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With the availability of high-frequency financial data, nonparametric estimation of the volatility of an
asset return process becomes feasible. A major problem is how to estimate the volatility consistently
and efficiently, when the observed asset returns contain error or noise, for example, in the form of
microstructure noise. The issue of consistency has been addressed in the recent literature. However,
the resulting estimator is not efficient. In work by Zhang, Myland and Aı̈t-Sahalia, the best estimator
converges to the true volatility only at the rate of n!1=6. In this paper, we propose an estimator, the
multi-scale realized volatility (MSRV), which converges to the true volatility at the rate of n!1=4,
which is the best attainable. We show a central limit theorem for the MSRV estimator, which permits
intervals to be set for the true integrated volatility on the basis of the MSRV.
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1. Introduction

This paper is concerned with how to estimate volatility nonparametrically and efficiently.
With the availability of high-frequency financial data, nonparametric estimation of

volatility of an asset return process becomes feasible. A major problem is how to estimate
the volatility consistently and efficiently, when the observed asset returns are noisy. The
issue of consistency has been addressed in the recent literature. However, the resulting
estimator is not efficient. In Zhang et al. (2005) the best estimator converges to the true
volatility only at the rate of n!1=6. In this paper, we propose an estimator which converges
to the true volatility at the rate of n!1=4, which is the best attainable. The new estimator
remains consistent when the observation noise is dependent. We call the estimator the multi-
scale realized volatility (MSRV).

To demonstrate the idea, let fYg be the observed log prices of a financial instrument.
The observations take place on a grid of time points Gn ¼ ftn,i, i ¼ 0, 1, 2, . . . , ng
spanning the time interval [0, T ]. For the purposes of asymptotics, we shall let Gn become
dense in [0, T ] as n ! 1. The Gns need not be nested.

Suppose that the fYtn,ig are noisy, and the corresponding true (latent) log prices are
fX tn,ig. Their relation can be modelled as
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Ytn,i ¼ X tn,i þ E t n,i , (1)

where tn,i 2 Gn. The noise E t n,i will be assumed to be independent of X and independently
and identically distributed (i.i.d.).

The model in (1) is quite realistic, as evidenced by the existence of microstructure noise
in the price process (Brown 1990; Zhou 1996; Corsi et al. 2001).

We further assume that the true log prices fXg satisfy the equation

dX t ¼ ! t dt þ " t dBt, (2)

where Bt is a standard Brownian motion. Typically, the drift coefficient ! t and the diffusion
coefficient " t are stochastic in the sense that

dX t(ø) ¼ !(t, ø)dt þ " (t, ø)dBt(ø): (3)

Throughout this paper, we use the notation in (2) to denote (3). By the model in (3) we mean
that fXg follows an Itô process. A special case is that fXg is Markov, where ! t ¼ !(t, X t)
and " t ¼ " (t, X t). In financial literature, " t is called the instantaneous volatility of X .

Our goal is to estimate
Ð T
0 " 2

t dt, where T can be a day, a month, or some other time
horizon. For simplicity, we call

Ð T
0 " 2

t dt the integrated volatility, and denote it by

hX , X i ¼
ðT

0

" 2
t dt:

The general question is how to estimate
Ð T
0 " 2

t dt nonparametrically, if one can only observe
the noisy data Ytn,i at discrete times t n,i 2 Gn. Gn is formally defined in Section 5.

To the best of our knowledge, there are two types of nonparametric estimator for
Ð T
0 " 2

t dt
in the current literature. The first type, the simpler of the two, is to sum up all the squared
returns in [0, T ]:

[Y , Y ](n,1) ¼
X

t n,i2G n,i>1

(Ytn,i ! Ytn,i!1
)2; (4)

this estimator is generally called realized volatility or realized variance. However, it has been
reported that realized volatility using high-frequency data is not desirable (see, for example,
Brown 1990; Zhou 1996; Corsi et al. 2001). The reason is that it is not consistent, even if the
noisy observations Y are available continuously. Under discrete observations, the bias and the
variance of the realized volatility are of the same order as the sample size n.

A slight modification of (4) is to use the sum of squared returns from a ‘sparsely
selected’ sample, that is, using a subgrid of Gn. The idea is that by using sparse data, one
reduces the bias and variance of the conventional realized volatility. This approach is quite
popular in the empirical finance literature. However, this ‘sparse’ estimator is still not
consistent. In addition, the choice of data to subsample and to discard is arbitrary. The
behaviour of this type of estimator, and of a sufficiency-based improvement of it, is
analyzed in Zhang et al. (2005); see also Bandi et al. (2006).

A second type of estimator for
Ð T
0 " 2

t dt is based on two sampling scales. As introduced
by Zhang et al. (2005: 1402), the two-scales realized volatility (TSRV) has the form
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h dX , XX , X i(TSRV) ¼ [Y , Y ](n,K) ! 2
n! K þ 1

nK
[Y , Y ](n,1), (5)

where

[Y , Y ](n,K) ¼ 1

K

X

t n,i2G n,i>K

(Ytn,i ! Ytn,i!K
)2, (6)

for K a positive integer. Thus the estimator in (5) averages the squared returns from sampling
every data point ([Y , Y ]

(n,1)
T ) and those from sampling every Kth data point ([Y , Y ]

(n,K)
T ). Its

asymptotic behaviour was derived when K ! 1 as n ! 1. The TSRV estimator has many
desirable features, including asymptotic unbiasedness, consistency, and asymptotic normal-
ity.1 However, its rate of convergence is not satisfactory. For instance, the best estimator in
Zhang et al. (2005) converges to

Ð T
0 " 2

t dt at the rate of n!1=6.
In this paper, we propose a new class of estimators, collectively referred to as multi-scale

realized volatility (MSRV), which converge to
Ð T
0 " 2

t dt at the rate of n!1=4. This new
estimator has the form

h dX , XX , X i(n) ¼
XM

i¼1

Æi[Y , Y ]
(n,Ki),

where M is a positive integer greater than 2. Comparing to h dX , XX , X i(TSRV)T , which uses two
time scales (1 and K), h dX , XX , X i(n) combines M different time scales. The weights Æi are
selected so that h dX , XX , X i(n) is asymptotically unbiased and has optimal convergence rate. The
rationale is that by combining more than two time scales, we can improve the efficiency of
the estimator. Interestingly, the n!1=4 rate of convergence in our new estimator is the same as
that in parametric estimation for volatility, when the true process is Markov (see Gloter and
Jacod 2000a, 2000b). Thus this rate is the best attainable. Earlier related results in the same
direction can be found in Stein (1987, 1990, 1993) and Ying (1991, 1993). See also Aı̈t-
Sahalia et al. (2005a). Related work can also be found in Curci and Corsi (2005) and
Barndorff-Nielsen et al. (2006). For the estimating functions-based approach, there is a nice
review by Bibby et al. (2002).

We emphasize that our MSRV estimator is nonparametric, and the true process follows a
general Itô process, where the volatility could depend on the entire history of the X process
plus additional randomness.

The paper is organized as follows. In Section 2 we motivate the idea of averaging over
M different time scales. As we shall see, our estimator is unbiased, and its asymptotic
variance comes from the noise (the E t n,i) as well as from the discreteness of the sampling
times tn,i. In Sections 3 and 4 we derive the weights ai which are optimal for minimizing
the variance that comes from noise, and we give a central limit theorem for the contribution
of the noise term. A specific family of weights is introduced in Section 4. We then
elaborate on the discretization error in Section 5, and show a central limit theorem for this
error. Section 6 gives the central limit theorem for the MSRV estimator.

1A related estimator can be found in Zhou (1996). However, this estimator is not consistent. See also Hansen and
Lunde (2006).
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For the statement of results, we shall use the following assumptions:

Assumption 1 Structure of the latent process. The X process is adapted to a filtration (X t)
and satisfies (2), where Bt is an (X t)-Brownian motion, and the ! t and " t are (X t)-adapted
processes which are continuous almost surely. Also both processes are bounded above by a
constant, and " t is bounded away from zero. We write X ¼ X T .

As a technical matter, we suppose that there is a " -field N and a continuous finite-
dimensional local martingale (Mt), so that X t ¼ " (Ms, 0 < s < t) _ N .

Assumption 2 Structure of the noise. The E t n,i are i.i.d. with E[E] ¼ 0 and E[E4] , 1. The
E t n,i are also independent of X .

These assumptions are not minimal for all results. In terms of the structure of the process, see
Section 5 in Jacod and Protter (1998) and Proposition 1 in Mykland and Zhang (2006) for
examples of statements where the ! and " processes are not assumed to be continuous. For
the methodology to incorporate dependence into the noise structure, see Aı̈t-Sahalia et al.
(2005b). Our current assumptions, however, provide a set-up with substantial generality
without overly complicating the proofs.

The final item in Assumption 1 is standard for the type of limit result that we discuss;
see similar conditions in Jacod and Protter (1998), Zhang (2001), Mykland and Zhang
(2006) and Zhang et al. (2005).

2. Motivation: Averaging the observations of hX , X i

In Zhang et al. (2005) it was observed that by combining the square increments of the
returns from two time scales, the resulting two-scale estimator h dX , XTX , XT i(TSRV) in (5)
improves upon the realized volatility, which uses only one time scale, as in (4). The
improvement is about reducing both the bias and the variance.

If the two-scale estimator is better than the one-scale estimator, a natural question arises
as to estimators combining more than two time scales. This question motivates the present
paper. In this section we briefly go through the main argument.

To proceed, recall definition (6) of [Y , Y ](n,K), and set, similarly,

[X , E](n,K) ¼ 1

K

X

t n,i2G n,i>K

(X tn,i ! X tn,i!K
)(E t n,i ! E t n,i!K

) (7)

and

[E, E](n,K) ¼ 1

K

X

t n,i2G n,i>K

(E t n,i ! E t n,i!K
)2:

Under (1), one can decompose [Y , Y ](n,K) into

[Y , Y ](n,K) ¼ [X , X ](n,K) þ [E, E](n,K) þ 2[X , E](n,K):
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We consider estimators of the form

h dX , XX , X i(n) ¼
XM

i¼1

Æi[Y , Y ]
(n,Ki), (8)

where the Æi are the weights to be determined. A first intuitive requirement is obtained by
noting that

E(h dX , XX , X i(n)jX process ) ¼
XM

i¼1

Æi[X , X ]
(n,Ki) þ 2EE2

XM

i¼1

Æi
nþ 1! Ki

Ki
: (9)

Since the [X , X ](n,Ki) are asymptotically unbiased for hX , X i (Zhang et al. 2005), it is
natural to require that

XM

i¼1

Æi ¼ 1 and
XM

i¼1

Æi
nþ 1! Ki

Ki
¼ 0: (10)

A slight redefinition will now make the problem more transparent. Let

a1 ¼ Æ1 ! (nþ 1)
1

K1
! 1

K2

# $% &!1

,

a2 ¼ Æ2 ! (a1 ! Æ1),

ai ¼ Æi, for i > 3: (11)

Our conditions on the Æs are now equivalent to the following.

Condition 1.
P

ai ¼ 1.

Condition 2.
PM

i¼1(ai=Ki) ¼ 0.

To understand the estimator h dX , XX , X i(n) in terms of the ai, consider the following asymptotic
statement. Here, and everywhere below, we allow ai, Ki and M to depend on n (i.e. they have
the form an,i, Kn,i and Mn), though sometimes the dependence on n is suppressed in the
notation. We obtain the following proposition, proved in Section 8.

Proposition 1. Suppose that Kn,1 and Kn,2 are O(1) as n ! 1. Under Assumptions 1 and 2,

h dX , XX , X i(n) ¼
XM

i¼1

ai[Y , Y ]
(n,Ki) ! 2EE2 þ Op(n

!1=2): (12)

To further analyze the terms in (12), write

[Y , Y ](n,K) ¼ [X , X ](n,K) þ 2

K

Xn

i¼0

E2t n,i þ Un,K þ Vn,K , (13)
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where Un,K is the main error term,

Un,K ¼ ! 2

K

Xn

i¼K

E t n,iE t n,i!K
, (14)

and Vn,K will be part of a remainder term and is given by

Vn,K ¼ 2[X , E](n,K) ! 1

K

XK!1

i¼0

E2t n,i !
1

K

Xn

i¼n!Kþ1

E2t n,i :

We now can see the impact of Condition 2: to wit, from equation (12),

h dX , XX , X i(n) ¼
XM

i¼1

ai[X , X ]
(n,Ki) þ 2

XM

i¼1

ai

Ki

Xn

j¼0

E2t n, j
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ
XM

i¼1

aiUn,Ki

þ
XM

i¼1

aiVn,Ki
! 2EE2 þ Op(n

!1=2)

¼
XM

i¼1

ai[X , X ]
(n,Ki) þ

XM

i¼1

aiUn,Ki
þ Rn þ Op(n

!1=2), (15)

where Rn is the overall remainder term, Rn ¼
PM

i¼1aiVn,Ki
! 2EE2. Thus, apart from the

contribution of this remainder term, Condition 2 removes the bias term due to
P

E2n,i, not only
in expectation but also almost surely. We emphasize this to stress that though we have
assumed that the E t n,i are i.i.d., our estimator is quite robust to the nature of the noise. As
before, Condition 1 ensures that the first term in (15) will be asymptotically unbiased for
hX , X i.

Furthermore, for i 6¼ l, the Un,Ki
and Un,Kl

are uncorrelated. Since Un,Ki
and Un,K l

are
also the end-points of zero-mean martingales, they are asymptotically independent as
n ! 1. Finally, the last term Rn is treated separately in the proof of Theorem 4. For now,
we focus on the terms other than the Vn,Ki

.
If one presupposes Condition 2, and that Rn is comparatively small, it is as if we observe

[X , X ](Ki) þ Un,Ki
, i ¼ 1, . . . , M :

In the ideal world of continuous observations (i.e. if we take [X , X ](Ki) to stand in for
hX , X i), Condition 2 makes it possible to obtain M (almost) independent measurements of
hX , X i. This motivates the form of the MSRV estimator.

Our aim is to use Conditions 1 and 2 to construct optimal weights ai. We proceed to
investigate what happens if we just take [X , X ](Ki) $ hX , X i in Sections 3 and 4. From
Section 5 on, we consider the more exact calculation that follows from [X , X ](Ki)

¼ hX , X i þ Op((n=Ki)
!1=2).
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3. Asymptotics for the noise term

As above, to obtain meaningful asymptotics, we let all quantities depend on n, thus
ai ¼ an,i, M ¼ Mn, Ki ¼ Kn,i, [Y , Y ]

(K) ¼ [Y , Y ](n,K), etc. Sometimes the dependence on
n is suppressed in the notation. All results are proved in Section 8.
Consider, first, the noise term

#n ¼
XMn

i¼1

an,iUn,Kn,i
: (16)

The variance of #n is as follows.

Proposition 2 (Variance of the noise term). Set

ª2n ¼ 4
XMn

i¼1

an,i

Kn,i

# $2

:

Suppose that the E t n,i are i.i.d. with mean zero and EE2 , 1, and that M n ¼ o(n) as n ! 1.
Then

var(#n) ¼ ª2nn(EE
2)2(1þ o(1)): (17)

Also, ª2n is minimized, subject to Conditions 1 and 2, by choosing

an,i ¼
Kn,i(Kn,i ! Kn)

Mn var(Kn)
(18)

where

Kn ¼
1

Mn

XMn

i¼1

Kn,i and var(Kn) ¼
1

Mn

XMn

i¼1

K2
n,i !

1

Mn

XMn

i¼1

Kn,i

 !2

:

The resulting minimal value of ªn is

ª%2n ¼ 4

Mn var(Kn)
: (19)

Since the Un,K are end-points of martingales, by the martingale central limit theorem
(Hall and Heyde 1980: Chapter 3), we obtain more precisely the following:

Theorem 1. Suppose that the E t n,i are i.i.d., with EE2 , 1, and that M ¼ Mn ¼ o(n) as
n ! 1. Suppose that max1<i<Mn

jan,i=(iªn)j ! 0 as n ! 1. Then #n=(n1=2ªn)
! N (0, E(E2)2) in law, both unconditionally and conditionally on X .
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4. A class of estimators, and further asymptotics for the noise
term

In this section we develop a class of weights an,i which we shall use in the rest of the
paper. The precise form of the weights is given in Theorem 2. The rest of this section is
motivational in nature.

In the following and for the rest of the paper, assume that all scales i ¼ 1, . . . , M are
used, which is to say that Kn,i ¼ i. In this case, Kn ¼ (Mn þ 1)=2 and
var(Kn) ¼ (M2

n ! 1)=12, and the optimal weights from Proposition 2 are then given by

an,i ¼ 12
i

M2
n

i=Mn ! 1=2! 1=(2Mn)

1! 1=M2
n

: (20)

The minimum variance is given through y%2n ¼ 48=[Mn(M
2
n ! 1)], so that

var(#n) ¼
48n(EE2)2

Mn(M
2
n ! 1)

:

The form (20) motivates us to consider weights of the form

an,i ¼
1

Mn
wMn

i

M n

# $
, i ¼ 1, . . . , Mn, (21)

as this gives rise to a tractable class of estimators. We specifically take

wM (x) ¼ xh(x)þ M!1xh1(x)þ M!2xh2(x)þ M!3xh3(x)þ o(M!3), (22)

where h and h1 are functions independent of M . The reason for considering this particular
functional form, where wM (x) must suitably vanish at zero, is that Condition 2 translates
roughly into a requirement that

Ð 1
0 wM (x)=x dx be approximately zero.

In terms of conditions on the function h, Conditions 1 and 2 imply that we have to make
the following requirements on h:

Condition 3.
Ð 1
0 xh(x)dx ¼ 1.

Condition 4.
Ð 1
0 h(x)dx ¼ 0.

With slightly stronger requirements on h, we can show that (15) holds more generally.

Theorem 2. Let h0 ¼ h, and suppose that for i ¼ 0, . . . , 2, hi is 3! i times continuously
differentiable on [0, 1], and that h3 is continuous on [0, 1]. Suppose that h satisfies
Conditions 3 and 4. Also assume that
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ð1

0

h1(x)dxþ
1

2
(h(1)! h(0)) ¼ 0,

ð1

0

h2(x)dxþ
1

2
(h1(1)! h1(0))þ

1

12
(h9(1)! h9(0)) ¼ 0, (23)

ð1

0

h3(x)dxþ
1

12
(h91(1)! h91(0)) ¼ 0:

Let the an,i be given by (21) and (22), where o(M!3) is uniform in x 2 [0, 1]. Finally,
suppose that the E t n,i are i.i.d., with EE2 , 1. Then approximation (15) remains valid, up to
o p(n=M

3
n).

The final class of estimators. Our estimation procedure will in the following be using
weights an,i which satisfy the description in Theorem 2.

Remark 1 Comments on Theorem 2. By adding terms in (22), one can make the
approximation in (15) as good as one wants, up to Op(n

!1=2). We will later use
Mn ¼ O(n1=2), which is why we have chosen the given number of terms in (22). Also, it
should be noted that the approximation to Condition 2 has to be much finer than to Condition
1, since we are seeking to make

XM

i¼1

ai

Ki

Xn

i¼0

E2t n,i ¼ n
XM

i¼1

ai

Ki

 !

EE2(1þ o p(1))

negligible for asymptotic purposes.

As we shall see, the specific choices for h1, h2, and h3 do not play any role in any of the
later expressions for asymptotic variance. A simple choice of h1 which satisfies (23) is
given by h1(x) ¼ !h9(x)=2, with h2(x) ¼ h2 and h3(x) ¼ h3, both constants. In this case,
h2 ¼ !(h9(1)! h9(0))=6 and h3 ¼ (h 0(1)! h 0(0))=24. With this choice, one obtains

an,i ¼
i

M2
n

h
i

M n

# $
! 1

2

i

M3
n

h9
i

M n

# $
þ i

M3
n

h2 þ
i

M4
n

h3: (24)

For the noise-optimal weights in (20) at the end of Section 3, h takes the form

h%# (x) ¼ 12 x! 1

2

# $
: (25)

Under this choice, the an,i given by (24) is identical to the one in (20), up to a negligible
multiplicative factor of (1! M!2

n )!1.
The following corollary to Theorem 1 is now immediate, since

ª2n ¼ 4M!3
n

ð1

0

h(x)2 dx(1þ o(1)), as n ! 1:
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Corollary 1. Suppose that the E t n,i are i.i.d., with EE2 , 1, and that M ¼ Mn ¼ o(n) as
n ! 1. Also assume that the an,i are given by (21), and that the conditions of Theorem 2
are satisfied. Then (M3

n=n)
1=2#n ! N (0, 4E(E2)2

Ð 1
0 h(x)2 dx in law, both unconditionally and

conditionally on X .

5. Asymptotics of the discretization error

We have obtained the optimal weights as far as reducing the noise is concerned. However,
as in (15), there remain two types of error: the discretization error, due to the fact that the
observations only take place at discrete time points; along with the residual Rn, which also
will turn out to not quite vanish. We study these in turn, and then state a result for the total
asymptotics for the MSRV estimator.

For the discretization error, we need some additional concepts.

Definition 1. Let 0 ¼ tn,0 , tn,1 , . . . , t n,n ¼ T be the observation times when there are n
observations. We refer to Gn ¼ ftn,0, t n,1, . . . , t n,ng as a ‘grid’ or ‘partition’ of [0, T ].
Following Section 2.6 of Mykland and Zhang (2006), the asymptotic quadratic variation of
time (AQVT) H(t) is defined by

H(t) ¼ lim
n!1

n

T

X

t n,iþ1< t

(t n,i ! tn,i!1)
2, (26)

provided the limit exists.

We assume that

max
1<i<n

jtn,iþ1 ! tn,ij ¼ O
1

n

# $
, (27)

whence every subsequence has a subsequence so that the AQVT exists. From an applied point
of view, there is little loss in assuming the existence of the AQVT; see the argument in Zhang
et al. (2005: 1411).

Note that from (27), H(t) is Lipschitz continuous provided it exists. We give the
following change-of-variable rule for the AQVT:

Lemma 1 (Change of variables in the AQVT). Assume (27) and that the AQVT H(t) exists.
Let G : [0, T ] ! [0, T 9] be increasing and Lipschitz continuous. Set un,i ¼ G(tn,i). Then

K(u) ¼ lim
n!1

n

T 9

X

un,i<u

(un,i ! un,i!1)
2

exists, and

T H9(t)G9(t) ¼ T 9K9(G(t)) (28)

almost everywhere on [0, T ].
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The following result is also useful and illustrative.

Lemma 2. Assume the conditions of Lemma 1. Then K(T 9) ¼ T 9 if and only if

Xn

i¼0

un,i ! un,i!1 !
T 9

n

# $2

¼ o(n!1): (29)

Remark 2. The importance of these two lemmas is that one can compare irregular and
‘almost equidistant’ sampling. If H9(t) exists, is continuous, and is bounded below by a
constant c . 0, one can define

G(t) ¼ T 9

T

ð t

0

H9(s)!1 ds:

Suppose that G(T ) ¼ T 9, and consider the process ~XXu ¼ X
(!1)
G(u). This process satisfies the

same regularity conditions as those that we impose on X , and, furthermore, the sampling
times un,i ¼ G(tn,i) are close to equidistant in the sense of (29). A further implication of this
is discussed later in Remark 3.

Define $ as the non-negative square root of

$2 ¼ T

ðT

0

H9(t)" 4
t dt: (30)

Note that $ is invariant under the transformation in Lemma 1. Finally, we define ‘stable
convergence’.

Definition 2. If Zn is a sequence of X -measurable random variables, then Zn converges
stably in law to Z as n ! 1 if there is an extension of X such that for all A 2 X and for all
bounded continuous g, EI A g(Zn) ! EI A g(Z) as n ! 1.

For further discussion of stable convergence, see Rényi (1963), Aldous and Eagleson (1978),
Hall and Heyde (1980: 56), Rootzén (1980) and Jacod and Protter (1998: 169–170). It is a
useful device in operationalizing asymptotic conditionality. There is some choice in what one
takes as the " -field X in this definition.

We can now state the main theorem for the asymptotic behaviour of finitely many of the
[X , X ](K) ¼ [X , X ](n,K).

Theorem 3 (Central limit theorem for the discretization error in [X , X ](K)). Suppose that
the structure of X follows Assumption 1. Also suppose that the observation times tn,i are non-
random and satisfy (27), and that the AQVT H(t) exists and is continuously differentiable.
Assume that min0< t<T H9(t) . 0. Let M n ! 1 as n ! 1, with M n ¼ o(n). Let
(Kn,1, . . . , Kn,L)=Mn ! (k1, . . . , kL) as n ! 1. Let ˆ be an L3 L matrix with (I , J )th
entry given by
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ˆI ,J ¼ 2

3
min(kI , kJ ) 3! min(kI , kJ )

max(kI , kJ )

# $
, (31)

and let Z be a normal random vector with covariance matrix ˆ. Let Z be independent of X .
Then, as n ! 1 the vector

n

M n

# $1=2

([X , X ](n,Kn,1) ! hX , X i, . . . , [X , X ](n,Kn,L) ! hX , X i)

converges stably in law to $Z.

Remark 3. Even in the scalar (L ¼ 1) case, the result in Theorem 3 is a gain over our earlier
Theorem 3 in Zhang et al. (2005: 1401). To characterize the asymptotic distribution we use
an AQVT which is independent of choice of scale and coincides with the original object
introduced in Mykland and Zhang (2006: Section 2.6). This is unlike the time variation
measure used in Zhang et al. (2005: Section 3.4), and Theorem 3 provides a substantial
simplification of the asymptotic expressions. To do this, we have used the approach described
above in Remark 2.

It is conjectured that the regularity conditions for Theorem 3 can be reduced to those of
Proposition 1 of Mykland and Zhang (2006), but investigating this is beyond the scope of
this paper.

As a corollary to Theorem 3, we now finally obtain the asymptotics for the discretization
part of the MSRV as follows.

Corollary 2 (Central limit theorem for the discretization error in the MSRV). Let an,i satisfy
(21) and (22), and let the conditions of Theorem 2 be satisfied. Further, make Assumption 1.
Also suppose that the observation times tn,i are non-random and satisfy (27), and that the
AQVT H(t) exists and is continuously differentiable. Assume that min0< t<T H9(t) . 0. Let
M n ! 1 as n ! 1, with M n=n ¼ o(1) and M3

n=n ! 1. Set

$2h ¼
4

3
T$2

ð1

0

dx

ðx

0

h(y)h(x)y2 3x! yð Þdy: (32)

Then

n

Mn

# $1=2 XMn

i¼1

an,i[X , X ]
(n,i) ! hX , X i

 !

! $h Z (33)

stably in law, where Z is standard normal and independent of X .

Remark 4. Note that the condition M3
n=n ! 1 is present because we have not imposed too

many conditions on h; if it were necessary, the assumption could be removed by considering
a slightly smaller class of hs.
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6. Overall asymptotics for the MSRV estimator

There are two main sources of error in the MSRV. On the one hand, we saw in Corollary 1
that if Mn time scales are used, the part of h dX , XX , X i(n) ! hX , X i which is due purely to the
noise E can be reduced to have order Op(n

1=2M!3=2
n ). At the same time, Corollary 2 shows

that the pure discretization error is of order Op(n
!1=2M1=2

n ). To balance these two terms, the
optimal Mn is therefore of order

Mn ¼ O(n1=2), (34)

assuming that the remainder term in (15) does not cause problems, which is indeed the case.
This leads to a variance–variance trade-off, and the rate of convergence for the MSRV
estimator is then h dX , XX , X i(n) ! hX , X i ¼ Op(n

!1=4). This result is an improvement on the two-
scales estimator, for which the corresponding rate is Op(n

!1=6). We embody this in the
following result.

Theorem 4. Let an,i satisfy (21) and (22), and let the conditions of Theorem 2 be satisfied.
Further, make Assumptions 1 and 2. Also suppose that the observation times tn,i are non-
random and satisfy (27), and that the AQVT H(t) exists and is continuously differentiable.
Assume that min0< t<T H9(t) . 0. Suppose that M n=n1=2 ! c as n ! 1. Let Z be a standard
normal random variable independent of X . Set

%2h ¼ 4c!3(EE2)2
ð1

0

h(x)2 dxþ c
4

3
T$2

ð1

0

dx

ðx

0

h(y)h(x)y2 3x! yð Þdy

þ 4c!1 var(E2)
ð1

0

ð y

0

xh(x)h(y)dx dyþ 8c!1EE2
ð1

0

ð1

0

h(x)h(y)min(x, y)dx dyhX , X i: (35)

Then

n1=4 h dX , XX , X i(n) ! hX , X i
( )

! %h Z, (36)

stably in law, as n ! 1.

For the noise optimal h-function from equation (25) (cf. equation (20)), we can now
calculate the value of the asymptotic variance of the MSRV. Note that if h(x) ¼
12(x! 1=2), we obtain

ð1

0

dx

ðx

0

h(y)h(x)y2 3x! yð Þdy ¼ 39

35
,

ð1

0

ð y

0

xh(x)h(y)dx dy ¼ 3

5
,

ð1

0

ð1

0

h(x)h(y)min(x, y)dx dy ¼ 6

5
:
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Hence, in this case, the asymptotic variance becomes

%2h ¼ 48c!3(EE2)2 þ 52

35
cT$2 þ 12

5
c!1var(E2)þ 48

5
c!1EE2hX , X i: (37)

7. Conclusion

In this paper we have introduced the multi-scale realized volatility and shown a central limit
theorem (Theorem 4) for this estimator. This permits the setting of intervals for the true
integrated volatility on the basis of the MSRV. As a consequence of our result, it is clear
that the MSRV is rate efficient, with a rate of convergence of Op(n

!1=4).
In terms of the general study of realized volatilities, Section 5 also shows further

properties of the asymptotic quadratic variation of time, as earlier introduced by Zhang
(2001) and Mykland and Zhang (2006). In particular, Theorem 3 shows that one can use the
regular one-step AQVT also for multi-step realized volatilities, thus improving on Theorems
2 and 3 in Zhang et al. (2005: 1401).

Finally, note that most of the arguments we have used also hold when the noise process
E t n,i is no longer i.i.d. One can, for example, model this process as being stationary (but
with mean zero). If the process is sufficiently mixing, this will change the asymptotic
variance of the MSRV, but not the consistency, nor the convergence rate of Op(n

!1=4); see,
for example, Chapter 5 of Hall and Heyde (1980) for the basic limit theory for dependent
sums. However, we have not sought to develop the specific conditions for the central limit
theorem to hold in the case where the process is mixing.

8. Proofs of results

Note that, for ease of notation, we sometimes suppress the dependence on n. For example,
ai ¼ an,i, M ¼ Mn, Ki ¼ Kn,i, [Y , Y ]

(K) ¼ [Y , Y ](n,K), etc. Also, in this section we write ti
for t n,i, to avoid notational clutter.

Proof of Proposition 1. Write

h dX , XX , X i(n) ¼
XM

i¼1

ai[Y , Y ]
(n,Ki) þ (Æ1 ! a1)([Y , Y ]

(n,K1) ! [Y , Y ](n,K2))

¼
XM

i¼1

ai[Y , Y ]
(n,Ki) ! 2EE2 þ Op(n

!1=2), (38)

where the final approximation follows from Lemma 1 in Zhang et al. (2005: 1398).

Proof of Proposition 2. Since Un,Kn,i
and Un,Kn, l

are uncorrelated (i 6¼ l) zero-mean
martingales,
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var(#n) ¼
XMn

i¼1

a2n,ivar(Un,Kn,i
)

¼ 4
XMn

i¼1

an,i

Kn,i

# $2

(n! Kn,i þ 1)(EE2)2

¼ ª2n(EE2)2(1þ o(1)), (39)

showing equation (17). The last transition in (39) follows because Mn ¼ o(n).
We minimize ª2n, subject to the constraints in Conditions 1 and 2. This is established by

setting

@

@an,i
ª2n þ º1

X
an,i ! 1

 !

þ º2
X an,i

Kn:i

 !" #

¼ 8
an,i

K2
n,i

þ º1 þ
º2
Kn,i

to zero, resulting in an,i ¼ !1
8(º1K

2
n,i þ º2Kn,i). One can determine the ºs by solving

1 ¼
XMn

i¼1

an,i ¼ ! 1

8
º1
XMn

i¼1

K2
n,i þ º2

XMn

i¼1

Kn,i

 !

,

0 ¼
XMn

i¼1

ai

Kn,i
¼ ! 1

8
º1
XMn

i¼1

Kn,i þ Mnº2

 !

:

This leads to

º1 ¼ ! 8

Mn var(Kn)
and º2 ¼

8Kn

Mn var(Kn)
,

where Kn and var(Kn) are as given in rhe statement of the proposition. This shows the rest of
the proposition. h

Proof of Theorem 1. Assume without loss of generality that Ki ¼ i for i ¼ 1, . . . , M. To
avoid notational clutter, we write ai for an,i. Note that #n is the end-point of a martingale. We
show that #n=(n1=2ªn) satisfies the conditions of the version of the martingale central limit
theorem which is stated in Corollary 3.1 of Hall and Heyde (1980: 58–59). The result then
follows. Note that we shall take, in the notation of Hall and Heyde (1980), F n, j to be the
smallest " -field making E ti , i ¼ 1, . . . , j, and the whole X t process, measurable.

We start with the Lindeberg condition. For given &, define f&(x) ¼ E(E2x2 IfjExj.&g). Also
set

rn(x) ¼ E f&n1=2 ! 1

ªn

XMn^ j

i¼1

2ai
i
E ti

 !

, for
j! 1

n
< x ,

j

n
:
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We then obtain

Xn

j¼1

E E2t j ! 1

n1=2ªn

XMn^ j

i¼1

2ai
i
E t j!i

 !2

IfjE t j (!(1=n1=2ªn)
PM n^ j

i¼1
(2ai=i)E t j!i

)j.&g

0

@

1

A

¼ 1

n

Xn

j¼1

E f&n1=2 ! 1

ªn

XMn^ j

i¼1

2ai
i
E t j!i

 !

¼
ð1

0

rn(x)dx (since the E ti are i:i:d:)

! 0 as n ! 1, (40)

where the last transition is explained in the next paragraph. By Chebychev’s inequality, the
conditional Lindeberg condition in Corollary 3.1 of Hall and Heyde (1980) is thus satisfied.

The last transition in (40) is because of the following. First, fix x 2 [0, 1), and let jn be
the corresponding j in the definition of rn(x). Let

Zn ¼ ! 1

ªn

XMn^ j n

i¼1

2ai
i
E ti ,

so that rn(x) ¼ E f&n1=2 (Zn). Note that Zn is a sum of independent random variables which
satisfies the Lindeberg condition:

XMn^ j n

i¼1

E
!2ai
iªn

E ti

# $2

Ifj!(2ai=iªn)E t i j.&g ¼
XMn^ j n

i¼1

f&
!2ai
iªn

# $
! 0

as n ! 1, since maxijai=iªnj ! 0. The ensuing asymptotic normality of Zn (if necessary by
going to subsequences of subsequences) shows that rn(x) ! 0 as n ! 1. Since
0 < rn(x) < 1, the final transition in (40) follows by dominated convergence.

We now turn to the sum of conditional variances in the corollary in Hall and Heyde
(1980):

Xn

j¼1

E E2t j ! 1

n1=2ªn

XMn^ j

i¼1

2ai
i
E t j!i

 !2

jF n, j!1

0

@

1

A

¼ E(E2)
1

nª2n

Xn

j¼1

XMn^ j

i¼1

2ai
i
E t j!i

 !2

¼ 1þ o p(1): (41)
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The last transition is obvious by appealing to M-dependence. A rigorous but tedious proof is
obtained by splitting the sum into main terms of the type E2ti and cross-terms of the form
E t iE t j (i 6¼ j).

In view of (40) and (41), Theorem 1 is proved by using Corollary 3.1 and the remarks
following it in Hall and Heyde (1980: 58–59). h

Proof of Theorem 2. We need to show that

XM

i¼1

an,i

Kn,i

Xn

i¼0

E2ti ¼ o p(n=M
3
n),

in other words, we need

XM!n

i¼1

an,i

Kn,i
¼ o(M!3

n ):

By Taylor expansion,

1

M

XM

i¼1

h
i

M

# $
¼

ð1

0

h(x)dxþ 1

2M2

XM

i¼1

h9
i

M

# $
! 1

3!M3

XM

i¼1

h 0
i

M

# $

þ 1

4!M4

XM

i¼1

h-
i

M

# $
þ o(M!3)

¼
ð1

0

h(x)dxþ 1

2M
(h(1)! h(0))þ 1

12M3

XM

i¼1

h 0
i

M

# $

! 1

24M4

XM

i¼1

h-
i

M

# $
þ o(M!3)

¼
ð1

0

h(x)dxþ 1

2M
(h(1)! h(0))þ 1

12M2
(h9(1)! h9(0))þ o(M!3), (42)

where the last line follows by iterating the first line. By similar argument on h1, h2 and h3,
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1

M

XM

i¼1

i

M

# $!1

wM
i

M

# $
¼ 1

M

XM

i¼1

h
i

M

# $
þ 1

M2

XM

i¼1

h1
i

M

# $

þ 1

M3

XM

i¼1

h2
i

M

# $
þ 1

M4

XM

i¼1

h3
i

M

# $
þ o(M!3)

¼
ð1

0

h(x)dxþ 1

M

ð1

0

h1(x)dxþ
1

2
(h(1)! h(0))

# $

þ 1

M2

ð1

0

h2(x)dxþ
1

2
(h1(1)! h1(0))þ

1

12
(h9(1)! h9(0))

# $

þ 1

M3

ð1

0

h3(x)dxþ
1

12
(h91(1)! h91(0))

# $
þ o

1

M3

# $

¼ o
1

M3

# $
,

by (23). This shows the result. h

Proof of Lemma 1. To get the rigorous statement, we proceed as follows. Every subsequence
has a further subsequence for which K(u) exists, and this K is obviously Lipschitz
continuous. We will show that (28) holds. Since this equation is independent of subsequence,
the result will have been proved.

Let Bt be a standard Brownian motion, and let ~BBt ¼ BG( t). By comparing the asymptotic
distributions of n1=2[

P
ti< t(

~BBti ! ~BBti!1
)2 ! h ~BB, ~BBi t] and n1=2[

P
ui<u(Bui ! Bui!1

)2 ! hB, Biu],
we obtain from Proposition 1 of Mykland and Zhang (2006) that

T

ð t

0

2H9(s)(h ~BB, ~BBi9s)2 ds ¼ T 9

ðG( t)

0

2K9(v)(hB, Bi9v)2 dv, for all t 2 [0:T ]:

Since hB, Bi9v ¼ 1 and h ~BB, ~BBi9s ¼ G9(s) almost everywhere, equation (28), and hence the
lemma, follows. h

Proof of Lemma 2. Set &n,i ¼ un,i ! un,i!1 ! T 9=n. Then

n

T 9

X

i

un,i ! un,i!1ð Þ2 ¼ n

T 9

X

i

T 9

n
þ &n,i

# $2

¼ T 9þ 2
X

i

&n,i þ
T 9

n

X

i

&2n,i:

Since
P

i&n,i ¼ 0, the lemma follows by letting n ! 1. h
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Proof of Theorem 3. Following Lemmas 1 and 2 and Remark 2, we can assume without loss
of generality that the tn,i satisfy (in place of the un,i) the equation (29).

Consider the scalar case (L ¼ 1) first, with Kn ¼ Kn,1 ¼ Mn. In what follows, all
prelimiting quantities are subscripted by n, and we suppress the n for ease of notation
(except when it seems necessary). We now refer to Theorems 2 and 3 in Zhang et al.
(2005: 1401). Use the notation ˜ti, hi and $n as in that paper, and let ˜t ¼ T=n. (Note
that the usage of $ in this paper is different from that of Zhang et al. (2005). Also define

~hhi ¼
4

K˜t

X(K!1)^i

j¼1

1! j

K

# $2

˜t and ~$$2n ¼
X

i

~hhi" 4
t i
˜t:

Note that if we show that ~$$n ! $n ! 0 in probability as n ! 1, we have shown the scalar
version of the theorem. This is because we will then have shown that the conditions of the
two theorems in Zhang et al. (2005) are satisfied, and that we can calculate the asymptotic
variances as if t n,i ¼ iT=n.

To this end, note first that

****
X

i

hi" 4
t i
(˜ti ! ˜t)

**** < (" þ)4
X

i

h2i

 !1=2 X

i

(˜ti ! ˜t)2

 !1=2

¼ O(n1=2)3 o(n!1=2) ¼ o(1), (43)

where the orders follow, respectively, from equation (45) in Zhang et al. (2005), and equation
(29) in this paper. Then note that

****
X

i

(hi ! ~hhi)" 4
t i
˜t

**** ¼
****
4

K
(" þ)4

XK!1

j¼1

1! j

K

# $2 Xn! j

l¼(K!1)þ

(˜t l ! ˜t)

 !****

<
4

K
(" þ)4

XK!1

j¼1

1! j

K

# $2

3
X

i

(˜ti ! ˜t)2

 !1=2

¼ O(1)3 o(n!1=2) ¼ o(1) (44)

where, again, the orders follow, respectively, from equation (45) in Zhang et al. (2005) and
equation (29) in this paper.

Equations (43) and (44) combine to show that ~$$n ! $n ! 0 in probability as n ! 1.
For the general (L . 1) case, first note that since ! t, " t and "!1

t are bounded
(Assumption 1), by Girsanov’s theorem – see, for example, Section 3.5 of Karatzas and
Shreve (1991: 190–201) or Section II-3b of Jacod and Shiryaev (2003: 168–170) – we can
without loss of generality further suppose that ! t ¼ 0 identically. This is because of the
stability of the convergence; see the methodology in Rootzén (1980).

Now set
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(X , X )(K) ¼ 2

K

Xn!1

j¼0

(X t jþ1
! X t j)

Xj^(K!1)

r¼1

(K ! r)(X t j! rþ1
! X t j! r

)

and note that

[X , X ](n,K) ¼ (X , X )(K) þ [X , X ](n,1) þ Op
K

n

# $

¼ (X , X )(K)T þ hX , X i þ Op(n
!1=2)þ Op(K=n),

from Proposition 1 in Mykland and Zhang (2006).
Let Mn, I

t be the continuous martingale for which Mn, I
T ¼ (X , X )( I)(n=Mn)

1=2. The proof
of Theorem 2 in Zhang et al. (2005) actually establishes that the sequence of processes
(M

n,Kn, I

t ) is C-tight in the sense of Definition VI.3.25 of Jacod and Shriyaev (2003: 351).
This is because of Theorem VI.4.13 and Corollary VI.6.30, also in Jacod and Shriyaev
(2003: 358, 385). The same corollary then establishes that the asymptotic distribution is as
described in Theorem 3, provided we can show that, in probability,

hMn,Kn, I , Mn,Kn, J iT ! $2ˆ, as n ! 1: (45)

This is because of Lévy’s theorem (see Theorem 3.16 in Karatzas and Shreve 1991: 157). The
stable convergence follows as in the proof of Theorem 3 of Zhang et al. (2005), the
conditions for which have already been satisfied.

Finally, we need to show (45). As in the scalar case, we assume (29), and the same kind
argument used in the scalar case carries over to show that we can take ti,n ¼ iT=n for the
purposes of our calculation. The computation is then tedious but straightforward, and
carried out similarly to that for the quadratic variation in the proof of Theorem 2 in Zhang
et al. (2005). Theorem 3 is thus proved. h

Proof of Corollary 2. First of all, note that since M3
n=n ! 1,

PMn

i¼1an,i ¼ o(!(n=Mn)
1=2).

In lieu of equation (33), it is therefore enough to prove

n

Mn

# $1=2XMn

i¼1

an,i [X , X ]
(n,i) ! hX , X i

+ ,
! $h Z: (46)

Also, as in the proof of Theorem 3, our assumptions imply that we can take ! t ¼ 0
identically, without loss of generality.

Since there are asymptotically infinitely many [X , X ](n,i) involved in equation (33), we
have to approximate with a finite number of these. To this end, let & . 0 be an arbitrary
number (& , 1). Let Æ ¼ 1! &=

ffiffiffi
2

p
. Let L be an integer sufficiently large that 2ÆL!1 < &2.

For I ¼ 1, . . . , L, let ~kkI ¼ ÆL! I , and let ~kk0 ¼ 0. For i ¼ 1, . . . , Mn, define I i,n to be the
value I , 1 < I < L, for which i=Mn 2 (~kkI!1, ~kkI ]. Then note that, if kUk ¼ (EU 2)1=2,
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n

Mn

# $1=2
.....
XMn

i¼1

an,i [X , X ]
(n,i) ! [X , X ](n, I i,n)

+ ,
.....

<
n

Mn

# $1=2XMn

i¼1

jan,ij3 max
1<i<n

k[X , X ](n,i) ! [X , X ](n, I i,n)k: (47)

Now let in be the value i, 1 < i < Mn, which maximizes k[X , X ](n,i) ! [X , X ](n, I i,n)k for
given n, and let I n ¼ I in,n.

For the moment, let N be an unbounded set of positive integers so that
(in=Mn, I n=Mn)n2N converges. Call the limit (k1, k2). By the proofs of Theorems 2 and
3 in Zhang et al. (2005), (n=Mn)([X , X ]

(n,i n) ! [X , X ](n, I n))2 is uniformly integrable. By
the statement of Theorem 3, it then follows that, as n ! 1 through N ,

n

Mn

# $
E([X , X ](n,i n) ! [X , X ](n, I n))2 ! E$2( 2̂,2 þ 1̂,1 ! 2 1̂,2)

¼ E$22k2 1! k1
k2

# $2

< E$2&2 (48)

by construction. Since every subsequence has a subsequence for which (in=Mn, I n=Mn)
converges, it follows from (47) that

lim sup
n!1

n

Mn

# $1=2
.....
XMn

i¼1

an,i [X , X ]
(n,i) ! [X , X ](n, I i,n)

+ ,
..... < &(E$2)1=2 max

0<x<1
jxh(x)j: (49)

The result of Corollary 2 thus follows by computing the limit of

n

Mn

# $1=2XMn

i¼1

an,i [X , X ]
(n, I i,n) ! hX , X i

+ ,
, (50)

and then letting & ! 0. h

Proof of Theorem 4. The remainder term Rn from equation (15) can be written Rn ¼
Rn,1 þ Rn,2, where

Rn,1 ¼
XMn

j¼1

an, j
1

j

Xj!1

i¼0

E2ti þ
Xn

i¼n! jþ1

E2t i

 !

! 2EE2,

Rn,2 ¼ 2
XMn

i¼1

an,i[X , E](i): (51)

We shall show that M1=2
n Rn converges in law, conditionally on X , to a normal distribution

with variance
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4var(E2)
ð1

0

ð y

0

xh(x)h(y)dx dyþ 8hX , X ivar(E)
ð1

0

ð1

0

h(x)h(y)min(x, y)dx dy, (52)

and also that, conditionally on X , Rn=M
1=2
n is asymptotically independent of (M3

n=n)
1=2#n in

Corollary 1. Thus, in view of the results on the the pure noise and discretization terms in
Corollaries 1 and 2, Theorem 4 will then be shown.

To show this, we show in the following that M1=2
n Rn,1 and M1=2

n Rn,2 are asymptotically
normal given X , with mean zero and variances given by (54) and (57), respectively. We
then discuss the joint distribution of (M3

n=n)
1=2#n, M1=2

n Rn,1 and M1=2
n Rn,2.

Asymptotic normality of Rn,1. Once Mn , n=2, write

Rn,1 ¼
XMn!1

i¼0

E2t i
XMn

j¼iþ1

an, j

j
þ
XMn!1

i¼0

E2t n!i

XMn

j¼iþ1

an, j

j
! 2EE2: (53)

Hence,

var(M1=2
n Rn,1) ¼ 2Mn var(E2)

XM!1

i¼0

XM

j¼iþ1

a j

j

 !2

¼ 2 var(E2)
ð1

0

ð1

x

h(y)dy

# $2

dxþ o(1)

¼ 4 var(E2)
ð1

0

ð y

0

xh(x)h(y)dx dyþ o(1), (54)

while under Theorem 2,

E
XMn

j¼1

a j
1

j

Xj!1

i¼0

E2ti þ
Xn

i¼n! jþ1

E2t i

 !" #

¼ 2EE2(1þ o(M!1=2
n )): (55)

Since the Lindeberg condition is also obviously satisfied, we obtain that M1=2
n Rn,1 converges

in law (conditionally on X ) to a normal distribution with mean zero and variance given by
(54).

Asymptotic normality of the ‘cross term’ Rn,2. As in the proof of Theorem 3, we proceed,
without loss of generality, as if X were a martingale. As in the proof of Theorem 1, we
shall show that M1=2

n Rn,2 satisfies the conditions of the version of the martingale central
limit theorem which is stated in Corollary 3.1 of Hall and Heyde (1980), and calculate the
asymptotic variance. As in the earlier proof, we shall take, in the notation of Hall and
Heyde (1980), F n, j to be the smallest " -field making E ti , i ¼ 1, . . . , j, and the whole X t

process, measurable.
Note that, from (6),

[X , E](n,K) ¼ 1

K

Xn

i¼0

b
(K)
n,i E ti ,

where
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b
(K)
n,i ¼

!(X tn,iþK
! X n, ti ), if i ¼ 0, . . . , K ! 1,

(X tn,i ! X tn,i!K
)! (X tn,iþK

! X tn,i ), if i ¼ K, . . . , n! K,
(X tn,i ! X tn,i!K

) if i ¼ n! K þ 1, . . . , n:

8
<

:

Thus, from (51), one obtains

M1=2
n Rn,2 ¼ M1=2

n

Xn

i¼1

E ti
XMn

j¼1

an, j

j
b
( j)
n,i: (56)

Obviously, M1=2
n Rn,2 is the end-point of a zero-mean martingale relative to the filtration

(F n, j). The conditional variance process (in Corollary 3.1 in Hall and Heyde 1980) is given
by

MnE(E2)
Xn

i¼1

XMn

j¼1

an, j

j
b
( j)
n,i

 !2

¼ Mn var(E)
Xn

i¼1

XMn

j¼1

XMn

k¼1

an, j

j

an,k

k
b
( j)
n,i b

(k)
n,i

¼ Mn var(E)
Xn

i¼1

XMn

j¼1

XMn

k¼1

an, j

j

an,k

k
(b( j^k)

n,i )2 þ o p(1)

¼ 2Mn var(E)
XMn

j¼1

XMn

k¼1

an, j

j

an,k

k
( j ^ k)[X , X ]( j^k) þ o p(1)

¼ 2

ð1

0

ð1

0

h(x)h(y)(x ^ y)dx dyhX , X ivar(E)þ o p(1), (57)

where j ^ k ¼ min( j, k) and where remainder terms are taken care of as in the proof of
Theorem 3.

By similar methods, the Lindeberg condition is satisfied (see the discussion in the proof
of Theorem 1). By Corollary 3.1 in Hall and Heyde (1980) it follows that M1=2

n Rn is
asymptotically normal (conditionally on X ), with mean zero and variance given by (57).
This is what we needed to show.

The joint distribution of (M3
n=n)

1=2#n, M
1=2
n Rn,1 and M1=2

n Rn,2. First of all, note that for
all three quantities, we have satisfied the conditions of Corollary 3.1 of Hall and Heyde
(1980). This is with the exception of (their equation) (3.21), where we have instead used the
remarks following their corollary (and thus the convergence is conditional on X as opposed
to stable with respect to the " -field generated by both X and the E t i).

In terms of joint distribution, note first that the sum of conditional covariances for each
pair of the three quantities (M3

n=n)
1=2#n, M

1=2
n Rn,1 and M1=2

n Rn,2 converges to zero, by the
same methods as above. In view of how Hall and Heyde’s corollary implies their Theorem
3.2 (Hall and Heide 1980: 58), the Cramér–Wold device now implies the joint normality of
(M3

n=n)
1=2#n, M1=2

n Rn,1 and M1=2
n Rn,2, and also that they are asymptotically independent.

Theorem 4 is then proved. h
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