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Abstract In the econometric literature of high frequency data, it is often assumed
that one can carry out inference conditionally on the underlying volatility processes.
In other words, conditionally Gaussian systems are considered. This is often referred
to as the assumption of “no leverage effect”. This is often a reasonable thing to do, as
general estimators and results can often be conjectured from considering the condi-
tionally Gaussian case. The purpose of this paper is to try to give some more structure
to the things one can do with the Gaussian assumption. We shall argue in the follow-
ing that there is a whole treasure chest of tools that can be brought to bear on high
frequency data problems in this case. We shall in particular consider approximations
involving locally constant volatility processes, and develop a general theory for this
approximation. As applications of the theory, we develop an ANOVA for processes
with multiple regressors, and give an estimator for error bars on the Hayashi–Yoshida
estimator of quadratic covariation. Other applications are considered in other papers.

Keywords Asynchronous observation · Consistency · Cumulants · Contiguity ·
Continuity · Discrete observation · Efficiency · High frequency data · Itô process ·
Likelihood inference · Realized volatility · Stable convergence
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1 Introduction

Recent years have seen an explosion of literature in the area of estimating volatility
on the basis of high frequency data. The concepts go back to stochastic calculus,
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236 P. A. Mykland

see, for example, Karatzas and Shreve (1991) (Section 1.5), Jacod and Shiryaev
(2003) (Theorem I.4.47 on page 52), and Protter (2004) (Theorem II-22 on page
66). An early econometric discussion of this relationship can be found in Andersen
et al. (2000). Recent work both from the probabilistic and econometric side give the
mixed normal distribution of the error in approximation. References include Jacod and
Protter (1998), Barndorff-Nielsen and Shephard (2002), Zhang (2001) and Mykland
and Zhang (2006).

Further econometric literature includes, in particular, Gallant et al. (1999), Chernov
and Ghysels (2000), Andersen et al. (2001, 2003), Dacorogna et al. (2001), and Gonçal-
ves and Meddahi (2009). Problems that are attached to the estimation of covariations
between two processes are discussed in Hayashi and Yoshida (2005) and Zhang (2010).
Estimating instantaneous volatility at each point in time goes back to Foster and Nelson
(1996) and Comte and Renault (1998), see also Mykland and Zhang (2008), but this
has not caught on quite as much in the econometric application. There is also an
emerging literature on that happens in the presence of observation error, but we are
not planning to address this question here.

In the econometric literature, it is often assumed that one can carry out inference
conditionally on the underlying volatility processes. In other words, conditionally
Gaussian systems are considered. This is often referred to as the assumption of “no
leverage effect”. This is often a reasonable thing to do, as general estimators and results
can often be conjectured from considering the conditionally Gaussian case.

The purpose of this paper is to try to give some more structure to the things one can
do with the Gaussian assumption. We shall argue in the following that there is a whole
treasure chest of tools that can be brought to bear on high frequency data problems in
this case. After setting up the structure in Sect. 2, we do a warm-up in Sect. 3 to show
that likelihood (parametric inference) and cumulant methods can be used to define and
analyze estimators. It will become clear that there is mileage in considering systems
that have locally constant volatility, and we approach this systematically in Sect. 4,
culminating in our main Theorems 1 and 2.

As applications of the theory, we first (Sect. 5.1) revisit the ANOVA problem from
Zhang (2001) and Mykland and Zhang (2006), this time in the setting of several regres-
sors. We shall see that with the theory in hand, one can use classical regression theory
of carry our an ANOVA. In fact, the amount of smoothing needed is over a finite num-
ber of observations. This is a proposition which, I think, would have attracted long
odds if not announced as a theorem, and it is evidence of the power of the theorems
from Sect. 4. Second, we discuss the problem of setting error bars on the Hayashi–
Yoshida estimator of quadratic covariation (Sect. 5.2). References to other applica-
tions, including how to improve efficiency, are given at the beginning of Sect. 5.

Finally, some disclaimers. First of all, we are not claiming to have invented the con-
ditional Gaussian assumption; it is used by a big fraction of the theory. Second, this
paper is conceptually similar to Mykland and Zhang (2009) in that we consider approx-
imate measures where the volatility is locally constant. The approximations used in the
two papers are, however, quite different. For one thing, in the case of one step approxi-
mations, the “approximation” in the current paper is actually exact, thus permitting us
to consider (exact) nonparametric maximum likelihood estimators in Sect. 2. Further-
more, if one compares Theorem 1 with Theorem 3 in Mykland and Zhang (2009), one
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can see that, also in the multi step case, the approximation in this paper is much closer
than the one in the other paper. Third, this is not an attempt at a comprehensive study
of what one can to with the Gaussian case; there are much too many tools available and
open problems for that. In particular, we do not consider the case where observations
have error. Our hope is that this study will encourage further use in high frequency
data of the ideas and results that are available for Gaussian situations.

2 The model, and some immediate conclusions

In general, we shall work with a p-variate Itô process (X (1)
t , . . . , X (p)

t ), given by the
system

dX (k)
t = μ

(k)
t dt + σ

(k)
t dW (k)

t , k = 1, . . . , p, (1)

where μ
(k)
t and σ (k) are adapted càdlàg random processes, and the W (k)

t are Brownian
motions that are not necessarily independent. We shall suppose that the process X (k)

t
is observed at times 0 = tk,0 < tk,1 < · · · < tk,nk = T . If p = 1, we may sometimes
suppress the “k”. The underlying filtration will be called (F t ).

Assumption 1 (Sampling times) In addition, when doing asymptotics, we suppose
that there is an index N , so that tk,i = tN ,k,i (the additional subscript will normally
be suppressed). The grids {0 = tN ,k,0 < tN ,k,1 < · · · < tN ,k,nN ,k = T } will not be
assumed to be nested when N varies. To get a concrete example of what one can take
as N , one can use

N = nN ,1 + · · · + nN ,p. (2)

We then do asymptotics as N → ∞. The basic assumption is that

max
1≤i≤nN ,k

|tN ,k,i − tN ,k,i−1| = O(N−1) (3)

for each k, 1 ≤ k ≤ p. We emphasize that p is a fixed number which does not vary
with N .

We now describe the setting for parametric inference.

Assumption 2 (A conditionally Gaussian system) We let P be a probability distri-
bution on the form Eq. 1 for which μ

(k)
t = 0 for all k. We assume that we can

take the quadratic variations and covariations
〈
X (k), X (l)

〉
t to be F0-measurable. As

is customary, in this case, we call (X (1)
t , . . . , X (p)

t ) a Brownian martingale. Note that
“nonrandom” is a special case of “F0-measurable”. We let Pω denote the regular con-
ditional probability distribution given F0, and note that the (Xt ) process is Gaussian
under Pω, for (almost) every ω. We also suppose that the observation times tk,i are
nonrandom, but irregular.
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238 P. A. Mykland

We emphasize that the quadratic variations and covariations will normally themselves
be taken to be Itô-processes. It will be clear from Sect. 4 that this is desirable in
predicting results. See Remark 2 just after Theorem 2.

Remark 1 (If the drift μ is not zero) Our asymptotic results in Sect. 4 and onwards
will remain valid, under mild regularity conditions, even when drift μ

(k)
t in Eq. 1 is

nonzero. This is explained in Sect. 4.3

Under Assumption 2, the set of observations (X (k)
tk,i

− X (k)
tk,i−1

, 1 ≤ i ≤ nk, 1 ≤ k ≤ p)

is, conditionally on F0, simply a multivariate normal vector with mean zero, and with
covariances given by

κk,i;l, j =Covω(X (k)
tk,i

− X (k)
tk,i−1

, X (l)
tl, j

− X (l)
tl, j−1

)

=
{〈

X (k), X (l)
〉
tk,i ∧tl, j

− 〈
X (k), X (l)

〉
tk,i−1∨tl, j−1

if (tk,i−1, tk,i )∩(tl, j−1, tl, j ) �= ∅
0 otherwise

(4)

where, as usual, x ∧ y = min(x, y) and x ∨ y = max(x, y).
The log likelihood is then, as usual, given by

�(κ) = −1

2
ln det(κ) − 1

2

∑

k,i,l, j

κk,i;l, j (X (k)
tk,i

− X (k)
tk,i−1

)(X (l)
tl, j

− X (l)
tl, j−1

) − N

2
ln(2π),

(5)

where κk,i;l, j are the elements of the matrix inverse of (κk,i;l, j ), and N is given by
Eq. 2. κ is the N × N matrix of all the κk,i;l, j .

We are now in a position to show that the by now classical estimates of volatility
and covariation are, in fact, likelihood estimates under Assumption 2.

Note first that by standard considerations, the MLEs of the parameters are given by

κ̂k,i;l, j =
{(

X (k)
tk,i

− X (k)
tk,i−1

) (
X (l)

tl, j
− X (l)

tl, j−1

)
if (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j ) �= ∅

0 otherwise

(6)

(cf., for example, the derivation in Chapter 4 of Mardia et al. 1979). Thus, two imme-
diate conclusions.

Example 1 (The classical estimate of quadratic variation) The MLE of
〈
X (k), X (k)

〉
T

is given by

̂

〈
X (k), X (k)

〉
T =

∑

i

κ̂k,i;k,i =
∑

i

(
X (k)

tk,i
− X (k)

tk,i−1

)2
. (7)

This is, of course, the estimate which has been commonly used in the literature, cf.
the references in the Introduction.
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Example 2 (The MLE for covariation) The MLE of
〈
X (k), X (l)

〉
T is similarly given by

̂

〈
X (k), X (l)

〉
T =

∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
κ̂k,i;l, j

=
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅

(
X (k)

tk,i
− X (k)

tk,i−1

) (
X (l)

tl, j
− X (l)

tl, j−1

)
. (8)

This coincides with the Hayashi and Yoshida (2005)-estimator.

Example 1 is, of course, the reinvention of a long known estimator. In the case of
Example 2, however, we are dealing with a procedure which only dates back a couple
of years. Thus, we are already close to the research frontier. And there is more in the
following.

Note that even if estimators have been derived under Assumption 2, it has earlier
been shown by the authors cited in the Introduction that these estimators have rea-
sonable properties also in the more general case. Thus, likelihood in the conditionally
Gaussian case is a useful way of generating estimators.

3 Warm-up: the quantification of error in the estimators

It is customary in likelihood inference to use the Fisher information to quantify vari-
ance. We shall here see that this leads to interesting conclusions. There is some insight
in the following lemma.

Lemma 1 (Covariance and expected information) Under Assumption 2, if
(tk,i−1, tk,i ) ∩ (tl, j−1, tl, j ) �= ∅ and (tm,g−1, tm,g) ∩ (tn,h−1, tn,h) �= ∅

Covω

(
κ̂k,i;l, j , κ̂m,g;n,h

) = Eω

(
− ∂2�

∂κk,i;l, j∂κm,g;n,h

)−1

= κk,i;n,hκl, j;m,g + κk,i;m,gκl, j;n,h (9)

The lemma is a direct consequence of the exponential family structure, and the
fact that if Z1, . . . , Z4 are jointly normal, then Cov(Z1 Z2, Z3 Z4) = Cov(Z1, Z3)

Cov(Z2, Z4) + Cov(Z1, Z4)Cov(Z2, Z3).
Again, there are some immediate consequences of this.
Example 1 (continued) For the estimate Eq. 7 of quadratic variation one obtains

Varω
(

̂

〈
X (k), X (k)

〉
T

)
= 2

∑

i

κ2
k,i;k,i

= 2
∑

i

(
Eω

(
X (k)

tk,i
− X (k)

tk,i−1

)2
)2

= 2

3

∑

i

Eω

((
X (k)

tk,i
− X (k)

tk,i−1

)4
)

, (10)
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since for a mean zero normal random variable Z , E(Z4) = 3E(Z2)2. This quantity
is naturally estimated by

2

3

∑

i

(
X (k)

tk,i
− X (k)

tk,i−1

)4
. (11)

This, of course, is the quarticity estimate of Barndorff-Nielsen and Shephard (2002).
Again, the estimator follows from a simple conditionally Gaussian likelihood. Its
asymptotic validity has been shown under more general Itô process assumptions by
Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang (2006) (in the latter,
see Remark 2 (p. 1944) and the proof on p. 1952).

The question now arises whether we can do anything new with the setup we have
given. That is what the rest of the paper is about.

A natural first question to ask is whether we can provide the error of the Hayashi and
Yoshida (2005) estimator, a.k.a. (Eq. 8). The simple part of this is that by Lemma 1,

Varω
(

̂

〈
X (k), X (l)

〉
T

)

=
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j )�=∅

∑

g,h:(tk,g−1,tk,g)∩(tl,h−1,tl,h)�=∅
Covω

(
κ̂k,i;l, j , κ̂k,g;l,h

)

=
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j )�=∅

∑

g,h:(tk,g−1,tk,g)∩(tl,h−1,tl,h)�=∅
κk,i;k,gκl, j;l,h + κk,i;l,hκk,g;l, j

=
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j )�=∅
κk,i;k,iκl, j;l, j +

∑

(i, j,g,h)∈An

κk,i;l,hκk,g;l, j , (12)

where

An = {(i, j, g, h) : (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j ) �= ∅, (tk,g−1, tg,i ) ∩ (tl, j−1, tl, j ) �= ∅,

(tk,i−1, tk,i ) ∩ (tl,h−1, tl,h) �= ∅, and (tk,g−1, tk,g) ∩ (tl,h−1, tl,h) �= ∅}. (13)

A perhaps slightly more interpretable expression is to write

Varω
(

̂

〈
X (k), X (l)

〉
T

)
=

∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
(κk,i;k,iκl, j;l, j + (κk,i;l, j )

2)

+
∑

(i, j,g,h)∈Bn

κk,i;l,hκk,g;l, j , (14)

Bn = {(i, j, g, h) : i �= g, h �= j, (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j )

�= ∅, (tk,g−1, tg,i ) ∩ (tl, j−1, tl, j ) �= ∅,

(tk,i−1, tk,i ) ∩ (tl,h−1, tl,h) �= ∅ and (tk,g−1, tk,g) ∩ (tl,h−1, tl,h) �= ∅}. (15)
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The expressions Eqs. 12 and 14, however, do not show how to estimate

Varω
(

̂〈X (k), X (l)〉T

)
. For example,

Eω(κ̂k,i;k,i κ̂l, j;l, j ) = Eω((κ̂k,i;l, j )
2) = κk,i;k,iκl, j;l, j + 2(κk,i;l, j )

2, (16)

so that even if tk,i = tl,i (which is to say that there is no asynchronicity, so that the
second term in Eq. 14 vanishes), there is no directly obtainable estimate of the quantity
in Eq. 14. We shall now see how this type of issue can be remedied. We return to the
problem of the Hayashi–Yoshida estimator in Sect. 5.2.

4 Locally constant volatility

The basic problem in estimating the quantity Eq. 14 is that there are not enough obser-
vations per parameter. So long as there are a few observations per parameter, one can
use standard theory of sample cumulants (see, for example, Chapter 4 of McCullagh
1987) to find unbiased estimators. After that, at least under Assumption 2, consistency
of the variance estimates will take care of itself. There is some overhead in setting up
the approximation (Sect. 4.1), but the investment will pay off when we get to Sect. 4.2
and beyond.

4.1 Setup

We shall in the following show that it is valid, at least asymptotically, to consider
approximate systems of the type (Eq. 1) were we take μt = 0, and in addition suppose
that there are times 0 = τN ,0 < τN ,1 < · · · < τN ,vN so that d

〈
X (k), X (l)

〉
t is constant

on (τN ,ι−1, τN ,ι] for each ι. The requirement for this is that

max
ι

#{tN ,k, j ∈ (τN ,ι−1, τN ,ι]} = O(1) as N → ∞, (17)

and

vN = O(N ). (18)

Assumption 3 (Structure of the quadratic variation process) Set ζ
(k,l)
t =

d
〈
X (k), X (l)

〉
t/ dt (this process exists under the model (Eq. 1) and the Kunita–

Watanabe inequality). We assume that the matrix ζt is an Itô process. We shall further
assume that the drift part of each ζt is absolutely continuous with locally bounded
derivative, and that each 〈ζ (k,l), ζ (m,n)〉t is continuously differentiable. We finally
assume that ζt is locally bounded, and that if λ

(p)
t is the smallest eigenvalue of ζt , then

inf t λ
(p)
t > 0 a.s.

We are proposing to hold the characteristics of the process constant in small time
periods. We first define our time periods, which have to be joint for all p coordinates
of the process X .
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242 P. A. Mykland

Definition 1 (A reference set of time points) We shall let GN be the ordered set which
contains (but can be bigger that) all points tN ,k, j and the τN ,ι. Represent GN = {0 =
θN ,0 < θN ,1 < · · · < θN ,wN = T }. We suppose for simplicity that there is a number M
so that τN ,ι = θN ,Mι. This is without loss of generality in view of assumption Eq. 17,
since we can add point to GN until this is true (one can state results also without this
assumption, but they look unnecessarily dreadful). Note that wN = MvN .

The purpose of the grid GN is to have a maximal set of time points at which we
have to worry about the difference between the true probability P and the approximate
probability distribution we are about to construct. The grid GN includes all observa-
tions times (for all components), and all the break points τN ,ι on which we hall base
estimators. By constructing below the likelihood ratio between the two probabilities
based on the values of the process at the times in GN , we shall capture the effect of
the approximation to the extent required by our observations and our modeling. Thus,
while the role of the τ ’s is to construct an approximation, and resulting estimators, the
purpose of the θ ’s is to facilitate analysis.

We shall need the quadratic variation of the above set of time points: the “Asymp-
totic Quadratic Variation of Time” (“AQVT”) H(t) is defined by

H(t) = lim
N→∞

wN

T

∑

θN , j+1≤t

(θN , j − θN , j−1)
2, (19)

provided the limit exists. From Eq. 3,

max
1≤i≤wN

|θN ,i − θN ,i−1| = O(N−1), (20)

whence every subsequence has a further subsequence for which H exists. Also, when
the limit exists, it is Lipschitz continuous. We shall be using the following assumption.

Assumption 4 (Structure of the AQVT) Assume that the AQVT H exists, and that
H ′(t)−1 is integrable. Further suppose that there is a transformation G : [0, T ] →
[0, T ] so that

∑
i (G(θN ,i+1) − G(θN ,i ) − (T/N ))2 = o(n−1). Note that in this case,

G ′(t) = H ′(t)−1.

The assumption is more restrictive than the one made in Mykland and Zhang (2006),
but is still quite broad. An easy extension can make G random, covering, in particular,
the construction in Sect. 5.3 (pp. 1505–1507) of Barndorff-Nielsen et al. (2008).

We finally define the covariance matrix on the grid GN :

νk,l,i = Covω

(
X (k)

θN ,i
− X (k)

θN ,i−1
, X (l)

θN ,i
− X (l)

θN ,i−1

)
. (21)

To hold the characteristics of the process constant over the interval (τN ,ι−1, τN ,ι], we
set

ν̄k,l,ι = 1

M

∑

θN , j ∈(τN ,ι−1,τN ,ι]
νk,l, j . (22)
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Gaussian calculus for high frequency data 243

The idea is now to approximate our actual probability P by one which we shall call

P N , for which
(

X (k)
θN , j

− X (k)
θN , j−1

, k = 1, . . . , p
)

are iid random vectors with mean

zero and covariances ν̄k,l,ι as θN , j ranges over (τN ,ι−1, τN ,ι] (for fixed (N , ι)). In gen-
eral, of course, there are missing values from these observations, but this is not always
a problem, as we shall see.

It will be useful at this point to use matrix notation. Write ν j for the p × p matrix
(νk,l, j ) and similarly with ν̄ι (the p × p matrix (ν̄k,l,ι)) and �Xθ j (the p × 1 vector

X (k)
θ j

− X (k)
θ j−1

). The log likelihood ratio between the two measures (on the σ -field

generated by the processes
〈
X (k), X (l)

〉
t and the random variables X (k)

θ j
) becomes

log
dP

dP N
= 1

2

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]

(
log det(ν̄ι) − log det(ν j )

−�X∗
θ j

(ν−1
j − ν̄−1

ι )�Xθ j

)
. (23)

Note that

log
dP

dP N
= log

dPω

dP N
ω

. (24)

4.2 Main contiguity theorem

We obtain the following main result, which is proved in Sect. 6.

Theorem 1 (Contiguity of P N and P) Suppose that Assumptions 1–4 are satisfied.
Set

Z N = −1

2

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]

(
�X∗

θ j

(
ν−1

j − ν̄−1
ι

)
�Xθ j

)
. (25)

Let γt = ∫ t
0 ζ

−1/2
t ( dζt )ζ

−1/2
t , where ζ

−1/2
t us the symmetric square root of ζ−1

t .
Define

�Z Z = 1

12
(M − 1)

T∫

0

H ′(t)2
p∑

k=1

〈γ (k,k), γ (k,k)〉′t dt, (26)

Then (for almost all ω), as N → ∞, Z N converges in law under P N
ω to a normal

distribution with mean −�Z Z and variance �Z Z . Also, under P N ,

log
dP

dP N
= Z N + 1

2
�Z Z + op(1). (27)
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244 P. A. Mykland

The theorem says that Pω and the approximation P N
ω are contiguous in the sense of, for

example Chapter IV Hájek and Sidak (1967) and Chapter VI of Jacod and Shiryaev
(2003). This is because it follows from the theorem that dPω/dP N

ω is uniformly
integrable under P N

ω .
In particular, if an estimator is consistent under P N , it is also consistent under P .

In other words, one can, for purposes of consistency, assume that (X (k)
θN , j

− X (k)
θN , j−1

,

k = 1, . . . , p) are iid random vectors with mean zero and covariances ν̄k,l,ι as θN , j

ranges over (τN ,ι−1, τN ,ι] (for fixed (N , ι)).
Rates of convergence (typically n1/2) are also preserved, but the asymptotic distri-

bution may be biased. One fairly general result is as follows.

Theorem 2 Assume the conditions of Theorem 1. Let ξN ,ι be a function of

(ξt , τN ,ι−1 ≤ t ≤ τN ,ι). Let ξ̂N ,ι be an estimator based on (X (k)
tk, j

− X (k)
tk, j−1

, τN ,ι−1 ≤
tk, j−1 and tk, j ≤ τN ,ι, k = 1, . . . , p) (that is to say, that ξ̂N ,ι is based on the actu-
ally observable increments in the time interval [τN ,ι−1, τN ,ι]). Set ξN = ∑

ι ξN ,ι (this
quantity would normally be almost independent of N) and ξ̂N = ∑

ι ξ̂N ,ι. Assume that
E N

ω (ξ̂N ,ι) = ξN ,ι (P N
ω -unbiasedness), and assume the existence of the limits

�ξξ = lim
N→∞ VarN

ω (N 1/2(ξ̂N − ξN ))

(28)
and �ξ Z = lim

N→∞ CovN
ω (N 1/2(ξ̂N − ξN ), Z N ).

Also assume the Lindeberg Condition: for every ε > 0,

lim
N→∞ E N

ω

∑

ι

g(N 1/2(ξ̂N ,ι − ξN ,ι)) = 0, (29)

where g(x) = x2 I{|x |>ε}. Then under Pω,

N 1/2(ξ̂N − ξN ) → N(�ξ Z , �ξξ ) (30)

in law, for almost every ω.

The result follows directly from Theorem 1 in view of Lindeberg’s Central Limit
Theorem (see, for example, Theorem 27.2 (pp. 359–360) of Billingsley 1995) and
LeCam’s Third Lemma (see the lemma on p. 208 in Hájek and Sidak 1967). Note that
by conditional independence,

�ξξ = lim
N→∞ N

vN∑

ι=1

VarNω(ξ̂N ,ι), (31)

and similarly for �ξ Z .
In other words, the price for using P N rather than P is to incur a bias N−1/2�ξ Z +

o(N−1/2). In our examples, it will be the case that �ξ Z = 0 (note that there is also a
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possibility that ξN is not exactly the quantity desired in estimation. This difference is
typically negligible, as we shall see in our examples).

The main obstacle to using Theorem 2 may be to calculate the �’s, but we shall see
in the next Section how this can be implemented.

Remark 2 (Role of the Itô assumption) It should be clear from the above that it would
be a radical oversimplification to assume that the process ζt is, say, continuously dif-
ferentiable. If one does that, then �Z Z = �ξ Z = 0, and some of the predictive value
of the above theorems would be lost.

Finally, it is worth asserting the contiguity even in the case where the τN ,ι are less
regular than assumed in Theorem 1.

Theorem 3 (Contiguity of P N and P in irregular cases) Suppose that Assumptions
1–4 are satisfied. Set MN ,ι = #{θN ,k, j ∈ (τN ,ι−1, τN ,ι]}, and suppose that maxι Mι =
O(1). Replace M by Mι in Eq. 22. Then dP N /dP is uniformly integrable. In par-
ticular, any sequence which converges in probability under P N also converges in
probability under P.

4.3 When the drift μ is not zero

Assumption 5 (A conditionally Gaussian system, with drift) We modify Assump-
tion 2 to let μt be nonzero. We let Q be a probability distribution on the form Eq. 1,
where μt is locally bounded. We now take μt and quadratic variations and covariations〈
X (k), X (l)

〉
t , to be F0-measurable, so the system remains conditionally Gaussian. The

process μt and quadratic variations and covariations
〈
X (k), X (l)

〉
t must also be adapted

to a filtration for which the W (k)
t are Brownian motions.

We first consider consistency. Under Assumptions 3 and 5, Girsanov’s Theorem
(see, for example, Chapter 5.5 of Karatzas and Shreve 1991) yields that there is a
probability measure P satisfying Assumption 2 so that for almost all ω

Qω and Pω are mutually absolutely continuous. (32)

This means that consistency holds under Qω if and only if it holds under Pω. Thus,
for instance, the final sentence in Theorem 3 remains true also under Qω (one still
verifies the conditions under P and P N ).

To discuss this issue on the level of asymptotic distributions, we need the concept
of stable convergence, which we here adapt to contiguous sequences

Definition 2 Let P be a probability measure on a σ -field X , and let P N be a sequence
of probabilities equivalent and contiguous to P , so that for all sets A ∈ X , P N (A) →
P∞(A). If Z N is a sequence of X -measurable random variables, then Z N converges
stably in law to Z as N → ∞ under probability measures P N if there is an extension of
X so that, for all A ∈ X and for all bounded continuous g, E N IAg(Zn) → E∞ IAg(Z)

as N → ∞.
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For further discussion of stable convergence, see Rényi (1963), Aldous and Eagleson
(1978), Chapter 3 (p. 56) of Hall and Heyde (1980), Rootzén (1980), Sect. 2 (pp. 169–
170) of Jacod and Protter (1998), and Chapter IX.6–7 (pp. 575–591) of Jacod and
Shiryaev (2003). It is a useful device in operationalizing asymptotic conditionality,
and we have earlier used it in Mykland and Zhang (2006), Zhang et al. (2005), and
other papers. In the current context, it will permit us to deal with the drift μ.

First, we generalize the above Theorems 1–2. Let X be the σ -field generated by the
process Xt , 0 ≤ t ≤ T (for example, one can consider the Borel σ -field on the space
of p-dimensional càdlàg functions, as in Chapter VI of Jacod and Shiryaev 2003). On
can consider Pω as a measure on X , while P itself is a measure on the product σ -field
F0 × X .

Using the methodology from the cited papers. it is easy to see from our proofs of the
theorems in this paper that the convergence is, in fact, stable, under a side condition:

lim
N→∞ CovN

ω (N 1/2(ξ̂N − ξN ), W (k)
t ) = 0 for all t ∈ [0, T ] and for k = 1, . . . , p.

(33)

Specifically, we obtain

Theorem 4 The convergence in Theorem 1 is stable under P N
ω , for (almost) every ω.

Similarly, assume the conditions of Theorem 2, and also Eq. 33. Then the convergence
in this theorem is stable under P N

ω , for (almost) every ω.

Proof of Theorem 1 The two parts of the proof are similar since the main fact we use
about Z N is that

lim
N→∞ CovN

ω (Z N , W (k)
t ) = 0 for all t ∈ [0, T ] and for k = 1, . . . , p. (34)

To see the first part of the theorem, consider first the reference filtration F ′
t = F0 ∨

σ {W (k)
s , 0 ≤ s ≤ t, all k}. Let Z N

t be the interpolated partial sum (for t j ≤ t)
in Eq. 25. The interpolation is analogous to that used in the proof of Proposition 2
(p. 1952) of Mykland and Zhang (2006). From the proof of Theorem 1, one obtains that
the conditions of Theorem IX.7.3 (p. 584) of Jacod and Shiryaev (2003) are satisfied,
where their martingale Z is our (p-dimensional) martingale W . In their condition 7.4,
Gt = 0 identically, from Eq. 34. Their condition 7.5 is satisfied since there are (in
their notation) no martingales N . This is by the Martingale Representation Theorem
(see, e.g., Theorem III.4.33 (p. 189) of Jacod and Shiryaev 2003) by definition the
filtration (F ′

t ). This shows the stable convergence with respect to the filtration (F ′
t ),

and the result for filtration (Ft ) follows by conditional independence. The second part
of Theorem 4 is shown similarly. ��

From Theorem 4 it follows directly that

Theorem 5 Assume the conditions of Theorem 2, but replace Assumption 2 by Assump-
tion 5. Also assume Eq. 33.

Then the (stable) convergence in law (Eq. 30) holds also under Qω, for almost
every ω.
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The proof here is similar to that of Proposition 1 in Mykland and Zhang (2009).

Remark 3 In the more general case where the limit in Eq. 33 can be nonzero, the stable
convergence in Theorem 2 will be to a normal limit with smaller variance but extra
bias, subject to suitable regularity conditions. We have not further discussed this case
since such estimators are clearly inefficient.

5 Some applications of the theory

We here present two applications of the theory, as proof of principle. A number of
other applications are presented in other papers, see, in particular, Sects. 4.1–4.2 of
Mykland and Zhang (2009), and Sects. 6.2–6.4 of Mykland and Zhang (2010). The
methodology is also cited as the conceptual background for the quantile based estima-
tion of Christensen et al. (2008). In many cases, one has a choice of whether to invoke
the theory from this paper or the one from Mykland and Zhang (2009). The latter is
more general, but harder to apply, and with less transparent conditions. We note that
a main purpose of the theory is to gain efficiency, see, in particular, the example in
Sect. 4.1 of Mykland and Zhang (2009) (where one could equally well have used the
technology of the current paper).

5.1 ANOVA with multiple regression and finite smoothing

We here revisit the problem from Zhang (2001) and Mykland and Zhang (2006).
There are processes X (1)

t , . . . , X (p)
t and Yt which are observed synchronously at times

0 = tN ,0 < tN ,1 < · · · < tN ,n1 = T (the asynchronous problem is also interesting,
but beyond what we are planning to do in this paper). In this treatment, we shall take
the times to be equidistant, so �t = T/n1, but this can of course be generalized. The
two processes are related by

dYt =
p∑

i=1

f (i)
s dX (i)

s + dZt , with 〈X (i), Z〉t = 0 for all t and i. (35)

The problem is now to estimate 〈Z , Z〉T , that is to say the residual quadratic variation
of Y after regressing on X . As documented in Zhang (2001) and Mykland and Zhang
(2006), this is useful for statistical and trading purposes.

We take the θi ’s to be identical with the ti ’s. We assume that M > p. For simplicity
of argument, we also assume that n1 is a multiple of M (this does not really affect the
conclusions).

We now describe the system under P N . In each of vN intervals [τι−1, τι] we get M
iid observations of (�Xt j ,�Yt j ), which are normal with mean zero and covariance
matrix ν̄ι. For t j ∈ (τι−1, τι], in obvious notation,

ν̄Z Z ,ι = E N
ω �Z2

t j
= ν̄Y Y,ι − ν̄∗

XY,ιν̄
−1
X X,ιν̄XY,ι (36)

The strategy is now as follows: in each time interval, regress �Yt j on �Xt j linearly,
and without intercept. Call the residuals �̂Zt j . Set
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ξ̂ι,N = M

M − p

∑

t j ∈(τι−1,τι]
�̂Z

2
t j

(37)

and ξι,N = E N
ω

⎛

⎝
∑

t j ∈(τι−1,τι]
�Z2

t j

⎞

⎠

Standard regression theory (see, for example, Weisberg 1985) yields that, because of
the Gaussianity

E N
ω

(
ξ̂ι,N | �Xt j , all j = 1, . . . , n1

)
= ξι,N , (38)

and, in fact, more generally,

(M − p)
ξ̂ι,N

ξι,N
, ι = 1, . . . , vN are iid χ2

M−p under P N
ω given all �Xt j , j =1, . . . , n1.

(39)

A natural estimator for 〈Z , Z〉T is therefore

̂〈Z , Z〉T = M

M − p

n1∑

j=1

�̂Z
2
t j

=
vN∑

ι=1

ξ̂ι,N . (40)

From Eqs. 36 and 38, and by Assumption 3,

E N
ω ( ̂〈Z , Z〉T ) = E N

ω

⎛

⎝
n1∑

j=1

�Z2
t j

⎞

⎠

=
T∫

0

ζ
(Y Y )
t dt −

vN∑

ι=1

⎛

⎝
τι∫

τι−1

ζ
(XY )
t dt

⎞

⎠

∗ ⎛

⎝
τι∫

τι−1

ζ
(X X)
t dt

⎞

⎠

−1 ⎛

⎝
τι∫

τι−1

ζ
(XY )
t dt

⎞

⎠

=
T∫

0

ζ
(Y Y )
t dt − T

vN

vN∑

ι=1

⎛

⎝ζ (XY )
τι−1

+ vN

T

τι∫

τι−1

(τι − t) dζ
(XY )
t

⎞

⎠

∗

×
⎛

⎝
(
ζ (X X)
τι−1

)−1 − vN

T

(
ζ (XY )
τι−1

)∗
τι∫

τι−1

(τι − t) dζ
(X X)
t ζ (XY )

τι−1

⎞

⎠

×
⎛

⎝ζ (XY )
τι−1

+ vN

T

τι∫

τι−1

(τι − t) dζ
(XY )
t

⎞

⎠ + op(N−1/2)

= 〈Z , Z〉T + op(N−1/2). (41)
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Similarly, from Eqs. 38–39,

VarN
ω ( ̂〈Z , Z〉T ) = 2

M − p

vN∑

ι=1

ξ2
ι,N

= n−1
1 2

M

M − p

T∫

0

(〈Z , Z〉′t
)2 dt + op

(
n−1

1

)
(42)

In seeking to apply Theorem 2, let X be the p×M-matrix whose j th row is made up

of
(
�X (1)

tMι+ j
, . . . ,�X (p)

tMι+ j

)
. Set H = X (X ∗X )−1X ∗, and note that this is the stan-

dard “hat matrix” for the regression in time period # ι (see Chapter 5.1 of Weisberg
1985 for this and for the following manipulations). Call the j th diagonal element of
H as hMι+ j . Finally set �Z = (�ZtMι+1 , . . . ,�ZtM(ι+1)

)∗. Note that our regression

means that �̂Z = (I − H)�Z , and so ξ̂N ,i = (M/(M − p))�Z∗(I − H)�Z .
To match notation with Theorem 2, finally let X (p+1) = Y . Obtain from Eqs. 38–39

and the normality of the observations that

CovN
ω

⎛

⎝
∑

tN , j ∈(τN ,ι−1,τN ,ι]
�X∗

t j

(
ν−1

j − ν̄−1
ι

)
�Xt j , ξ̂N ,ι | X

⎞

⎠

= CovN
ω

⎛

⎝
∑

tN , j ∈(τN ,ι−1,τN ,ι]
�Zt j

(
ν−1

j − ν̄−1
ι

)(Y Y )

�Zt j , ξ̂N ,ι | X
⎞

⎠

= M

M − p

∑

tN , j ∈(τN ,ι−1,τN ,ι]
CovN

ω

((
ν−1

j − ν̄−1
ι

)(Y Y )

�Z2
t j
, (1 − h j )�Z2

t j

)

= 2
M

M − p
ν̄2

Z Z ,ι

∑

tN , j ∈(τN ,ι−1,τN ,ι]

(
ν−1

j − ν̄−1
ι

)(Y Y )

(1 − h j ). (43)

At this point, note that by symmetry, E N
ω (1 − h j ) is independent of j , and so

E N
ω (1 − h j ) = E N

ω tr(I − H)/M = (M − p)/M . Thus, from Eqs. 38 and 43,

CovN
ω

⎛

⎝
∑

tN , j ∈(τN ,ι−1,τN ,ι]
�X∗

t j

(
ν−1

j − ν̄−1
ι

)
�Xt j , ξ̂N ,ι

⎞

⎠

= 2ν̄2
Z Z ,ι

∑

tN , j ∈(τN ,ι−1,τN ,ι]

(
ν−1

j − ν̄−1
ι

)(Y Y )

. (44)

Hence, in the notation of Theorem 2, we obtain that

CovN
ω (ξ̂N , Z N ) = 2

∑

ι

ν̄2
Z Z ,ι

∑

tN , j ∈(τN ,ι−1,τN ,ι]

(
ν−1

j − ν̄−1
ι

)(Y Y )

= op(N−1/2). (45)

123



250 P. A. Mykland

Finally, the Lindeberg condition in Theorem 2 is satisfied from Eq. 39. We have
therefore shown the following corollary to this theorem:

Theorem 6 (Multiple ANOVA in the Gaussian case) Let ̂〈Z , Z〉T be as defined in
Eq. 40. Under the conditions of Theorem 1,

n1/2
1 ( ̂〈Z , Z〉T − 〈Z , Z〉T ) (46)

converges in law under Pω to a normal distribution with mean zero and variance

2
M

M − p

T∫

0

(〈Z , Z〉′t )2dt. (47)

Compared to the results of Zhang (2001) and Mykland and Zhang (2006), the differ-
ence in method is that M is here finite and fixed, while in the earlier paper, M → ∞
with n1. In terms of results, there is here no asymptotic bias (whereas this is present,
though correctable from the data, in the earlier work). On the other hand, the cur-
rent estimator is not quite efficient, as the asymptotic variance in Zhang (2001) and
Mykland and Zhang (2006) is

2

T∫

0

(〈Z , Z〉′t )2dt (48)

(as in the single series case in Jacod and Protter 1998 and Barndorff-Nielsen and
Shephard 2002). Of course, the expression in Eq. 47 converges to that of Eq. 48 as
M → ∞. Comparing the two sets of results, one is lead to conjecture that there is
a bias-variance tradeoff where M should go very slowly to infinity n1, but exploring
that is beyond the scope of this paper.

5.2 Estimating the variability in the Hayashi–Yoshida estimator

We now return to Example 2 from Sect. 3. We consider the variance Eq. 12. Fix k and
l (k �= l), and recall that

Varω
(

̂

〈
X (k), X (l)

〉
T

)
=

∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
(κk,i;k,iκl, j;l, j + (κk,i;l, j )

2)

+
∑

(i, j,g,h)∈Bn

κk,i;l,hκk,g;l, j , (49)

where Bn is given by Eq. 15. We are seeking to consistently estimate this variance.
We here provide a moment based estimate in the style of Barndorff-Nielsen and

Shephard (2002). In this section, we only consider consistency of the estimate, though,
of course, the same principles as before can be used to find asymptotic normality.
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To follow up on Eq. 16, note this equality also holds in the asynchronous case. Also
note that

Eω(κ̂k,i;l,h κ̂k,g;l, j ) = κk,i;l,hκk,g;l, j + κk,i;l, jκk,g;l,h + κk,i;k,gκl,h;l, j (50)

Thus, if we set

V̂1 =
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
κ̂k,i;k,i κ̂l, j;l, j

(51)
V̂2 =

∑

(i, j,g,h)∈Bn

κ̂k,i;l,h κ̂k,g;l, j ,

we obtain

V1 = Eω V̂1 =
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
(κk,i;k,iκl, j;l, j + 2(κk,i;l, j )

2)

(52)
V2 = Eω V̂2 = 2

∑

(i, j,g,h)∈Bn

κk,i;l,hκk,g;l, j .

Obviously, V̂1 and V̂2 are consistent estimators of their expectations (note that the
precise technical statement here is that N (V̂i − Vi ) → 0 in probability as N → ∞).

Since Varω
(

̂

〈
X (k), X (l)

〉
T

)
is not a linear combination of V1 and V2, we need to

find a third estimator to make up the difference. There would seem to be many ways
of accomplishing this, but the following struck us as appealing.

Note that it is sufficient to obtain a consistent estimate for

V3 =
∑

i, j :(tk,i−1,tk,i )∩(tl, j−1,tl, j ) �=∅
(κk,i;l, j )

2 (53)

We shall use the theory from the previous section and find a consistent estimator under
a suitable P N .

Assume that a grid GN = {θN , j } is given as in the previous section. Define as
follows:

Dk,ι = {i : (tk,i−1, tk,i ) ⊆ (τι−1, τι)}
Dk,l,ι = {(i, j) : (tk,i−1, tk,i ) ∪ (tl, j−1, tl, j ) ⊆ (τι−1, τι)

and (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j ) �= ∅}
Mk,i = No. of intervals (θN ,h−1, θN ,h) ⊆ (tk,i−1, tk,i )) (54)

Mk,i;l, j = No. of intervals (θN ,h−1, θN ,h) ⊆ (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j )

mk,ι =
∑

i∈Dk,ι

Mk,i

mk,l,ι =
∑

(i, j)∈Dk,l,ι

Mk,i;l, j .
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Now note that under the approximate measure P N

E N
ω

∑

(i, j)∈(Dk,ι×Dl,ι−Dk,l,ι)

κ̂k,i;k,i κ̂l, j;l, j

= ν̄2
k,l,ι

∑

(i, j)∈(Dk,ι×Dl,ι−Dk,l,ι)

M(k, i; k, i)M(l, j; l, j)

= ν̄2
k,l,ι(mk,ιml,ι − mk,l,ι). (55)

On the other hand, set

D̄k,l,ι = {(i, j) : tk,i−1, tl, j−1 ∈ [τι−1, τι) and (tk,i−1, tk,i ) ∩ (tl, j−1, tl, j ) �= ∅}
m̄(2)

k,l,ι =
∑

(i, j)∈D̄k,l,ι

M2
k,i;l, j . (56)

The difference between Dk,l,ι and D̄k,l,ι is that (up to a negligible set) the union of
intervals (tk,i−1, tk,i )∩(tl, j−1, tl, j ), (i, j) ∈ D̄k,l,ι covers [0, T ], while this is normally
not the case for Dk,l,ι. Note that Dk,l,ι ⊆ D̄k,l,ι. By continuity (Assumption 3),

V3 =
∑

ι

v̄2
k,l,ιm̄

(2)
k,l,ι + o(N−1). (57)

It therefore follows from the theory in the previous section that if we set

V̂3 =
∑

ι

m̄(2)
k,l,ι

mk,ιml,ι − mk,l,ι

∑

(i, j)∈(Dk,ι×Dl,ι−Dk,l,ι)

κ̂k,i;k,i κ̂l, j;l, j , (58)

then V̂3 − V3 = oP (N−1).
Take the grid GN = {θN , j } to consist of all points of the form tk,i or tl, j . Thus

wN ≤ nk + nl . Fix M as a sufficiently large integer (more about the exact condition
below). We let τ1 be one of the first M points of GN , and then let the following τι be
every M th point in GN (we can without impacting the asymptotics ignore the first and
last interval, which may not have M points).

One can therefore, finally, use the estimate

̂Varω
(

̂

〈
X (k), X (l)

〉
T

)
= V̂1 + 1

2
V̂2 − V̂3. (59)

As an example of grid, one can let GN = {θN , j } consist of all points of the form tk,i

or tl, j . Thus wN ≤ nk + nl . Fix M as a sufficiently large integer. We let τ1 be one of
the first M points of GN , and then let the following τι be every M th point in GN (we
can without impacting the asymptotics ignore the first and last interval, which may not
have M points). In line with general principles of sufficiency, one should, of course,
average V̂3 over the M choices of initial point τN ,1. This does not, of course, affect
consistency.
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6 Proof of Theorem 1

Proof of Theorem 1 Set U j = ν̄
1/2
ι ν−1

j ν̄
1/2
ι − I , where ν̄

1/2
ι is the symmetric square

root of ν̄ι. By standard Gaussian arguments,

E N
ω (�X∗

θ j

(
ν−1

j − ν̄−1
ι

)
�Xθ j ) = tr(U j )

(60)
and VarN

ω (�X∗
θ j

(
ν−1

j − ν̄−1
ι

)
�Xθ j ) = 2tr

(
U 2

j

)
.

Set Vj = ν j − ν̄ι, and note that,

tr
(

Ur
j

)
= tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)r) + r tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)r+1
)

+ · · · . (61)

For r ≥ 2,

∣∣∣tr
((

ν̄−1/2
ι Vj ν̄

−1/2
ι

)r)∣∣∣ ≤
∣∣∣∣tr

((
ν̄−1/2
ι Vj ν̄

−1/2
ι

)2
)∣∣∣∣

r/2

(62)

(this is true for any symmetric matrix). Now note that

tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)2
)

=
∑

r,s

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)

rs

)2
,

(where Ars denotes component (r, s) of matrix A). Using Lemma 2 (given below),
and since ν̄ι sufficiently approximated by ζτι (τι+1 − τι)/M (by continuity), we obtain
that, under P N ,

∑

j

tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)2
)

= 2�Z Z + op(1). (63)

Meanwhile, from Eq. 62, we obtain that for r > 2,

∣∣∣∣∣∣

∑

j

tr
((

−ν̄−1/2
ι Vj ν̄

−1/2
ι

)r)
∣∣∣∣∣∣
≤ sup

j

∣∣∣∣tr
((

−ν̄−1/2
ι Vj ν̄

−1/2
ι

)2
)∣∣∣∣

(r−2)/2

×
∑

j

tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)2
)

.

Thus Eq. 61 yields that

tr
(

U 2
j

)
= tr

((
−ν̄−1/2

ι Vj ν̄
−1/2
ι

)2
)

×
(

1 + f

(

sup
j

∣∣∣∣tr
((

−ν̄−1/2
ι Vj ν̄

−1/2
ι

)2
)∣∣∣∣

))
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where f (x) = 2x1/2+3x+· · · = o(1) as x → 0. Since sup j |tr((−ν̄
−1/2
ι Vj ν̄

−1/2
ι )2)| =

op(1), we obtain from Eq. 63 that

∑

j

tr
(

U 2
j

)
= 2�Z Z + op(1). (64)

Also, since

∑

θN , j ∈(τN ,ι−1,τN ,ι]
tr

(
ν̄−1
ι Vj

)
= 0 (65)

by construction, we obtain

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]
tr(U j ) =

∑

j

tr
(

U 2
j

)
+ op(1)

= 2�Z Z + op(1) (66)

By the Lindeberg’s Central Limit Theorem (see, for example, Theorem 27.2
(pp. 359–360) of Billingsley 1995), the result for Z N follows (the Lindeberg con-
dition is similarly checked, using normality).

1

2

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]

(
log det(ν̄ι) − log det(ν j )

)

= 1

2

∑

j

log det(I + U j )

= 1

2

∑

j

(
tr(U j ) − 1

2
tr

(
U 2

j

))
+ op(1)

= 1

2
�Z Z + op(1). (67)

This shows the Theorem. ��
It remains to prove

Lemma 2 Assume the conditions of Theorem 1. Let ft be a continuous process
adapted to the filtration σ

(〈
X (k), X (l)

〉
s, 0 ≤ s ≤ t

)
. Set ζ

(k,l)
t = 〈

X (k), X (l)
〉′
t .

Then

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]
fτN ,ι−1(νk,l, j − ν̄k,l,ι)(νm,n, j − ν̄m,n,ι)

= 1

6

M − 1

M2 T 2v−2
N

T∫

0

ft H ′(t)2d〈ζ (k,l), ζ (m,n)〉t + op(N−2). (68)
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Proof of Lemma 2 Without loss of generality, by Girsanov’s Theorem, we assume that
ζ

(k,l)
t is a martingale.

First, suppose that

wN∑

j=1

(
θN , j − θN , j−1 − T

wN

)2

= o(N−1). (69)

Write

νk,l, j − ν̄k,l,ι =
θN , j∫

θN , j−1

ζ (k,l)
u du − 1

M

τN ,ι∫

τN ,ι−1

ζ (k,l)
u du

=
θN , j∫

θN , j−1

(
ζ (k,l)

u − ζ
(k,l)
θN , j−1

)
du + (θN , j − θN , j−1)

(
ζ

(k,l)
θN , j−1

− ζ (k,l)
τN ,ι−1

)

− 1

M

τN ,ι∫

τN ,ι−1

(
ζ (k,l)

u − ζ (k,l)
τN ,ι−1

)
du

+
(

(θN , j − θN , j−1) − τN ,ι − τN ,ι−1

M

)
ζ (k,l)
τN ,ι−1

=
θN , j∫

θN , j−1

(θN , j − u) dζ (k,l)
u + (θN , j − θN , j−1)

(
ζ

(k,l)
θN , j−1

− ζ (k,l)
τN ,ι−1

)

− 1

M

τN ,ι∫

τN ,ι−1

(τN ,ι − u) dζ (k,l)
u

+
(

(θN , j − θN , j−1) − τN ,ι − τN ,ι−1

M

)
ζ (k,l)
τN ,ι−1

=
τN ,ι∫

τN ,ι−1

gN , j (u) dζ (k,l)
u +

(
(θN , j − θN , j−1) − τN ,ι − τN ,ι−1

M

)
ζ (k,l)
τN ,ι−1

(70)

where

gN , j (u) = I{θN , j−1<u≤θN , j }(θN , j − u) + I{τN ,ι−1<u≤θN , j−1}(θN , j − θN , j−1)

− 1

M
I{τN ,ι−1<u≤τN ,ι}(τN ,ι − u).
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The last term in Eq. 70 is ignorable in view of assumption Eq. 69. Thus,

∑

ι

∑

θN , j ∈(τN ,ι−1,τN ,ι]
fτN ,ι−1(νk,l, j − ν̄k,l,ι)(νm,n, j − ν̄m,n,ι)

=
∑

ι

fτN ,ι−1

τN ,ι∫

τN ,ι−1

∑

θN , j ∈(τN ,ι−1,τN ,ι]
gN , j (u)2 d

〈
ζ (k,l), ζ (m,n)

〉

u
+ op(N−2)

= cM M−2T 2v−2
N

∑

ι

fτN ,ι−1

〈
ζ (k,l), ζ (m,n)

〉′
τN ,ι−1

(τN ,ι − τN ,ι−1) + op(N−2)

= cM M−2T 2v−2
N

T∫

0

ft d
〈
ζ (k,l), ζ (m,n)

〉

t
+ op(N−2) (71)

where

cM =
⎛

⎝2

3

1

M3

M−1∑

j=1

j3 + 1

M3

M−1∑

j=1

j2 − 1

6

(
M − 1

M

)2
⎞

⎠ = 1

6
(M − 1).

This shows the result under assumption Eq. 69 (note that under this assumption,
H ′(t) = 1 identically).

For the more general case, set

G(t) =
t∫

0

1

H ′(s)
ds. (72)

Define θ̃N , j = G(θN , j ) τ̃N , j = G(τN , j ), T̃ = G(T ), X̃ (k)
G(t) = X (k)

t , and f̃ (k)
G(t) = f (k)

t .

If ζ̃
(k,l)
u = 〈X̃ (k), X̃ (l)〉′u , then ζ̃

(k,l)
G(t) = ζ

(k,l)
t H ′(t). Since,

T̃∫

0

f̃u d
〈
ζ̃ (k,l), ζ̃ (m,n)

〉

t
=

T∫

0

ft H ′(t)2 d
〈
ζ (k,l)ζ (m,n)

〉

t
, (73)

the result of the lemma follows. ��

7 Conclusion

We have sought to demonstrate that the conditional Gaussian assumption is useful in
finding estimators for high frequency financial data. We also show general asymptotic
theorems for this case. In application, we develop new estimators for quarticity, for
residual variance in ANOVA, and for the variance of an estimator of covariation. A
particular feature of the methodology is that classical techniques for normal data can
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be used to propose and analyze estimators. We conjecture that the machinery can be
used for a whole range of other problems with similar data.

This paper can be seen as a companion paper to Mykland and Zhang (2009). The
setting in the current paper is more restrictive, but it is also possible to obtain sharper
results with the Gaussian calculus.
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Rootzén, H.: Limit distributions for the error in approximations of stochastic integrals. Ann Probab 8, 241–

251 (1980)
Weisberg, S.: Applied Linear Regression. 2nd edn. Wiley, New York (1985)
Zhang, L.: From martingales to ANOVA: Implied and realized volatility. PhD thesis, The University of

Chicago, Department of Statistics (2001)
Zhang, L.: Estimating covariation: Epps effect and microstructure noise. J Econ (forthcoming) (2010)
Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with

noisy high-frequency data. J Am Stat Assoc 100, 1394–1411 (2005)

123


	A Gaussian calculus for inference from high frequency data
	Abstract
	1 Introduction
	2 The model, and some immediate conclusions
	3 Warm-up: the quantification of error in the estimators
	4 Locally constant volatility 
	4.1 Setup 
	4.2 Main contiguity theorem 
	4.3 When the drift μ is not zero 

	5 Some applications of the theory
	5.1 ANOVA with multiple regression and finite smoothing
	5.2 Estimating the variability in the Hayashi--Yoshida estimator

	6 Proof of Theorem 1
	7 Conclusion
	Acknowledgments
	References


