix A. �

3. Multiple Regression

In multiple regression, it is possible that q, d > 1 in the definition (2.1) of (Ξt)0≤t≤T . Without loss of gen-

erality, we denote X =
(
X(1), . . . , X(q)

)
=
(
Ξ(1), . . . ,Ξ(q)

)
and we let Y be a single process, so that Y =

Ξ(q+l) for some 1 ≤ l ≤ d. It is natural to use the following notations: 〈X,X〉t =
{〈

Ξ(r),Ξ(s)
〉
t

}
1≤r,s≤q ,

〈X, Y 〉t =
{〈

Ξ(r),Ξ(q+l)
〉
t

}
1≤r≤q , 〈̂X,X〉t =

{
̂〈

Ξ(r),Ξ(s)
〉
t

}
1≤r,s≤q

, and 〈̂X, Y 〉t =
{

̂〈
Ξ(r),Ξ(q+l)

〉
t

}
1≤r≤q

.

For the convenience of notation, we define

cX,Xt =
{
c

(r,s)
t

}
1≤r,s≤q︸ ︷︷ ︸

q×q matrix process

and cX,Yt =
{
c

(r,q+1)
t

}
1≤r≤q︸ ︷︷ ︸

q×1 column vector process

. (3.1)

We analogously define the related matrix and vector quantities for M, c̄, ĉ, π̄, π̃, π̌, ϕ̌, ẽ an e.

Suppose that the processes are related by

dYt =

q∑
k=1

β
(k)
t dX

(k)
t + dZt with

〈
X(k), Z

〉
t

= 0 for all t and k. (3.2)

If we assume that β =
(
β(1), . . . , β(q)

)
is a q× 1 column vector process, then the quadratic variation of

13



the residual process may be expressed as:

〈Z,Z〉t = 〈Y, Y 〉t − 2

∫ t

0
d 〈X, Y 〉s βs +

∫ t

0
βᵀsd 〈X,X〉s βs

= 〈Y, Y 〉t − 2

∫ t

0
βᵀsc

X,Y
s ds+

∫ t

0
βᵀsc

X,X
s βsds. (3.3)

To find minβ 〈Z,Z〉T , and assuming cX,Xs is positive definite almost surely for all 0 ≤ t ≤ T , we solve

the identity −2cX,Ys + 2cX,Xs βs = 0, and finally obtain the unique solution as follows:

βs =
(
cX,Xs

)−1
cX,Ys . (3.4)

The spot beta estimator is naturally constructed as:

β̂∆Tn,Ti−1
=
(
ĉX,X∆Tn,Ti−1

)−1
ĉX,Y∆Tn,Ti−1

. (3.5)

The quantity in which we are interested is:

θ =

∫ T
0

βtdt,

and its estimator is given by7:

θ̂n =
B∑
i=1

β̂∆Tn,Ti−1
∆Tn.

We first show the consistency of θ̂n. For the simplicity of discussion, we define an intermediate

process:

β̄∆Tn,Ti−1
=
(
c̄X,X∆Tn,Ti−1

)−1
c̄X,Y∆Tn,Ti−1

. (3.6)

With this smoothed beta, the estimation error of β̂∆Tn,Ti−1
can also be decomposed into two parts,

7Cf. Mykland and Zhang (2009, Section 4.2, pp. 1424-1428), Zhang (2012, Section 4).
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Moreover, the estimation error may be decomposed as follows:

θ̂n − θ =
B∑
i=1

(
β̂∆Tn,Ti−1

− βTi−1

)
∆Tn︸ ︷︷ ︸

Aggregated error of β̂∆Tn,Ti−1
, RSpot

−
B∑
i=1

∫ Ti

Ti−1

(
βs − βTi−1

)
ds︸ ︷︷ ︸

Discretization error, RDiscrete

. (3.7)

Then we can show the representations of these two types of estimation error. There representations

matter both in the proofs, and also in Section 3.1.

We presently state the consistency of spot beta estimator β̂∆Tn,Ti−1
. For this, we need an additional

assumption about spot covariance matrix.

Condition 4. There are constants ϑ1, ϑ2 > 0 such that inf0≤t≤T λmin

(
cX,Xt

)
> ϑ1 and sup0≤t≤T ‖ct‖max <

ϑ2 almost surely.

Condition 4 can, obviously, be localized just as in 2.3, cf. Jacod and Protter (2012, Chapter 4.4.1, pp.

114-121) and Mykland and Zhang (2012, Chapter 2.4.5, pp. 160-161).

Lemma 2. (Consistency of θ̂n) Assume Conditions 1-4. Assume that the number of regressors q is

finite, and ∆Tn satisfies condition (2.17). Then, for any ε, 0 < ε < 1/2, we have:

sup
i

∥∥∥β̂∆Tn,Ti−1
− βTi−1

∥∥∥ = Op

(
∆T 1/2−ε

n

)
+Op

((
a2
n∆T−1

n

)1/2−ε)
= op (1) ,

and

θ̂n − θ = op (1) .

Proof. The proof of this lemma is collected in the Appendix B. �

3.1. Asymptiotic Bias of the näıve Regression Estimator

When ∆Tn → 0 and infn a
−1
n ∆Tn > 0, the discretization error RDiscrete (eqn (3.7)) becomes the dom-

inating term in the estimation error of θ̂n. However, in this scenario, it cannot achieve the optimal

convergence rate. Consequently, we consider the setting of a−1
n ∆Tn → 0 and a−2

n ∆Tn → ∞. In this

scenario, the aggregated error of β̂∆Tn,Ti−1
, RSpot becomes the dominating term. By further analyzing
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the aggregated error RSpot, it is easy to show that there is a bias term arises in RSpot, which has bigger

size than the martingale term. In the following theorem, we provide the representation of the bias term

so that we can design the bias-corrected estimator in the subsequent subsection. For ease of exposition,

this result is stated in the simple regression case only.

Theorem 1. (Second order behavior of θ̂n in the univariate case.) Assume that q = d = 1, as well as

Conditions 1-4. and also that a−1
n ∆Tn → 0 and a−2

n ∆Tn →∞. Then we have:

a−2
n ∆Tn

(
θ̂n − θ

)
p−→ −ϕT ,

where

ϕt =

∫ t

0

(
cX,Xu

)−2 (
d
[
MX,X
∞ ,MX,Y

∞
]
u
− βud

[
MX,X
∞ ,MX,X

∞
]
u

)
.

Proof. The proof of this theorem is collected in the Appendix C. �

3.2. Bias corrected estimator and CLT for multiple regression

Similar to the single regressor case, the size of bias term is bigger than the martingale term when

a−1
n ∆Tn → 0. Thus, in order to develop the CLT, we need to contruct the bias corrected estimator. For

1 ≤ r, s ≤ q + d, we define

ϕ̌
(r,s)
∆Tn,Tn,i−1

=
1

2

(
ĉ

(r,s)
∆Tn/2,(i−1/2)∆Tn

− ĉ(r,s)
∆Tn/2,(i−1)∆Tn

)
. (3.8)

The bias corrected estimator is defined as:

θ̃n =

B∑
i=1

[
β̂∆Tn,Ti−1

+
(
ĉX,X∆Tn,Ti−1

)−1 (
φ̂
X,X,X,Y

∆Tn,Ti−1
− φ̂X,X,X,X∆Tn,Ti−1

β̂∆Tn,Ti−1

)]
∆Tn, (3.9)

where

φ̂
X,X,X,Y

∆Tn,Ti−1
= ϕ̌X,X

∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1
ϕ̌X,Y

∆Tn,Ti−1
and φ̂

X,X,X,X

∆Tn,Ti−1
= ϕ̌X,X

∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1
ϕ̌X,X

∆Tn,Ti−1
,
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where ϕ̌X,Y
∆Tn,Ti−1

and ϕ̌X,X
∆Tn,Ti−1

is defined in (3.8) and with the notations “X,Y ” and “X,X” that follow

from the conventions of (3.1), respectively.

Before stating the Central Limit Theorem (CLT), we introduce the following notation. Recall the

definition of
[
M

(r1,s1)
∞ ,M

(r2,s2)
∞

]
t

in Remark 3 in Section 2.2. We set

ACOV
(
MX,Y ,MX,Y

)(r,k)

t
,

[
M (r,q+l)
∞ ,M (k,q+l)

∞

]
t
,

ACOV
(
MX,Y ,MX,X

)(r,k)

t
,

{[
M (r,q+l)
∞ ,M (v,k)

∞

]
t

}
1≤v≤q

(q × 1 vector process), and

ACOV
(
MX,X,MX,X

)(r,k)

t
,

{[
M (r,v)
∞ ,M (u,k)

∞

]
t

}
1≤v,u≤q

(q × q matrix process). (3.10)

and

Σt ,
∫ t

0

(
cX,Xu

)−1
dΛu

(
cX,Xu

)−1
, (3.11)

where dΛu =
{
dΛ

(r,k)
u

}
1≤r,k≤q

, and its (r, k)−th element is defined as:

dΛ(r,k)
u , dACOV

(
MX,Y ,MX,Y

)(r,k)

u
−βᵀudACOV

(
MX,Y ,MX,X

)(r,k)

u
[2]+βᵀudACOV

(
MX,X,MX,X

)(r,k)

u
βu,

(3.12)

where [2] denotes the summation by switching r and k. Moreover, the (r, k)−th element of Σt can be

expressed as:

Σ
(r,k)
t =

∫ t

0
(Au)ᵀ•,r dΛu (Au)•,k ,

where At ,
(
cX,Xt

)−1
.

Finally, the CLT for θ̃n can be stated as follows.

Theorem 2. (Central Limit Theorem for θ̃n ) Assume all conditions in Lemma 2 and further assume

that a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn → ∞. Then we know that there is a q × q matrix process (Σt)0≤t≤T

defined in (3.11), such that

a−1
n

(
θ̃n − θ

)
L−→ Nq (0,ΣT ) ,

where the convergence is stable in law, Nq (0,ΣT ) is a q−dimensional normal distribution with mean 0

and covariance matrix as ΣT .
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Proof. The proof of this theorem is collected in the Appendix E. �

Moreover, following the idea of Mykland and Zhang (2017), it is straightforward to see that the

asymptotic variance estimator could be constructed as follows:

Σ̂T = ∆T 2
n

B∑
i=1

(
ĉX,X∆Tn,Ti−1

)−1
Φ̂∆Tn,Ti−1Φ̂

ᵀ
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1
, (3.13)

where

Φ̂∆Tn,Ti−1 = ϕ̌X,Y
∆Tn,Ti−1

− ϕ̌X,X
∆Tn,Ti−1

β̂∆Tn,Ti−1

with ϕ̌X,Y
∆Tn,Ti−1

and ϕ̌X,X
∆Tn,Ti−1

being defined in (3.8) and the notations “X,Y ” and “X,X” following from

the conventions of (3.1), respectively.

4. High Dimensional Factor Model

We again start by adjusting the notation. In the case of high dimensional factor model, we assume

that q, d > 1, with d typically much larger than q. Specifically, q is asymptotically “almost” finite (see

Condition 5 below), while d→∞ as n→∞. As foreshadowed in (2.1), denote

X =
(
X(1), . . . , X(q)

)
=
(

Ξ(1), . . . ,Ξ(q)
)
, and Y =

(
Y (1), . . . , Y (d)

)
=
(

Ξ(q+1), . . . ,Ξ(q+d)
)
.

It is then also natural to use the following notations: 〈X,X〉t =
{〈

Ξ(r),Ξ(s)
〉
t

}
1≤r,s≤q , 〈X,Y〉t ={〈

Ξ(r),Ξ(q+l)
〉
t

}
1≤r≤q,1≤l≤d , 〈̂X,X〉t =

{
̂〈

Ξ(r),Ξ(s)
〉
t

}
1≤r,s≤q

, and 〈̂X,Y〉t =
{

̂〈
Ξ(r),Ξ(q+l)

〉
t

}
1≤r≤q,1≤l≤d

.

For the spot quantities, we define cX,Xt as in (3.1), and define

cX,Yt =
{
c

(r,q+l)
t

}
1≤r≤q,1≤l≤d

, which is a q × d matrix process, and (4.1)

cY,Yt =
{
c

(q+r,q+s)
t

}
1≤r,s≤d

, which is a d× d matrix process. (4.2)
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Following the similar convention, we define the related matrix and vector quantities forM, c̄, ĉ, π̄, π̃, π̌, ϕ̌, ẽ

an e. Then it is easy to see that in matrix form,

ct =

 cX,Xt cX,Yt(
cX,Yt

)ᵀ
cY,Yt

 and ĉt =

 ĉX,Xt ĉX,Yt(
ĉX,Yt

)ᵀ
ĉY,Yt

 , (4.3)

with ĉt =
{
ĉ

(r,s)
∆Tn,t

}
1≤r,s≤q+d

which is defined in (2.16).

4.1. Specification of the factor model

The log-price process Yt =
(
Y

(1)
t , Y

(2)
t , . . . , Y

(d)
t

)
of d stocks is generated from a multiple regression,

also known as a “supervised” factor model:

dYt = BtdXt + dZt, (4.4)

where Xt =
(
X

(1)
t , X

(2)
t , . . . , X

(q)
t

)
is a q × 1 vector process, denoting a set of time-varying com-

mon regressors or factors, Bt is a d × q matrix process of time-varying factor loadings and Zt =(
Z

(1)
t , Z

(2)
t , . . . , Z

(d)
t

)
is a d× 1 vector process of idiosyncratic noise components, satisfying

〈X,Z〉t = 0 for all t, (4.5)

cf. Mykland and Zhang (2006). The difference from an unsupervised factor model, is that in our current

case, the factors Xt are observed, though with noise, and at asynchronous discrete times, as in Section

2.1.

It is straightforward to see that

d 〈Y,Y〉t = Btd 〈X,X〉t B
ᵀ
t + d 〈Z,Z〉t for 0 ≤ t ≤ T , (4.6)

whence also

cY,Yt = Btc
X,X
t Bᵀt + st, (4.7)
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where st = 〈Z,Z〉′t , in view of (3.1), and (4.2). In this paper, we adopt the sparsity structure for st,

which is measured by

md = sup
0≤t≤T

max
1≤i≤d

∑
1≤j≤d

∣∣∣s(i,j)
t

∣∣∣ν for some ν ∈ (0, 1) ,

and for ν = 0, define md = supt maxi
∑

j I
(
s

(i,j)
t 6= 0

)
. This measure is widely used in existing litera-

ture, i.e., Bickel and Levina (2008) and Cai and Liu (2011) and as pointed out by Fan et al. (2013).

4.2. Least quadratic variation (LQV) optimization

In this case, the factors are observable. Thus, in order to get the estimates of factor loadings Bt, we use

the least quadratic variation (LQV) method:

(Bt)0≤t≤T = arg min
Bt∈Rd×q ,0≤t≤T

tr 〈Z,Z〉t .

Based on the similar derivation of (3.4), the LQV solution of factor loading can be expressed as:

Bᵀt =
(
cX,Xt

)−1
cX,Yt ,

since we assume that that inf0≤t≤T λmin

(
cX,Xt

)
> 0 (Condition 4). Therefore, by the formula (4.7),

the LQV solution for the spot idiosyncratic covariance matrix is:

st = cY,Yt − cB•Xt , (4.8)

where

cB•Xt =
(
cX,Yt

)ᵀ (
cX,Xt

)−1
cX,Yt . (4.9)
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4.3. Estimators and convergence rates

We define the related estimators as follows:

B̂ᵀt =
(
ĉX,Xt

)−1
ĉX,Yt ,

ĉB•Xt = B̂tĉ
X,X
t B̂ᵀt =

(
ĉX,Yt

)ᵀ (
ĉX,Xt

)−1
ĉX,Yt ,

ŝt = ĉY,Yt − ĉB•Xt , (4.10)

where ĉX,Xt , ĉX,Yt and ĉY,Yt are defined in (4.3).

In the case of high dimensional factor models, we allow the number of common factors to diverge

slowly, as the cross-sectional dimension d goes to infinity. The detailed technical assumption is stated

as follows.

Condition 5. For the number of common factors q, we assume that q = o (d) and q4∆Tn log d = o (1) .

We now show the result for convergence rate of ĉB•Xt under elementwise max norm. Define:

ωn =
(
q4∆Tn log d

) 1
2 . (4.11)

Theorem 3. Define ĉt =
{
ĉ

(r,s)
∆Tn,t

}
1≤r,s≤q+d

with ∆Tn � an. Assume Conditions 1-5. The following is

then valid: ∥∥∥ĉY,Yt − cY,Yt

∥∥∥
max

= Op

(
(∆Tn log d)

1
2

)
, and (4.12)

∥∥ĉB•Xt − cB•Xt

∥∥
max

= Op (ωn) , (4.13)

where ωn is defined in (4.11). Consequently by the triangular inequality and formulas (4.8) and (4.10),

we obtain:

‖ŝt − st‖max = Op (ωn) .

Proof. The proof of this theorem is collected in the Appendix G. Specifically, (4.12) is a consequence

of Lemma 3, while (4.13) follows from (G.6). �
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Now we apply the adaptive thresholding on ŝt. Denote the thresholding estimator by ŝ∗t , defined as

follows:

ŝ∗t ,


ŝ

(i,j)
t , i = j,

φij

(
ŝ

(i,j)
t

)
, i 6= j,

where φij is the adaptive thresholding rule, for z ∈ R,

φij (z) = 0 when |z| ≤ χij , otherwise
∣∣φij (z)− z

∣∣ ≤ χij .
The examples of adaptive thresholding rule include the hard thresholding φij (z) = zI

(
|z| ≥ χij

)
, soft

thresholding, SCAD and the adaptive lasso, i.e., see Rothman et al. (2009) and Fan et al. (2016b).

Because of the absence of residuals, the standard error estimator of ŝ
(i,j)
t can not be easily obtained.

Thus, in contrast to the settings of χij in Fan et al. (2013), the thresholding parameter are set to be

elementwise constant, i.e., defined as:

χij = Cωn, (4.14)

with a sufficiently large C > 0. Before stating the results of the thresholding estimator, we first make

one assumption about the spot residual covariance matrix.

Condition 6. For the spot residual covariance matrix st, there exist constants ϑ′1, ϑ
′
2 > 0 such that

ϑ′1 < λmin (st) ≤ λmax (st) < ϑ′2 for all 0 ≤ t ≤ T .

Based on the result in Theorem 3, we obtain the following proposition.

Proposition 1. Assume Conditions 1-6. Then, for a sufficiently large C > 0 in the thresholding

parameter (4.14), the estimator for the sparse residual covariance matrix satisfies:

‖ŝ∗t − st‖ = Op
(
ω1−ν
n md

)
.

If ω1−ν
n md = op (1) is assured, then the eigenvalues of ŝ∗q̂t,t are all bounded away from 0 with probability

approaching 1, and ∥∥∥(̂s∗t )
−1 − s−1

t

∥∥∥ = Op
(
ω1−ν
n md

)
.
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Proof. The proof of this proposition directly follows from the similar discussions in the proof of

Theorem 5 of Fan et al. (2013). �

Next, let’s define the spot covariance matrix estimator based on the thresholding estimator as follows:

ĉY,Y,∗t :=
(
ĉX,Yt

)ᵀ (
ĉX,Xt

)−1
ĉX,Yt + ŝ∗t .

Then we consider the estimation performance of precision matrix based on
(
ĉY,Y,∗t

)−1
. The theoretical

development is based on the Sherman-Morrison-Woodbury formula, i.e., recall the formulas (4.8) and

(4.9), we obtain:

(
ĉY,Y,∗t

)−1
= (̂s∗t )

−1 − (̂s∗t )
−1
(
ĉX,Yt

)ᵀ [
ĉX,Xt + ĉX,Yt (̂s∗t )

−1
(
ĉX,Yt

)ᵀ]−1
ĉX,Yt (̂s∗t )

−1 .

We first assume the pervasiveness of the common factors by the following technical assumption, which

is parallel to the Assumption 3.5 in Fan et al. (2011).

Condition 7. Assume ∥∥∥d−1cX,Yt

(
cX,Yt

)ᵀ
−Ωt

∥∥∥ = o (1)

for some q × q symmetric positive definite matrix Ωt and some constants ϑ′3, ϑ
′
4 > 0 such that

(i) inf0≤t≤T λmin (Ωt) > ϑ′3 almost surely;

(ii) if q →∞ as n, d→∞, we further assume sup0≤t≤T λmax (Ωt) < ϑ′4 almost surely.

Then we show the convergence rate for the estimator of the precision matrix as follows.

Theorem 4. Assume Conditions 1-7. Also suppose that ω1−ν
n md = op (1). Then, for a sufficiently large

C > 0 in thresholding parameter (4.14),
(
ĉY,Y,∗t

)−1
is non-singular with probability approaching 1, and

∥∥∥∥(ĉY,Y,∗t

)−1
−
(
cY,Yt

)−1
∥∥∥∥ = Op

(
ω1−ν
n md

)
.

Proof. The proof of this theorem is collected in Appendix G. 1. �

23



5. Monte Carlo Evidence

We conduct Monte Carlo simulation to verify the validity of our methodology.

5.1. Simulation settings

Following the model setup in (4.4) - (4.5) in Section 4, we consider the log-price process Yt =(
Y

(1)
t , Y

(2)
t , . . . , Y

(d)
t

)
of d stocks is generated from a factor model dYt = BtdXt + dZt, where the

common factors Xt and factor loadings Bt are q×1 and d× q time-varying processes, respectively. And

Zt is a d× 1 vector process of idiosyncratic noise components.

In the simulation, we specify

dX
(j)
t = µjdt+ σ

(j)
t dW(j)

t and dZ
(i)
t = νtdB(i)

t ,

where q = 3, j = 1, 2, ..., q. And
{
B(i)
t

}
1≤i≤d

are the independent standard Brownian motions.

The correlation matrix of dW is defined as ρX. The volatility processes of X and Z are simulated

as follows:

d
(
σ

(j)
t

)2
= κj

(
θj −

(
σ

(j)
t

)2
)
dt+ ηjσ

(j)
t dW̃(j)

t and dν2
t = κν

(
θν − ν2

t

)
dt+ ηννtdB̄t

where the correlation between dW(j) and dW̃(j) is ρj .

The first component of X in the simulation is set as the market factor. To guarantee its factor

loadings B•,1 are positive, we simulate the factor loading in the following scheme, for i = 1, · · · , d,

dB
(i,j)
t =


κ̃1

(
θ̃i1 −B

(i,j)
t

)
dt+ ξ̃1

√
B

(i,j)
t dB̃(i,j)

t if j = 1,

κ̃j

(
θ̃ij −B

(i,j)
t

)
dt+ ξ̃jdB̃

(i,j)
t if j ≥ 2.

The parameters are set as follows8: µ = (0.05, 0.03, 0.02) , κ̃ = (1, 2, 3) , ξ̃ = (0.5, 0.6, 0.7) , θ̃1 ∼

U [0.25, 1.75] , θ̃2, θ̃3 ∼ N
(
0, 0.52

)
, κ = (3, 4, 5) , θ = (0.05, 0.04, 0.03) , η = (0.3, 0.4, 0.3) , ρ = (−0.6,−0.4,−0.25) ,

ρX12 = 0.05, ρX13 = 0.1, ρX23 = 0.15, κν = 4, θν = 0.06 and ην = 0.3.

8this is similar to Aı̈t-Sahalia and Xiu (2019) with θν = 0.06 and ην = 0.3
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The processes are simulated in the equidistant grid with ∆tn = 1 second. The observed processes

are contaminated by microstructure noise:

Ξ∗tj = Ξtj + εtj , (5.1)

where Ξ =
(
X(1), X(2), . . . , X(q), Y (1), Y (2), . . . , Y (d)

)
and εtj are i.i.d. (q + d)-dimensional random

vectors, sampled from Nq+d (0,Σε) , with Σε = ΦΦᵀ and Φ = (Φ1,Φ2, . . . ,Φq+d)
ᵀ and Φ1,Φ2, . . . ,Φq+d

are i.i.d. random variables from N
(

0, (0.0005)2
)
.

The time horizon in the simulation experiment is set as: T = 1 day. We assume that a trading day

consists of 6.5 hours for open trading.

5.2. Simulation results for d = 1

We note that for d = 1, the factoring loading B
(1,j)
t is the same as β

(j)
t in model (3.2).

We apply the realized regression procedure by estimating θ̃n, defined in (3.9). To illustrate the

effect of market microstructure noise, we also construct the estimator θ̃n by replacing the spot covari-

ance matrix estimator ĉ
(r,s)
∆Tn,t

with simple CV: ĉt = 1
kn∆τn

∑N∗(t)+kn
j=N∗(t)+1 ∆Ξτ j∆Ξᵀτ j (without noise) and

ĉt = 1
kn∆τn

∑N∗(t)+kn
j=N∗(t)+1 ∆Ξ∗τ j

(
∆Ξ∗τ j

)ᵀ
(with noise). The number of simulation trials is 10000. The

examination is conducted under different settings of sampling frequency. The sampling frequency is set

in two scenarios:

1. ∆τn = 5 seconds and ∆Tn = 468∆τn, with K = 20, J = 3.

2. ∆τn = 15 seconds and ∆Tn = 156∆τn, with K = 10, J = 3.

Table 5.1 shows that in the presence of microstructure noise, the estimator based on Simple CV

becomes inconsistent: it tends to under-estimate the market beta
∫ T

0 β
(1)
t dt, and over-estimate the other

non-market betas
∫ T

0 β
(2)
t dt and

∫ T
0 β

(3)
t dt. When ∆τn = 5 seconds, the magnitude of the estimation

bias for
∫ T

0 β
(1)
t dt is 26.8% of the averaged true value and the bias magnitude for

∫ T
0 β

(2)
t dt and

∫ T
0 β

(3)
t dt

are 81.6% and 230.2% comparing to their averaged true values. It also appears that the estimation bias

(under the market microstructure noise) becomes more severe as the length of the sampling interval

∆τn decreases from 15 to 5 seconds. On the other hand, our proposed estimator (based Smoothed

TSRV) is well behaved, regardless of the sampling interval.
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Table 5.1. Simulation Results for Integrated Beta Estimates

True Value:
∫ T

0
β

(1)
t dt ∆τn = 5 seconds ∆τn = 15 seconds

Averaged Mean: 1.002307 Bias Stdev Bias Stdev

Simple CV without Noise (unobservable) 0.000047 0.017227 0.000256 0.031344
Simple CV with Noise −0.268700 0.349729 −0.248314 0.326741
Smoothed TSRV 0.002764 0.076635 0.002519 0.112432

True Value:
∫ T

0
β

(2)
t dt ∆τn = 5 seconds ∆τn = 15 seconds

Averaged Mean: −0.006275 Bias Stdev Bias Stdev

Simple CV without Noise (unobservable) −0.000238 0.019537 −0.000471 0.035373
Simple CV with Noise 0.005119 0.374072 0.004309 0.350225
Smoothed TSRV 0.000011 0.083769 −0.000045 0.126580

True Value:
∫ T

0
β

(3)
t dt ∆τn = 5 seconds ∆τn = 15 seconds

Averaged Mean: −0.007281 Bias Stdev Bias Stdev

Simple CV without Noise (unobservable) 0.000118 0.022624 0.000358 0.040619
Simple CV with Noise 0.016762 0.460584 0.016331 0.433926
Smoothed TSRV 0.000568 0.096653 0.000924 0.146875

This table reports the summary statistics for the estimation of the three integrated betas, i.e., for p = 1, 2 and

3,
∫ T

0
β

(p)
t dt denotes the integrated p-th beta. The Monte Carlo simulation consists of 10000 trials and ∆τn = 5

and 15 seconds. The Column “Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard

deviation of the estimation error.

To validate the asymptotic behavior of the bias corrected estimator, the finite sample distribution

of the standardized statistics are reported in Figure 5.1, where ∆τn = 5 seconds. Note that the

standardized statistics are calculated by the following formulas

zk =
θ̃

(k)
n −

∫ T
0 β

(k)
t dt(

Σ̂
(k,k)
T

)1/2
, for k = 1, 2, . . . , q, (5.2)

where θ̃
(k)
n is defined in (3.9) and Σ̂

(k,k)
T is defined in (3.13). In Figure 5.1, the finite sample distributions

are approximately normal, with slight fat-tailed. It is worth to emphasize that the edge effects can
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Figure 5.1. Finite Sample Distributions of Standardized Statistics
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Notes. This figure reports the histogram of the 10000 trials simulation for estimating the three integrated betas with ∆τn = 5

seconds over 1 day. The solid blue lines are the standard normal density; the gray histograms with bars of red dashed border are the

distributions of the bias corrected estimator. The standardized statistic zk is defined in formula (5.2), for k = 1, 2, ..., q.

greatly affect the validity of the asymptotic normality in this scenario (i.e., in practice, T /∆Tn should

be a positive integer exactly).

As sampling interval increases, say, to 5 minutes or 10 minutes, one could expect the bias of the

integrated beta estimate using simple CV goes down. However, its variance increases at the same time.

This phenomenon is demonstrated in the signature plot 5.2. So, even when one samples very 10 minutes,

we still recommend our proposed estimator because of its precision.

5.3. Simulation results for high dimension

For d large, we next show the performance of the estimator of the precision matrix
(
ĉY,Y,∗t

)−1
, as d

gets large. The simulation setting remains the same as in Section 5.1. For ease of demonstration, we

fix ∆τn = 5 seconds.

27



Figure 5.2. Signature Plot of Market Beta Estimate
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This figure presents the signature plot for the estimates of integrated market beta
∫ T

0
β

(1)
t dt in the presence

of market microstructure noise. “Estimator 1” denotes the integrated beta estimate based on the Simple CV

estimator with subsampled data. “Estimator 2” denotes integrated beta estimate proposed in this paper which

is based on Smoothed TSRV.
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Figure 5.3. Estimation Performance of the Large Precision Matrix
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This figure compares the estimation performance of the large precision matrix in the presence of microstructure

noise. The precision matrix using Smooth TSRV is indicated by red solid line, while the one using simple CV is

in blue dashed line. The error measure on y-xis is as defined in (5.3).

Consider the spectral norm of the estimation error of the precision matrix, as defined in Theorem

4, as the error measure, i.e.

ERROR =

∥∥∥∥(ĉY,Y,∗t

)−1
−
(
cY,Yt

)−1
∥∥∥∥ . (5.3)

As in Figure 5.3, we see that in the presence of microstructure noise, the precision matrix using

Smoothed TSRV performs satisfactorily, with contained error (red line) even at high dimensionality

situation. However, the precision matrix using simple CV gets worse as d increases from 5 to 200, with

error increasing in logarithmic shape.

6. Empirical Study

In this section, we apply high frequency beta estimation to study the variation of stock betas on earnings

announcement days. We implement the high frequency regression of the intraday returns of the S&P

100 constituent stocks on the returns of exchange-traded fund OEF. The latter serves as a proxy for the

large-cap market returns. The trade prices are extracted from the Trade and Quote (TAQ) database of
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Figure 6.1. Distribution of Earnings Announcements’ Arrival Times
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This figure shows the distribution of the arrival times of the earnings announcements for the S&P 100 constituents

during the sampling period between January 2007 and December 2017.

the New York Stock Exchange (NYSE). In particular, we collect the intraday trade prices of OEF as

well as those of the S&P 100 Index constituents, between 9:35 a.m. EST and 3:55 p.m. EST of each

trading day, from January 2007 to December 2017 (2769 trading days in total). Our spot beta estimate

is then applied to explore the change in betas around the earning announcements.

For the earning data, the dates and times of quarterly earnings announcements are downloaded from

the Thomson Reuters I/B/E/S database for the components of S&P 100 Index ranging from January

2007 to December 2017. The earnings announced at non-trading days are deleted. At the end, 3845

earnings announcements are collected during this sampling period. We can see from Figure 6.1 that for

the stocks in our sample, most earnings announcements arrived right before the market open (6-8 AM)

or right after market close (4-5 PM).

To investigate the beta changes on earnings announcement days, we extended the model in Patton

and Verardo (2012)9 by adding the hourly effects. Specifically, we regress the market beta estimates

9We should note that we deviate from Patton and Verado (2012) in how to define event day. The former paper relabeled

30



βOEF
i,t on event time dummies using the following model:

βOEF
i,t =

2∑
j=−2

16∑
k=10

δj,kIi,j,k,t + γi,1D1,t + γi,2D2,t + · · · γi,10D10,t + εi,t, (6.1)

where βOEF
i,t is the spot beta estimates of stock i on time t by using the following formula, with

ĉOEF, stock i and ĉOEF,OEF being the Smoothed TSCV and Smoothed TSRV estimates,

βOEF
i,t =

ĉOEF, stock i
∆Tn,t

ĉOEF,OEF
∆Tn,t

,

and Ii,day,hour,t are dummy variables defined over a 5-day time window around the earnings announce-

ments, with day= 0 representing the earnings announcement date, and hour= 10, 11, . . . , 16 represent-

ing the hour in each trading day. For each trading day, the spot beta estimates βOEF
i,t are computed

with the 5-second returns over the following 7 time intervals: [9 : 30, 10 : 00], (10 : 00, 11 : 00], · · · ,

(15 : 00, 16 : 00]. The dummy variables D1,t to D10,t are the year fixed effects, corresponding to the 10

years from 2007 to 2016. D11t for year 2017 is excluded for the identification purpose.

In order to get an impression on the hourly behavior of beta, we first conduct aggregating regression

on the entire sample. Figure 6.2 and Table 6.1 suggest that the stock betas stay at the non-announcement

level during most hours over the 5-day window around earnings release. The exceptions occur at the

early hours of market open. In particular, we observe large beta increase at the first hour (i.e. 10am)

on both Day 0 and Day 1. The first-hour beta increase (0.38 with a t−statistic of 10.15) in Day 0 seems

to reflect the incorporation of the earnings news which arrive before the market opens that day; on the

other hand, the first-hour beta increase (0.22 with a t−statistic of 5.94) in Day 1 suggest the impact of

the earnings news which are announced post-4pm from the preceding day. This interpretation is further

confirmed when we zoom in two subsamples, those with earnings announced prior to market opens at

9:30 and those announced after 16:00. Figure 6.3 displays the separation of before- and after-market

earnings announcement impact on beta, with before-market effect on panel (a) and post-market effect on

the announcement at or after 4:00 p.m. on a given date to have the following trading day’s date. In contrast, we follow
the exact calendar day when labeling the announcement day. In other words, “Day 0” in our paper is the day when the
earnings are announced, no matter the announcement time is pre-market, during market open, or post-4pm.

31



Figure 6.2. Changes in Market Beta around Earnings Announcements
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This figure shows the estimated changes in market beta for the five-day window around quarterly earnings

announcements of the components in S&P 100 Index. Black solid line denotes the beta estimates, while the blue

dashed lines denote the 95% confidence intervals from the panel regression (6.1).

Table 6.1. Changes in Market Beta around Earnings Announcements

Day −2 Day −1 Day 0 Day 1 Day 2

Hour Beta Hour Beta Hour Beta Hour Beta Hour Beta

10:00 −0.023 10:00 0.075 10:00 0.382 10:00 0.223 10:00 0.035
(−0.615) (1.985) (10.149) (5.939) (0.925)

11:00 −0.014 11:00 −0.005 11:00 0.096 11:00 2× 10−4 11:00 −0.016
(−0.377) (−0.129) (2.560) (0.007) (−0.438)

12:00 −0.021 12:00 −0.055 12:00 0.036 12:00 −0.007 12:00 −0.055
(−0.567) (−1.460) (0.964) (−0.174) (−1.462)

13:00 −0.060 13:00 −0.086 13:00 −0.024 13:00 −0.057 13:00 −0.088
(−1.592) (−2.280) (−0.642) (−1.518) (−2.350)

14:00 −0.042 14:00 −0.051 14:00 −0.034 14:00 −0.030 14:00 −0.053
(−1.108) (−1.355) (−0.903) (−0.799) (−1.420)

15:00 −0.066 15:00 −0.077 15:00 −0.015 15:00 −0.041 15:00 −0.049
(−1.755) (−2.040) (−0.406) (−1.089) (−1.313)

16:00 −0.045 16:00 −0.039 16:00 0.012 16:00 −0.027 16:00 −0.040
(−1.192) (−1.045) (0.314) (−0.714) (−1.057)

This table reports the beta estimates and related t-statistics over the five days around each earnings announcement

during 2007-2017 for the components of S&P 100 Index. The Day 0 denotes the earnings announcement date.

The Day −1 and Day −2 denotes the two days before the earnings announcement date, and the Day 1 and Day

2 indicate the two days after the earnings announcement date. The t-statistics are shown in parentheses.
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Table 6.2. Distribution of Two Types of News

Before Market After Market Market Open Hours

Good News 2707 945 145
Bad News 68 18 6

panel (b). We should mention that panel (a) also shows a small increase in beta at 10am on Day −1 and

Day +1, when earnings were announced in the morning prior to market open. Since the magnitude of

the latter beta changes is small, we do not put emphasis on its economic implication. Though, one could

not rule out the possibility of overnight information (earnings as well as non-earnings) accumulation

and its impact on first hour beta.

The change in stock betas around different announcement times cannot be explained by good versus

bad news. We can see in Table 6.2 that in our sample from 2007-2017, most of earnings announcements

belong to good news and their arrival times do not follow systematic pattern. We also looked into the

pattern of announcement arrivals during market open hours in Figure 6.4. Among the relatively small

number of announcements arriving over the market open hours, the announcement seems to evenly

spread out from 9:30 to 3pm and then there is an increase in the final hour (3-4PM) of market open

time. The news in the final hour of trading period may also contribute to the beta increase in the next

morning.

33



Figure 6.3. Changes in Market Beta around Earnings Announcements by Separating Data
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(a) beta increase at 10 same day when earnings announced before market open on Day 0
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(b) beta increase at 10 next day when earnings announced after market close on Day 0
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Figure 6.4. Distribution of Earnings Announcements’ Arrival Times between 9:30 and 16:00
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Notes. This figure reports the distribution of the arrival times of the earnings announcements between 9:30 and 16:00.

7. Conclusion

The central contribution of this paper is a feasible estimator of spot beta, which is robust to noise and

asynchronicity. With the help of the spot-version of the Smoothed TSRV estimator, spot beta can be

consistently estimated. There are two direct applications of the spot beta estimates in the current paper.

In the first application, the integrated beta can be consistently estimated by aggregating the spot beta

estimates. After a bias-correction procedure, a fixed dimension central limit theorem is established for

the bias-corrected estimator, with convergence rate which may be arbitrarily close to Op(n
−1/4). In the

second application we assume time-varying factor structure and conditional sparsity. The spot beta

matrix estimator enables the estimation of high dimensional spot covariance and precision matrices.

Simulation results show that our proposed estimators perform well.

As an empirical application, this paper explores the hourly change in beta around earnings an-

nouncements of the S&P 100 constituents. The hourly beta was constructed with the help of Smooth

TSRV using 5-second pre-averaged returns from 2007 to 2017. We separate the impact of pre- and

post-market announcement on beta change, and find that significant beta change takes place in the first

hour of market open.
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Kong, X.-B., Liu, C., 2018. Testing against constant factor loading matrix with large panel high-

frequency data. Journal of Econometrics .

Lintner, J., 1965. The valuation of risk assets and the selection of risky investments in stock portfolios

and capital budgets. Review of Economics and Statistics 47, 13–37.

Markowitz, H., 1952. Portfolio selection. The journal of finance 7 (1), 77–91.

Markowitz, H., 1959. Portfolio Selection. New York.

McLeish, D. L., 1975. A maximal inequality and dependent strong laws. Annals of Probability 3 (5),

829–839.

Mykland, P. A., Zhang, L., 2006. Anova for diffusions and ito processes. The Annals of Statistics 34 (4),

1931–1963.

39



Mykland, P. A., Zhang, L., 2008. Inference for volatility-type objects and implications for hedging.

Statistics and its Interface 1, 255–278.

Mykland, P. A., Zhang, L., 2009. Inference for continuous semimartingales observed at high frequency.

Econometrica 77 (5), 1403–1445.

Mykland, P. A., Zhang, L., 2012. The econometrics of high frequency data. In: Kessler, M., Lindner,

A., Sørensen, M. (Eds.), Statistical Methods for Stochastic Differential Equations. Chapman and

Hall/CRC Press, New York, pp. 109–190.

Mykland, P. A., Zhang, L., 2017. Assessment of uncertainty in high frequency data: The observed

asymptotic variance. Econometrica 85 (1), 197–231.

Mykland, P. A., Zhang, L., Chen, D., 2019. The algebra of two scales estimation, and the s-tsrv: high

frequency estimation that is robust to sampling times. Journal of Econometrics 208 (1), 101–119.

Patton, A. J., Verardo, M., 07 2012. Does Beta Move with News? Firm-Specific Information Flows and

Learning about Profitability. The Review of Financial Studies 25 (9), 2789–2839.

URL https://doi.org/10.1093/rfs/hhs073

Reiß, M., Todorov, V., Tauchen, G., 2015. Nonparametric test for a constant beta between itô semi-
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Appendices

A. Proof of Lemma 1

(i). Plugging (2.13) into (2.19), we obtain:

π̌
(r,s)
∆Tn,t

=
1

∆Tn

N∗(t+∆Tn)∑
i=N∗(t)+1

B̃
(r,s)
i

with

B̃
(r,s)
i =

(
K−J−1∑
p=1

(
K − J − p
K − J

)
∆X(r)

τi−p

)
∆X(s)

τi +
1

(K − J)

(
ε̄
(r)
i−J − ε̄

(r)
i−K

)
ε̄
(s)
i .

Then we have:

π̌
(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

=
1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+1

B̃
(r1,s1)
i B̃

(r2,s2)
i +$∆Tn,t with $∆Tn,t =

1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+2

i−N∗(t)−1∑
l=1

B̃
(r1,s1)
i−l

 B̃
(r2,s2)
i [2].

(A.1)

Therefore, E
(
π̌

(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

)
= 1

∆T2
n

∑N∗(t+∆Tn)

i=N∗(t)+1 E
[
B̃

(r1,s1)
i B̃

(r2,s2)
i

]
, where

E
[
B̃

(r1,s1)
i B̃

(r2,s2)
i

]
= Op

(
∆τn,i (K − J) ∆τ+

n +
1

(K − J)2 (M−n )2
)
, (A.2)

and finally, we obtain:

E
(
π̌

(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

)
= Op

(
∆T−1

n (K − J) ∆τ+
n +

N∗ (t+ ∆Tn)−N∗ (t)

∆T 2
n (K − J)2 (M−n )2

)

uniformly. By Condition 2, we know that N∗ (t+ ∆Tn)−N∗ (t) ∼ N∆T−1
n which implies that

N∗ (t+ ∆Tn)−N∗ (t)

∆T 2
n (K − J)2 (M−n )2 ∼ N

∆Tn (K − J)2 (M−n )2 = O
(
a2
n∆T−1

n

)
.

Therefore, we obtain (2.20).

On the other hand, we know that π̌
(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

−E
(
π̌

(r1,s1)
∆Tn,t

π̌
(r2,s2)
∆Tn,t

)
has the same order as $∆Tn,t, which is defined
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in (A.1). In what follows, we prove ‖$∆Tn,t‖2 = Op
(
a2
n∆T−1

n

)
. Note that

E
[
$2

∆Tn,t

]
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1

∆T 4
n

E
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(r2,s2)
i

)2
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[2], (A.3)

where by (A.2),

E

[(
B̃

(r1,s1)
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)2 (
B̃

(r2,s2)
i

)2
]

[2] = Op
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Then it is straightforward to see that supt E
[
$2

∆Tn,t

]
= Op

(
a4
n∆T−2

n

)
. Therefore, we obtain (2.21).

(ii). Recall the formulas (2.16), (2.18), (2.19) and (2.12), we have:

π̃
(r,s)
∆Tn,t
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(r,s)
∆Tn,t

+
1
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(
ẽ
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.

Moreover, by direct calculation, we have:
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where [2] denotes the summation by switching (r1, s1) and (r2, s2). Because supt,r,s

∥∥∥ẽ(r,s)
t
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2

= Op
(
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n
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, then we obtain

(2.22). Based on (2.20), we have supt,r,s
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. Applying Cauchy-Schwarz inequality on (A.5), we
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thus (2.23) got proved. �

B. Proof of Lemma 2

The estimation error can be decomposed as in (3.7). Using integration by parts, we obtain

∫ Ti

Ti−1

(
βs − βTi−1

)
ds =

∫ Ti

Ti−1

(Ti − s) dβs.
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Thus,
∥∥∥∫ Ti

Ti−1

(
βs − βTi−1

)
ds
∥∥∥

2
= Op

(
∆T

3/2
n

)
which implies that

RDiscrete = Op (∆Tn) . (B.1)

On the other hand, because the estimation error of spot beta can be further decomposed as:

β̄∆Tn,Ti−1
− βTi−1
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(
c̄X,X∆Tn,Ti−1

)−1 (
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)
, (B.3)

where c̄, ĉ, π̄, π̃ and β̄ are defined in (2.16), (2.18), and (3.6).

Again from integration by parts, we have:
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which still holds for π̄X,X
∆Tn,t

by switching the superscript from “X,Y ” to “X,X” in above equation. Following the same

techniques in Lemma 4 of Mykland and Zhang (2006), we obtain that supt
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Similar to Corollary 1 in Mykland and Zhang (2006), since inft λmin

(
cX,Xt

)
> 0 (Condition 4), we obtain:

sup
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− βTi−1

∥∥∥ = Op
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n
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(B.5)

since the finite dimensional vector norms are equivalent. – On the other hand, by formula (2.20) in Lemma 1, we know

that supt
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= Op
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)
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. Applying Lemma 1 in Mykland and Zhang

(2006), we obtain:
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Then combining (B.4)-(B.6) and B.3, by Taylor expansion, we obtain:

sup
n,i
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∥∥∥ = Op
((
a2
n∆T−1

n

)1/2−ε)
. (B.7)

This implies that supn,i

∥∥∥β̂∆Tn,Ti−1
− βTi−1

∥∥∥ = op (1) . Note that
∥∥RSpot
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2
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2
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Thus, this lemma has been proved.
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C. Proof of Theorem 1

Before stating the second order behavior of θ̂n, let’s define a new type of observed covariation for processes Θt and Ξt:

[Θ,Φ](B)
t ,

∑
Ti≤t

(
ΘTi −ΘTi−1

) (
ΦTi − ΦTi−1

)
. (C.1)

The statement in Remark 3 applies equally to this quadratic variation.

The estimation error may be decomposed as follows:

a−2
n ∆Tn
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θ̂n − θ + a2

n∆T−1
n ϕT

)
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(
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)
, (C.2)

where RDiscrete is defined in (3.7), and

RSpot-V = RSpot-V-I +RSpot-V-II, (C.3)

RSpot-B = RSpot-B-I +RSpot-B-II +RSpot-B-III, (C.4)

and
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with
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First of all, by Lemma 1 and definition (2.19), it is easy to see that

RSpot-V-I = Op (an) . (C.9)
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Second, recall the definitions (2.18) and (3.5), by direct calculation, we obtain:
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,

and thus, ξSpot-V-II
∆Tn,Ti−1

could be further simplied as:

ξSpot-V-II
∆Tn,Ti−1

= ξ̄
Spot-V-II
∆Tn,Ti−1

− ξ̃Spot-V-II

∆Tn,Ti−1
.

where

ξ̃
Spot-V-II

∆Tn,Ti−1
=

(
c̄X,X∆Tn,Ti−1

cX,XTi−1

)−1

π̄X,X∆Tn,Ti−1

(
π̌X,Y∆Tn,Ti−1

− βTi−1
π̌X,X∆Tn,Ti−1

)
+
(
c̄X,X∆Tn,Ti−1

)−1 (
β̄∆Tn,Ti−1

− βTi−1

)
π̌X,X∆Tn,Ti−1

,

ξ̄
Spot-V-II
∆Tn,Ti−1

=
1

∆Tn

(
c̄X,X∆Tn,Ti−1

)−1 [(
ẽX,YTi

− ẽX,YTi−1

)
− β̄∆Tn,Ti−1

(
ẽX,XTi

− ẽX,XTi−1

)]
.

Denote by R̃Spot-V-II =
∑B
i=1 ξ̃

Spot-V-II

∆Tn,Ti−1
∆Tn and R̄Spot-V-II =

∑B
i=1 ξ̄

Spot-V-II
∆Tn,Ti−1

∆Tn, then we know that

RSpot-V-II = R̄Spot-V-II − R̃Spot-V-II. (C.10)

On one hand, by the results of Lemma 1 and eq. (B.5)-(B.7) we know that supi

∣∣∣E (ξ̃Spot-V-II

∆Tn,Ti−1

)∣∣∣ = op (an) and by

Cauchy-Swartz inequality, we have supiVar
(
ξ̃

Spot-V-II

∆Tn,Ti−1

)
= Op

(
a2
n

)
. Based on this fact, we know that

R̃Spot-V-II = op (an) . (C.11)

On the other hand, note that R̄Spot-V-II could be rewrite as follows:

R̄Spot-V-II =

B−1∑
i=1

(
c̄X,X∆Tn,Ti

c̄X,X∆Tn,Ti−1

)−1 (
c̄X,X∆Tn,Ti

− c̄X,X∆Tn,Ti−1

)(
ẽX,YTi

− β̄∆Tn,Ti
ẽX,XTi

)
+

B−1∑
i=1

(
c̄X,X∆Tn,Ti−1

)−1 (
β̄∆Tn,Ti

− β̄∆Tn,Ti−1

)
ẽX,XTi

+Op
(
a2
n

)
. (C.12)

Because

c̄X,X∆Tn,Ti
− c̄X,X∆Tn,Ti−1

=

∫ (i+1)∆Tn

i∆Tn

(
Ti+1 − u

∆Tn

)
dcX,Xu +

∫ i∆Tn

(i−1)∆Tn

(
u− Ti−1

∆Tn

)
dcX,Xu ,

we know that
∥∥∥c̄X,X∆Tn,Ti

− c̄X,X∆Tn,Ti−1

∥∥∥
2

= Op
(

∆T
1/2
n

)
and by Tayor expansion, we have

∥∥∥β̄∆Tn,Ti
− β̄∆Tn,Ti−1

∥∥∥
2

= Op
(

∆T
1/2
n

)
.

Based on Cauchy-Swartz inequality and formula (C.12), we obtain:

R̄Spot-V-II = Op
(

∆T−1/2
n n−2α

)
= op (an) . (C.13)
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Plugging (C.11) and (C.13) into (C.10),

RSpot-V-II = op (an) , (C.14)

and by plugging (C.9) and (C.14) into (C.3), we obtain:

RSpot-V = RSpot-V-I + op (an) = Op (an) . (C.15)

Next, we calculate the order of RSpot-B-I. Recall the definitions (2.19) and (C.1), we could rewrite ϕ̃T as follows:

ϕ̃T = a−2
n ∆Tn

B∑
i=1

(
cX,XTi−1

)−2
(
π̌X,X∆Tn,Ti−1

π̌X,Y∆Tn,Ti−1
− βTi−1

(
π̌X,X∆Tn,Ti−1

)2
)

∆Tn,

thus, we know that

RSpot-B-I =

B∑
i=1

ξSpot-B-I
∆Tn,Ti−1

∆Tn,

with

ξSpot-B-I
∆Tn,Ti−1

=
(
cX,XTi−1

)−2
(
π̌X,X∆Tn,Ti−1

π̌X,Y∆Tn,Ti−1
− βTi−1

(
π̌X,X∆Tn,Ti−1

)2
)

−
(
ĉX,X∆Tn,Ti−1

c̄X,X∆Tn,Ti−1

)−1

π̃X,X∆Tn,Ti−1

(
π̃X,Y∆Tn,Ti−1

− β̄∆Tn,Ti−1
π̃X,X∆Tn,Ti−1

)
.

By algebraic calculation, ξSpot-B-I
∆Tn,Ti−1

could be further simplified as follows:

ξSpot-B-I
∆Tn,Ti−1

=
(
cX,XTi−1

)−2 (
β̄∆Tn,Ti−1

− βTi−1

)(
π̃X,X∆Tn,Ti−1

)2

−
(
cX,XTi−1

)−2 (
η

(1,1,1,2)
∆Tn,Ti−1

− βTi−1
η

(1,1,1,1)
∆Tn,Ti−1

)
+

[(
cX,XTi−1

)−2

−
(
ĉX,X∆Tn,Ti−1

c̄X,X∆Tn,Ti−1

)−1
](

π̃X,X∆Tn,Ti−1
π̃X,Y∆Tn,Ti−1

− β̄∆Tn,Ti−1

(
π̃X,X∆Tn,Ti−1

)2
)
,

where

(
cX,XTi−1

)−2

−
(
ĉX,X∆Tn,Ti−1

c̄X,X∆Tn,Ti−1

)−1

=
(
cX,XTi−1

)−2 (
c̄X,X∆Tn,Ti−1

)−1

π̄X,X∆Tn,Ti−1

+
(
cX,XTi−1

c̄X,X∆Tn,Ti−1
ĉX,X∆Tn,Ti−1

)−1 (
π̃X,X∆Tn,Ti−1

+ π̄X,X∆Tn,Ti−1

)
.

By the results of Lemma 1 and eq. (B.5)-(B.7), we know that supi

∣∣∣E (ξ̃Spot-B-I

∆Tn,Ti−1

)∣∣∣ = Op
(
a4
n∆T−2

n

)
and by Cauchy-Swartz

inequality, we have supiVar
(
ξ̃

Spot-B-I

∆Tn,Ti−1

)
= Op

(
a6
n∆T−3

n

)
. Then it is easy to see that

RSpot-B-I = Op
(
a4
n∆T−2

n

)
+Op

(
a3
n∆T−1

n

)
. (C.16)

Next, for RSpot-B-II, because of Remark 3 in Section 2.2, we know that a−2
n

[
MX,X
n ,MX,Y

n

](B)

u

p−→
[
MX,X
∞ ,MX,Y

∞
]
u
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and a−2
n

[
MX,X
n ,MX,X

n

](B)

u

p−→
[
MX,X
∞ .MX,X

∞
]
u
. Recall the definition (C.7), we have: ϕT

p−→ ϕ̃T , that is:

RSpot-B-II = op
(
a2
n∆T−1

n

)
. (C.17)

Note that

β̄∆Tn,Ti−1
− β∆Tn,Ti−1

=
(
c̄X,X∆Tn,Ti−1

)−1 (
π̄X,Y∆Tn,Ti−1

− βTi−1
π̄X,X∆Tn,Ti−1

)
,

and recall the definition (C.8) and apply Lemma 1 and eq. (B.5)-(B.7), it is easy to see that

RSpot-B-III = Op (∆Tn) . (C.18)

Then plugging (C.16), (C.17) and (C.18) into (C.4), we obtain:

RSpot-B = Op (∆Tn) + op
(
a2
n∆T−1

n

)
. (C.19)

Finally, plugging (B.1), (C.15) and (C.19) into (C.2), and when a−2
n ∆Tn →∞ and a−1

n ∆Tn → 0 we have:

a−2
n ∆Tn

(
θ̂n − θ + a2

n∆T−1
n ϕT

)
= op (1) .

The theorem is thus proved.

D. The Central Limit Theorem in the Scalar Case.

We here display the CLT in the case of one-dimensional X and Y , along with the proof of the result. The purpose of this

section is to facilitate the passage to the multi-regressor case, particularly on the level of the proofs.

Theorem 5. (Central Limit Theorem for θ̃n) Assume Conditions 1-3, that inf0≤t≤T c
X,X
t > 0, and also that a−1

n ∆Tn → 0

and a
−3/2
n ∆Tn →∞. We then have:

a−1
n

(
θ̃n − θ

)
L−→ N (0,ΣT ) ,

stably, with

Σt ,
∫ t

0

(
cX,Xu

)−2

(d
[
MX,Y
∞ ,MX,Y

∞

]
u
− 2βud

[
MX,Y
∞ ,MX,X

∞

]
u

+ β2
ud
[
MX,X
∞ ,MX,X

∞

]
u
). (D.1)

Proof of Theorem 5.

θ̃n − θ = RSpot-V +RAdjusted-Spot-B −RDiscrete, (D.2)

where RSpot-V and RDiscrete are defined in (C.3) and (3.7), respectively, and

RAdjusted-Spot-B = RAdjusted-Spot-B-I +RAdjusted-Spot-B-II +RAdjusted-Spot-B-III, (D.3)
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and

RAdjusted-Spot-B-I =

B∑
i=1

ξAdj-Spot-B-I
∆Tn,Ti−1

∆Tn,

RAdjusted-Spot-B-II =

B∑
i=1

ξAdj-Spot-B-II
∆Tn,Ti−1

∆Tn,

RAdjusted-Spot-B-III = RSpot-B-III, (D.4)

with

ξAdj-Spot-B-I
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Tn,i−1

)−2

π̃X,X∆Tn,Ti−1

(
π̃X,Y∆Tn,Ti−1

− β̂∆Tn,Ti−1
π̃X,X∆Tn,Ti−1

)
−
(
ĉX,X∆Tn,Ti−1

c̄X,X∆Tn,Ti−1

)−1

π̃X,X∆Tn,Ti−1

(
π̃X,Y∆Tn,Ti−1

− β̄∆Tn,Ti−1
π̃X,X∆Tn,Ti−1

)
,

ξAdj-Spot-B-II
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Tn,i−1

)−1 (
φ̂
X,X,X,Y

∆Tn,Tn,i−1
− β̂∆Tn,Tn,i−1

φ̂
X,X,X,X

∆Tn,Tn,i−1

)
−
(
ĉX,X∆Tn,Tn,i−1

)−2

π̃X,X∆Tn,Ti−1

(
π̃X,Y∆Tn,Ti−1

− β̂∆Tn,Ti−1
π̃X,X∆Tn,Ti−1

)
,

and RSpot-B-III being defined in (C.8).

Note that by direct calculation,

ξAdj-Spot-B-I
∆Tn,Ti−1

= −
(
ĉX,X∆Tn,Tn,i−1

)−2 (
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,X∆Tn,Ti−1

)2 (
π̃X,Y∆Tn,Ti−1

− β̂∆Tn,Ti−1
π̃X,X∆Tn,Ti−1

)
−
(
ĉX,X∆Tn,Ti−1

c̄X,X∆Tn,Ti−1

)−1 (
π̃X,X∆Tn,Ti−1

)2 (
β̂∆Tn,Ti−1

− β̄∆Tn,Ti−1

)
.

Based on (B.5)-(B.7), we know that supi

∣∣∣ξAdj-Spot-B-I
∆Tn,Ti−1

∣∣∣ = Op
(
a4
n∆T−2

n

)
and supiVar

(
ξAdj-Spot-B-I

∆Tn,Ti−1

)
= Op

(
a6
n∆T−3

n

)
. Then

it is easy to see that

RAdjusted-Spot-B-I = Op
(
a4
n∆T−2

n

)
+Op

(
a3
n∆T−1

n

)
. (D.5)

Next, we consider the size of RAdjusted-Spot-B-II. Note that it could be simplified as:

ξAdj-Spot-B-II
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Tn,i−1

)−2 (
η̃X,X,X,Y∆Tn,Tn,i−1

− β̂∆Tn,Tn,i−1
η̃X,X,X,X∆Tn,Tn,i−1

)
,

where η̃X,X,X,X∆Tn,Tn,i−1
= η̃

(1,1,1,1)
∆Tn,Tn,i−1

and η̃X,X,X,Y∆Tn,Tn,i−1
= η̃

(1,1,1,2)
∆Tn,Tn,i−1

with

η̃
(r1,s1,r2,s2)
∆Tn,Tn,i−1

, ϕ̂(r1,s1,r2,s2)
∆Tn,Tn,i−1

− π̃(r1,s1)
∆Tn,Ti−1

π̃
(r2,s2)
∆Tn,Ti−1

, (D.6)

and

ϕ̂
(r1,s1,r2,s2)
∆Tn,Tn,i−1

, ϕ̌(r1,s1)
∆Tn,Tn,i−1

ϕ̌
(r2,s2)
∆Tn,Tn,i−1

.
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To find the size of η̃
(r1,s1,r2,s2)
∆Tn,Tn,i−1

, let’s define two other quantities:

ϕ̄
(r1,s1,r2,s2)
∆Tn,Tn,i−1

=
1

4
π̃

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
π̃

(r2,s2)

∆Tn/2,(i−1/2)∆Tn
+

1

4
π̃

(r1,s1)

∆Tn/2,(i−1)∆Tn
π̃

(r2,s2)

∆Tn/2,(i−1)∆Tn
, (D.7)

ψ
(r,s)
∆Tn,Tn,i−1

= c̄
(r,s)

∆Tn/2,(i−1/2)∆Tn
− c̄(r,s)∆Tn/2,(i−1)∆Tn

. (D.8)

Therefore, note that

ĉ
(r,s)

∆Tn/2,(i−1/2)∆Tn
− ĉ(r,s)∆Tn/2,(i−1)∆Tn

= ψ
(r,s)
∆Tn,Tn,i−1

+ π̃
(r,s)

∆Tn/2,(i−1/2)∆Tn
− π̃(r,s)

∆Tn/2,(i−1)∆Tn
,

then we could decompose η̃
(r1,s1,r2,s2)
∆Tn,Tn,i−1

as follows:

η̃
(r1,s1,r2,s2)
∆Tn,Tn,i−1

=
(
ϕ̂

(r1,s1,r2,s2)
∆Tn,Tn,i−1

− ϕ̄(r1,s1,r2,s2)
∆Tn,Tn,i−1

)
+
(
ϕ̄

(r1,s1,r2,s2)
∆Tn,Tn,i−1

− π̃(r1,s1)
∆Tn,Ti−1

π̃
(r2,s2)
∆Tn,Ti−1

)
,

where ϕ̄
(r1,s1,r2,s2)
∆Tn,Tn,i−1

is defined in (D.7), and it is straightforward to obtain:

π̃
(r1,s1)
∆Tn,Ti−1

π̃
(r2,s2)
∆Tn,Ti−1

− ϕ̄(r1,s1,r2,s2)
∆Tn,Tn,i−1

=
1

∆T 2
n

(
M

(r1,s1)
i∆Tn

−M (r1,s1)

(i−1/2)∆Tn

)(
M

(r2,s2)

(i−1/2)∆Tn
−M (r2,s2)

(i−1)∆Tn

)
[2]

+
2

∆T 2
n

(
M

(r1,s1)
i∆Tn

−M (r1,s1)

(i−1/2)∆Tn

)(
ẽ

(r2,s2)

(i−1/2)∆Tn
− ẽ(r2,s2)

(i−1)∆Tn

)
[2]

+
1

∆T 2
n

(
ẽ

(r1,s1)
i∆Tn

− ẽ(r1,s1)

(i−1/2)∆Tn

)(
ẽ

(r2,s2)

(i−1/2)∆Tn
− ẽ(r2,s2)

(i−1)∆Tn

)
[2],

and

ϕ̂
(r1,s1,r2,s2)
∆Tn,Tn,i−1

− ϕ̄(r1,s1,r2,s2)
∆Tn,Tn,i−1

=
1

4
ψ

(r1,s1)
∆Tn,Tn,i−1

ψ
(r2,s2)
∆Tn,Tn,i−1

− 1

4
π̃

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
π̃

(r2,s2)

∆Tn/2,(i−1)∆Tn
[2]

+
1

4

(
π̃

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
− π̃(r1,s1)

∆Tn/2,(i−1)∆Tn

)
ψ

(r2,s2)
∆Tn,Tn,i−1

[2],

where ψ
(r,s)
∆Tn,Tn,i−1

is defined in (D.8). Because we can further simplify ψ
(r,s)
∆Tn,Tn,i−1

as follows:

ψ
(r,s)
∆Tn,Tn,i−1

=

∫ i∆Tn

(i−1/2)∆Tn

(
Tn,i − u
∆Tn/2

)
dc(r,s)u +

∫ (i−1/2)∆Tn

(i−1)∆Tn

(
u− Tn,i−1

∆Tn/2

)
dc(r,s)u ,

then we know that supi

∥∥∥ψ(r,s)
i

∥∥∥
2

= Op
(

∆T
1/2
n

)
. Combining the formula (B.6), we know that supi

∣∣∣ξAdj-Spot-B-II
∆Tn,Ti−1

∣∣∣ =

Op
(
a4
n∆T−2

n

)
and supiVar

(
ξAdj-Spot-B-II

∆Tn,Ti−1

)
= Op

(
a4
n∆T−2

n

)
, and finally we obtain:

RAdjusted-Spot-B-II = Op
(
a4
n∆T−2

n

)
+Op

(
a2
n∆T−1/2

n

)
. (D.9)
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By formulas (C.18) and (D.4), we have:

RAdjusted-Spot-B-III = Op (∆Tn) . (D.10)

Plugging (D.5), (D.9), (D.10), (D.3), (C.15) and (B.1) into (D.2), if we assume that a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn → ∞,

we have:

θ̃n − θ = RSpot-V-I + op (an) .

Recall the definition (C.3), we know that

〈
RSpot-V-I, RSpot-V-I

〉
t

=

∫ t

0

(
cX,Xu

)−2
(
d
[
MX,Y ,MX,Y

](B)

u
− 2βud

[
MX,Y ,MX,X

](B)

u
+ β2

ud
[
MX,X ,MX,X

](B)

u

)
,

and, by Remark 3 in Section 2.2, we have a−2
n

〈
RSpot-V-I, RSpot-V-I

〉
t

p−→ Σt, and thus the theorem is proved.

E. Proof of Theorem 2

The estimation error could be decomposed as:

θ̃n − θ = RSpot-V + RAdjusted-Spot-B −RDiscrete, (E.1)

where RDiscrete is defined in (3.7), and

RSpot-V = RSpot-V-I + RSpot-V-II, (E.2)

RAdjusted-Spot-B = RAdjusted-Spot-B-I + RAdjusted-Spot-B-II + RAdjusted-Spot-B-III, (E.3)

and

RSpot-V-I =

B∑
i=1

ξSpot-V-I
∆Tn,Ti−1

∆Tn and RSpot-V-II =

B∑
i=1

ξSpot-V-II
∆Tn,Ti−1

∆Tn,

RAdjusted-Spot-B-I =

B∑
i=1

ξAdj-Spot-B-I
∆Tn,Ti−1

∆Tn and RAdjusted-Spot-B-II =

B∑
i=1

ξAdj-Spot-B-II
∆Tn,Ti−1

∆Tn,

RAdjusted-Spot-B-III =

B∑
i=1

(
β̄∆Tn,Ti−1

− βTi−1

)
∆Tn, (E.4)
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with

ξSpot-V-I
∆Tn,Ti−1

=
(
cX,XTi−1

)−1 (
π̌X,Y

∆Tn,Ti−1
− π̌X,X

∆Tn,Ti−1
βTi−1

)
,

ξSpot-V-II
∆Tn,Ti−1

= β̂∆Tn,Ti−1
− β̄∆Tn,Ti−1

− ξSpot-V-I
∆Tn,Ti−1

+
(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

(
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̄∆Tn,Ti−1

)
,

ξAdj-Spot-B-I
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̂∆Tn,Ti−1

)
−
(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

(
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̄∆Tn,Ti−1

)
,

ξAdj-Spot-B-II
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Ti−1

)−1 (
φ̂
X,X,X,Y

∆Tn,Ti−1
− φ̂

X,X,X,X

∆Tn,Ti−1
β̂∆Tn,Ti−1

)
−
(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̂∆Tn,Ti−1

)
.

First of all, it is easy to see that

RSpot-V-I = Op (an) .

Note that,

β̂∆Tn,Ti−1
− β̄∆Tn,Ti−1

=
(
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̄∆Tn,Ti−1

)
−
(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

(
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̄∆Tn,Ti−1

)
,

then ξSpot-V-II
∆Tn,Ti−1

could be further simplified as:

ξSpot-V-II
∆Tn,Ti−1

= ξ̄
Spot-V-II
∆Tn,Ti−1

− ξ̃
Spot-V-II

∆Tn,Ti−1

where

ξ̃
Spot-V-II

∆Tn,Ti−1
=

(
c̄X,X∆Tn,Ti−1

)−1

π̄X,X
∆Tn,Ti−1

(
cX,XTi−1

)−1 (
π̌X,Y

∆Tn,Ti−1
− π̌X,X

∆Tn,Ti−1
βTi−1

)
+
(
c̄X,X∆Tn,Ti−1

)−1

π̌X,X
∆Tn,Ti−1

(
β̄∆Tn,Ti−1

− βTi−1

)
,

ξ̄
Spot-V-II
∆Tn,Ti−1

=
1

∆Tn

(
c̄X,X∆Tn,Ti−1

)−1 [(
ẽX,YTi

− ẽX,YTi−1

)
−
(
ẽX,XTi

−ẽX,XTi−1

)
β̄∆Tn,Ti−1

]
.

Denote by R̃Spot-V-II =
∑B
i=1 ξ̃

Spot-V-II

∆Tn,Ti−1
∆Tn and R̄Spot-V-II =

∑B
i=1 ξ̄

Spot-V-II
∆Tn,Ti−1

∆Tn, then we know that

RSpot-V-II = R̄Spot-V-II − R̃Spot-V-II. (E.5)
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Following the similar discussion in the single regressor case, it is easy to see that R̃Spot-V-II = op (an) . Moreover, because

R̄Spot-V-II =

B−1∑
i=1

(
c̄X,X∆Tn,Ti−1

)−1 (
c̄X,X∆Tn,Ti

− c̄X,X∆Tn,Ti−1

)(
c̄X,X∆Tn,Ti

)−1 (
ẽX,YTi

− ẽX,XTi
β̄∆Tn,Ti

)
+

B∑
i=1

(
c̄X,X∆Tn,Ti−1

)−1

ẽX,XTi

(
β̄∆Tn,Ti

− β̄∆Tn,Ti−1

)
+Op

(
a2
n

)
,

and by similar technique as in the single regressor case, we know that R̄Spot-V-II = Op
(
a2
n∆T

−1/2
n

)
. Therefore, we obtain:

RSpot-V-II = op (an) .

That is:

RSpot-V = RSpot-V-I + op (an) = Op (an) .

Next, by direct calculation, we have:

ξAdj-Spot-B-I
∆Tn,Ti−1

= −
[(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

]2 (
β̂∆Tn,Ti−1

− β̄∆Tn,Ti−1

)
−
[(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

]2 (
c̄X,X∆Tn,Ti−1

)−1 (
π̃X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1
β̄∆Tn,Ti−1

)
,

and comparing with the case of a single regressor, we have:

RAdjusted-Spot-B-I = Op
(
a4
n∆T−2

n

)
+Op

(
a3
n∆T−1

n

)
.

On the other hand, note that ξAdj-Spot-B-II
∆Tn,Ti−1

could be rewrite as follows:

ξAdj-Spot-B-II
∆Tn,Ti−1

=
(
ĉX,X∆Tn,Ti−1

)−1 [
η̃X,X,X,Y

∆Tn,Ti−1
− η̃X,X,X,X

∆Tn,Ti−1
β̂∆Tn,Ti−1

]
,

where

η̃X,X,X,Y
∆Tn,Ti−1

= φ̂
X,X,X,Y

∆Tn,Ti−1
− π̃X,X

∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,Y
∆Tn,Ti−1

,

η̃X,X,X,X
∆Tn,Ti−1

= φ̂
X,X,X,X

∆Tn,Ti−1
−π̃X,X

∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,X
∆Tn,Ti−1

.

Let’s define another intermediate variable:

φ̄
X,X,X,Y
∆Tn,Ti−1

= ϕ̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

ϕ̃X,Y
∆Tn,Ti−1

,
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where ϕ̃X,X
∆Tn,Ti−1

=
{
ϕ̃

(r,s)
∆Tn,Tn,i−1

}
1≤r,s≤q

and ϕ̃X,Y
∆Tn,Ti−1

=
{
ϕ̃

(r,q+l)
∆Tn,Tn,i−1

}
1≤r≤q

with

ϕ̃
(r,s)
∆Tn,Tn,i−1

=
1

2

(
π̃

(r,s)

∆Tn/2,(i−1/2)∆Tn
− π̃(r,s)

∆Tn/2,(i−1)∆Tn

)
.

Similarly we could define φ̄
X,X,X,X
∆Tn,Ti−1

= ϕ̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

ϕ̃X,X
∆Tn,Ti−1

.

Note that

η̃X,X,X,Y
∆Tn,Ti−1

=
(
φ̂
X,X,X,Y

∆Tn,Ti−1
− φ̄X,X,X,Y

∆Tn,Ti−1

)
+

(
φ̄
X,X,X,Y
∆Tn,Ti−1

− π̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,Y
∆Tn,Ti−1

)
,

where recall the definition ψ in (D.8), and because ϕ̌X,Y
∆Tn,Tn,i−1

−ϕ̃X,Y
∆Tn,Tn,i−1

= 1
2
ψX,Y

∆Tn,Tn,i−1
and ϕ̌X,X

∆Tn,Tn,i−1
−ϕ̃X,X

∆Tn,Tn,i−1
=

1
2
ψX,X

∆Tn,Tn,i−1
, we have:

φ̂
X,X,X,Y

∆Tn,Ti−1
− φ̄X,X,X,Y

∆Tn,Ti−1
=

1

2
ϕ̃X,X

∆Tn,Tn,i−1

(
ĉX,X∆Tn,Ti−1

)−1

ψX,Y
∆Tn,Tn,i−1

+
1

2
ψX,X

∆Tn,Tn,i−1

(
ĉX,X∆Tn,Ti−1

)−1

ϕ̃X,Y
∆Tn,Ti−1

+
1

4
ψX,X

∆Tn,Tn,i−1

(
ĉX,X∆Tn,Ti−1

)−1

ψX,Y
∆Tn,Tn,i−1

,

and moreover because π̃
(r,s)
∆Tn,Ti−1

= 1
2
π̃

(r,s)

∆Tn/2,(i−1/2)∆Tn
+ 1

2
π̃

(r,s)

∆Tn/2,(i−1)∆Tn
then we have:

π̃X,X
∆Tn,Ti−1

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,Y
∆Tn,Ti−1

− φ̄X,X,X,Y
∆Tn,Ti−1

=
1

2
π̃X,X

∆Tn/2,(i−1/2)∆Tn

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,Y
∆Tn/2,(i−1)∆Tn

+
1

2
π̃X,X

∆Tn/2,(i−1)∆Tn

(
ĉX,X∆Tn,Ti−1

)−1

π̃X,Y
∆Tn/2,(i−1/2)∆Tn

.

Finally, comparing with the single regressor case, we obtain:

RAdjusted-Spot-B-II = Op
(
a4
n∆T−2

n

)
+Op

(
a2
n∆T−1/2

n

)
, (E.6)

and

RAdjusted-Spot-B-III = Op (∆Tn) . (E.7)

Recall the results in Lemma 2, we have RDiscrete = Op (∆Tn) , then we have the final representation of the estimation error

as:

θ̃n − θ = RSpot-V-I + op (an) .
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In order to find the representation of
〈
RSpot-V-I,RSpot-V-I

〉
t
, We first define:

[
MX,Y ,MX,Y

](r,k,B)

t
,

∑
Ti≤t

(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
M

(k,q+l)
Ti

−M (k,q+l)
Ti−1

)
,

[
MX,Y ,MX,X

](r,k,B)

t
,

∑
Ti≤t

(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
MX,X
Ti
−MX,X

Ti−1

)
•,k

,

[
MX,X,MX,X

](r,k,B)

t
,

∑
Ti≤t

(
MX,X
Ti
−MX,X

Ti−1

)ᵀ
r,•

(
MX,X
Ti
−MX,X

Ti−1

)
k,•

. (E.8)

It is easy to see that
[
MX,Y ,MX,Y

](r,k,B)

t
is a scalar process and

[
MX,Y ,MX,X

](r,k,B)

t
is a q × 1 column vector process

and
[
MX,X,MX,X

](r,k,B)

t
is a q × q matrix process. If we define At ,

(
cX,Xt

)−1

, then:

〈
RSpot-V-I,RSpot-V-I

〉
t

=

∫ t

0

Aud [Φ,Φ](B)
u Au,

where d [Φ,Φ](B)
u =

{
d [Φ,Φ](r,k,B)

u

}
1≤r,k≤q

is a q × q matrix and its (r, k)−th element is expressed as:

d [Φ,Φ](r,k,B)
u = d

[
MX,Y ,MX,Y

](r,k,B)

u
− βᵀ

ud
[
MX,Y ,MX,X

](r,k,B)

u

−βᵀ
ud
[
MX,Y ,MX,X

](k,r,B)

u
+ βᵀ

ud
[
MX,X,MX,X

](r,k,B)

u
βu,

then the (r, k)−th element of
〈
RSpot-V-I,RSpot-V-I

〉
t

can be represented as follows:

〈
RSpot-V-I,RSpot-V-I

〉(r,k)

t
=

∫ t

0

(Au)ᵀ•,r d [Φ,Φ](B)
u (Au)•,k .

The proof of this representation is collected in Appendix F.

From Remark 3, we know that a−2
n [Φ,Φ](B)

t

p−→ Λt, and thus it is easy to see that

a−2
n

〈
RSpot-V-I,RSpot-V-I

〉
t

p−→ Σt.

The theorem is proved. �

F. Proof of Covariance Matrix Representation

Define ΦTi =
{

Φ
(k)
Ti

}
1≤k≤q

and

ΦTi =
(
MX,Y
Ti
−MX,Y

Ti−1

)
−
(
MX,X
Ti
−MX,X

Ti−1

)
βTi−1

,
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then we know that for 1 ≤ k ≤ q,

Φ
(k)
Ti

=
(
M

(k,q+l)
Ti

−M (k,q+l)
Ti−1

)
−

q∑
v=1

β
(v)
Ti−1

(
M

(k,v)
Ti

−M (k,v)
Ti−1

)
=

(
M

(k,q+l)
Ti

−M (k,q+l)
Ti−1

)
− βᵀ

Ti−1

(
MX,X
Ti
−MX,X

Ti−1

)
•,k

.

Therefore, we have: 〈
RSpot-V-I,RSpot-V-I

〉
t

=

B∑
i=1

ATi−1

(
ΦTiΦ

ᵀ
Ti

)
ATi−1 .

Note that the (r, k)−th element of ΦTiΦ
ᵀ
Ti

can be represented as:

(
ΦTiΦ

ᵀ
Ti

)(r,k)
= Φ

(r)
Ti

Φ
(k)
Ti

=
(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
M

(k,q+l)
Ti

−M (k,q+l)
Ti−1

)
+
(
MX,X
Ti
−MX,X

Ti−1

)
r,•

βTi−1

(
MX,X
Ti
−MX,X

Ti−1

)
k,•

βTi−1
,

−βᵀ
Ti−1

[(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
MX,X
Ti
−MX,X

Ti−1

)
•,k

]
[2]

where [2] denotes the summation by switching r and k. Because
(
MX,X
Ti
−MX,X

Ti−1

)
r,•

βTi−1
is a scalar, then we know that

it is same to its transpose, and therefore,

(
MX,X
Ti
−MX,X

Ti−1

)
r,•

βTi−1

(
MX,X
Ti
−MX,X

Ti−1

)
k,•

βTi−1
=

((
MX,X
Ti
−MX,X

Ti−1

)
r,•

βTi−1

)ᵀ (
MX,X
Ti
−MX,X

Ti−1

)
k,•

βTi−1

= βᵀ
Ti−1

(
MX,X
Ti
−MX,X

Ti−1

)ᵀ
r,•

(
MX,X
Ti
−MX,X

Ti−1

)
k,•

βTi−1
.

Finally, we know that

Φ
(r)
Ti

Φ
(k)
Ti

=
(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
M

(k,q+l)
Ti

−M (k,q+l)
Ti−1

)
− βᵀ

Ti−1

[(
M

(r,q+l)
Ti

−M (r,q+l)
Ti−1

)(
MX,X
Ti
−MX,X

Ti−1

)
•,k

]
[2]

+βᵀ
Ti−1

(
MX,X
Ti
−MX,X

Ti−1

)ᵀ
r,•

(
MX,X
Ti
−MX,X

Ti−1

)
k,•

βTi−1
.

G. Proof of Theorems 3 and 4

Before the proof of main theorems, we first show some preliminary lemmas. We note that Lemma 3 shows eq. 4.12 in the

Theorem, by replacing X by Y .

Lemma 3. We define ĉt =
{
ĉ
(r,s)
∆Tn,t

}
1≤r,s≤q+d

with ∆Tn � an and q = o (d) . We assume Conditions 1-3. Then the

elementwise max norm of estimation error has the rate ‖ĉt − ct‖max = Op
(

(∆Tn log d)
1
2

)
.

Proof. Based on the results of Lemma 1 (in the current paper) and Lemma 2 of Chen et al. (2020), we conclude that
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there exists some positive constants C1 and C2, such that for all 1 ≤ r, s ≤ q + d, and any x > 0,

P
(∣∣∣ĉ(r,s)t − c(r,s)t

∣∣∣ > x
)
≤ C1 exp

(
−C2x

2

∆Tn

)
. (G.1)

The detailed proof follows from the similar discussion in the proof of Lemma A.1 in Fan et al. (2016a). Because of the fact

that {
‖ĉt − ct‖max > x

}
=
⋃
r,s

{∣∣∣ĉ(r,s)t − c(r,s)t

∣∣∣ > x
}
,

then based on the Bonferroni inequality, we obtain

‖ĉt − ct‖max = Op
(

[∆Tn log (q + d)]
1
2

)
using the similar technique as in Lemma A.2 (iv) of Fan et al. (2016a). Based on the assumption q = o (d) , which implies

that log (q + d) = log d+ o (1) , we finally obtain the convergence rate as stated in the lemma. �

Lemma 4. Assume Conditions 4-5. Then for any 0 ≤ t ≤ T , λmin

(
ĉX,Xt

)
> ϑ1

2
with probability approaching 1.

Proof. First of all, by Weyl’s theorem, we obtain:

∣∣∣λmin

(
ĉX,Xt

)
− λmin

(
cX,Xt

)∣∣∣ ≤ ∥∥∥ĉX,Xt − cX,Xt

∥∥∥
≤ q

∥∥∥ĉX,Xt − cX,Xt

∥∥∥
max

,

where the last inequality follows from the fact that ‖A‖ ≤ √pq ‖A‖max for any p× q matrix A.

Therefore, based on Lemma 3, we know that
∥∥∥ĉX,Xt − cX,Xt

∥∥∥
max

= Op
(

(∆Tn log d)
1
2

)
and

∣∣∣λmin

(
ĉX,Xt

)
− λmin

(
cX,Xt

)∣∣∣ = Op
(
q (∆Tn log d)

1
2

)
= op (1) .

By Condition 4, it is then easy to verify the result of this lemma. �

Based on the above lemmas, we now show the convergence rate of ĉB•Xt under elementwise max norm.

Proof of the rest of Theorem 3. We first define several notations: cX,Y
(l)

t =
{
c
(r,q+l)
t

}
1≤r≤q

, a q×1 vector process,

which is the l−th column of matrix cX,Yt for 1 ≤ l ≤ d. That is, cX,Yt =
(
cX,Y

(1)

t , cX,Y
(2)

t , . . . , cX,Y
(d)

t

)
. Similarly, we could

define ĉX,Yt =
(
ĉX,Y

(1)

t , ĉX,Y
(2)

t , . . . , ĉX,Y
(d)

t

)
. Therefore, it is easy to see that the (r, s)−th element of matrix cB•Xt can be

expressed as:
(
cX,Y

(r)

t

)ᵀ (
cX,Xt

)−1

cX,Y
(s)

t , while that of matrix ĉB•Xt can be expressed as:
(
ĉX,Y

(r)

t

)ᵀ (
ĉX,Xt

)−1

ĉX,Y
(s)

t .

Consequently, we obtain the expression of the (r, s)−th element of the error matrix as:

(
ĉB•Xt − cB•Xt

)(r,s)

=
(
ĉX,Y

(r)

t − cX,Y
(r)

t

)ᵀ (
cX,Xt

)−1

ĉX,Y
(s)

t +
(
cX,Y

(r)

t

)ᵀ (
cX,Xt

)−1 (
ĉX,Y

(s)

t − cX,Y
(s)

t

)
+
(
ĉX,Y

(r)

t

)ᵀ (
ĉX,Xt

)−1 (
cX,Xt − ĉX,Xt

)(
cX,Xt

)−1

ĉX,Y
(s)

t .
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Therefore, we have:

max
1≤r,s≤d

∣∣∣∣(ĉB•Xt − cB•Xt

)(r,s)
∣∣∣∣ ≤ max

1≤r≤d

∥∥∥ĉX,Y (r)

t − cX,Y
(r)

t

∥∥∥( max
1≤r≤d

∥∥∥ĉX,Y (r)

t

∥∥∥+ max
1≤r≤d

∥∥∥cX,Y (r)

t

∥∥∥)∥∥∥∥(cX,Xt

)−1
∥∥∥∥

+

(
max

1≤r≤d

∥∥∥ĉX,Y (r)

t

∥∥∥)2 ∥∥∥∥(ĉX,Xt

)−1
∥∥∥∥∥∥∥∥(cX,Xt

)−1
∥∥∥∥ ∥∥∥cX,Xt − ĉX,Xt

∥∥∥ . (G.2)

Based on Condition 4, we have:

∥∥∥∥(cX,Xt

)−1
∥∥∥∥ < ϑ−1

1 , and max
1≤r≤d

∥∥∥cX,Y (r)

t

∥∥∥ < q1/2ϑ2. (G.3)

By the result of Lemma 4, it is easy to see that

∥∥∥∥(ĉX,Xt

)−1
∥∥∥∥ < 2ϑ−1

1 (G.4)

with probability approaching 1. On the other hand, it is easy to see that

max
1≤r≤d

∥∥∥ĉX,Y (r)

t − cX,Y
(r)

t

∥∥∥ = Op
(
q1/2 (∆Tn log d)

1
2

)
, (G.5)

based on the result of Lemma 3 and the fact that
∥∥∥ĉX,Y (r)

t − cX,Y
(r)

t

∥∥∥ ≤ q1/2
∥∥∥ĉX,Y (r)

t − cX,Y
(r)

t

∥∥∥
max

. Consequently, we

know that max1≤r≤d

∥∥∥ĉX,Y (r)

t

∥∥∥ < 2q1/2ϑ2 with probability approaching 1.

Substituting (G.3)-(G.5) into (G.2), we finally obtain:

max
1≤r,s≤d

∣∣∣∣(ĉB•Xt − cB•Xt

)(r,s)
∣∣∣∣ = Op

((
q4∆Tn log d

) 1
2

)
, (G.6)

based on the result of Lemma 3 and the fact that
∥∥∥cX,Xt − ĉX,Xt

∥∥∥ ≤ q ∥∥∥cX,Xt − ĉX,Xt

∥∥∥
max

. This shows (4.13). �

G. 1. Proof of Theorem 4

Define Vt = ĉX,Yt − cX,Yt and

Ĝt =
[
ĉX,Xt + ĉX,Yt (̂s∗t )

−1
(
ĉX,Yt

)ᵀ]−1

,

Gt =
[
cX,Xt + cX,Yt s−1

t

(
cX,Yt

)ᵀ]−1

.

Lemma 5. Assume the conditions of Theorem 4. Then

(i) λmin

(
cX,Yt s−1

t

(
cX,Yt

)ᵀ)
> ϑ′5d for some ϑ′5 > 0.

(ii) ‖Gt‖ = Op
(
d−1

)
.

(iii) ‖Vt‖2F = Op (qd∆Tn log d) .
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(iv)
∥∥∥ĉX,Yt (̂s∗t )

−1
(
ĉX,Yt

)ᵀ
− cX,Yt s−1

t

(
cX,Yt

)ᵀ∥∥∥ = Op
(
dω1−ν

n md

)
.

(v)
∥∥∥Ĝt

∥∥∥ = Op
(
d−1

)
.

(vi)
∥∥∥(ĉX,Yt

)ᵀ
Ĝtĉ

X,Y
t (̂s∗t )

−1
∥∥∥ = Op (1) .

Proof. (i) Note that

λmin

(
cX,Yt s−1

t

(
cX,Yt

)ᵀ)
≥ λmin

(
s−1
t

)
λmin

(
cX,Yt

(
cX,Yt

)ᵀ)
.

Then by Conditions 6 and 7, we obtain that λmin

(
cX,Yt s−1

t

(
cX,Yt

)ᵀ)
> ϑ′5d for some ϑ′5 > 0 and all large d.

(ii) Because

λmin

(
cX,Xt + cX,Yt s−1

t

(
cX,Yt

)ᵀ)
≥ λmin

(
cX,Yt s−1

t

(
cX,Yt

)ᵀ)
,

then the result (ii) follows immediately from result (i).

(iii) We have ‖Vt‖2F ≤ dmax1≤r≤d

∥∥∥ĉX,Y (r)

t − cX,Y
(r)

t

∥∥∥2

= Op (qd∆Tn log d) based on the result (G.5).

(iv) Note that

∥∥∥ĉX,Yt (̂s∗t )
−1
(
ĉX,Yt

)ᵀ
− cX,Yt s−1

t

(
cX,Yt

)ᵀ∥∥∥
≤

∥∥∥Vt (̂s∗t )
−1

Vᵀ
t

∥∥∥+ 2
∥∥∥Vt (̂s∗t )

−1
(
cX,Yt

)ᵀ∥∥∥+
∥∥∥cX,Yt

[
(̂s∗t )

−1 − s−1
t

] (
cX,Yt

)ᵀ∥∥∥ ,
where by result (iii), it is easy to verify that

∥∥Vt (̂s∗t )
−1 Vᵀ

t

∥∥ = Op (qd∆Tn log d) = op (dωn) ,
∥∥∥Vt (̂s∗t )

−1
(
cX,Yt

)ᵀ∥∥∥ =

Op
(
qd (∆Tn log d)1/2

)
= Op (dωn) and by Condition 7 (ii) and the result of Proposition 1, we obtain

∥∥∥cX,Yt

[
(̂s∗t )

−1 − s−1
t

] (
cX,Yt

)ᵀ∥∥∥ = Op
(
dω1−ν

n md

)
.

(v) First of all,
∥∥∥ĉX,Xt

∥∥∥ ≤ ∥∥∥ĉX,Xt − cX,Xt

∥∥∥+
∥∥∥cX,Xt

∥∥∥ where
∥∥∥ĉX,Xt − cX,Xt

∥∥∥ ≤ q ‖ĉt − ct‖max = Op (ωn) , and
∥∥∥cX,Xt

∥∥∥ =

Op (q) = op (d) by Conditions 4 and 5. Therefore, result (v) is immediately proved following from the results (i) and (iv)

and the assumption ω1−ν
n md = o (1).

(vi) Because
∥∥∥ĉX,Yt

∥∥∥ ≤ ‖Vt‖+
∥∥∥cX,Yt

∥∥∥ where ‖Vt‖ ≤ ‖Vt‖F = Op
(
d1/2ωn

)
by result (iii), and

∥∥∥cX,Yt

∥∥∥ = Op
(
d1/2

)
by Assumption 7 (ii). Thus we obtain

∥∥∥ĉX,Yt

∥∥∥
F

= Op
(
d1/2

)
. Finally, combing result (v) and Proposition 1, we obtain

(vi). �

Proof of Theorem 4. By the Sherman-Morrison-Woodbury formula and the triangular inequality, we have
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∥∥∥∥(ĉY,Y,∗t

)−1

−
(
cY,Yt

)−1
∥∥∥∥ ≤∑6

i=1 Li where

L1 =
∥∥∥(̂s∗t )

−1 − s−1
t

∥∥∥ ,
L2 =

∥∥∥s−1
t

(
cX,Yt

)ᵀ
Gtc

X,Y
t

[
(̂s∗t )

−1 − s−1
t

]∥∥∥ ,
L3 =

∥∥∥s−1
t

(
cX,Yt

)ᵀ
Gt

(
ĉX,Yt − cX,Yt

)
(̂s∗t )

−1
∥∥∥ ,

L4 =
∥∥∥s−1
t

(
cX,Yt

)ᵀ (
Ĝt −Gt

)
ĉX,Yt (̂s∗t )

−1
∥∥∥ ,

L5 =
∥∥∥s−1
t

(
ĉX,Yt − cX,Yt

)ᵀ
Ĝtĉ

X,Y
t (̂s∗t )

−1
∥∥∥ ,

L6 =
∥∥∥[(̂s∗t )−1 − s−1

t

] (
ĉX,Yt

)ᵀ
Ĝtĉ

X,Y
t (̂s∗t )

−1
∥∥∥ .

First of all, by Proposition 1,
∥∥(̂s∗t )

−1 − s−1
t

∥∥ = Op
(
ω1−ν
n md

)
. Second, by Assumptions 6 and 4 and result (ii) of Lemma 5,

we have
∥∥∥s−1
t

(
cX,Yt

)ᵀ
Gtc

X,Y
t

∥∥∥ = Op (1) and consequently, L2 = Op
(
ω1−ν
n md

)
. Third, based on the result (ii) of Lemma

5 and the fact that
∥∥∥cX,Yt

∥∥∥ = Op
(
d1/2

)
and

∥∥∥ĉX,Yt − cX,Yt

∥∥∥ ≤ √qd ‖ĉt − ct‖max = Op
(

(qd∆Tn log d)
1
2

)
, we can conclude

that L3 = Op (ωn) . Similarly, based on the result (v) of Lemma 5, we obtain L5 = Op (ωn) . Fourth, note that

∥∥∥Ĝt −Gt

∥∥∥ =
∥∥∥Ĝt

[
G−1
t − Ĝ−1

t

]
Gt

∥∥∥ ≤ Op (d−2) ∥∥∥G−1
t − Ĝ−1

t

∥∥∥ ,
where

∥∥∥G−1
t − Ĝ−1

t

∥∥∥ = Op
(
dω1−ν

n md

)
+Op (ωn) which follows from the result (iv) and the proof of result (v) in Lemma

5. Therefore, we obtain
∥∥∥Ĝt −Gt

∥∥∥ = Op
(
d−1ω1−ν

n md

)
which yields L4 = Op

(
ω1−ν
n md

)
. Finally, by the result (vi) of

Lemma 5, it is straightforward to see that L6 = Op
(
ω1−ν
n md

)
. Thus, the theorem is proved. �
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