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Abstract

Pre-averaging is a popular strategy for mitigating microstructure in high frequency financial
data. As the term suggests, transaction or quote data are averaged over short time periods
ranging from 30 seconds to five minutes, and the resulting averages approximate the efficient
price process much better than the raw data. Apart from reducing the size of the microstructure,
the methodology also helps synchronise data from different securities. The procedure is robust to
short term dependence in the noise.

Since averages can be subject to outliers, and since they can pulverise jumps, we have developed
a broader theory which also applies to cases where M-estimation is used to pin down the efficient
price in local neighbourhoods. M-estimation serves the same function as averaging, but we shall
see that it is safer. Good choices of M-estimating function greatly enhance the identification of
jumps. The methodology applies off-the-shelf to any high frequency econometric problem.

In this paper, we develop a general theory for pre-averaging and M-estimation based inference.
We show that, up to a contiguity adjustment, the pre-averaged process behaves as if one sampled
from a semimartingale (with unchanged volatility) plus an independent error.

Estimating the efficient price is a form of pre-processing of the data, and hence the methods
in this paper also serve the purpose of data cleaning.
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1. “A tale full of sound and fury”

The recent literature on high frequency financial data has indeed been focused on sound (noise) and
fury (jumps). While the tale is significant and important, one of the lessons from it is that both noise
and jumps can severely impact statistical significance. Especially when they occur in combination.1

Unlike Shakespeare’s Macbeth, we are fortunately not here faced with ultimate questions, but
rather with the more prosaic one of finding a signal – something significant – in the middle of the
sound and fury. The purpose of this paper is to introduce two (intertwined) approaches which we
believe can be helpful: M-estimation, and contiguity.

The analysis of these data started with the work of Andersen and Bollerslev (1998a,b), Andersen,
Bollerslev, Diebold, and Labys (2001, 2003), Barndorff-Nielsen and Shephard (2001, 2002); Barndorff-
Nielsen (2004), Jacod and Protter (1998), Zhang (2001), Mykland and Zhang (2006), and the group
at Olsen and Associates (Dacorogna, Gençay, Müller, Olsen, and Pictet (2001)), focusing on the
concept of realised volatility (RV).2 The work was based on the assumption that log prices follow a
semimartingale of the form

dXt = µtdt+ σtdWt + dJt, (1)

where Jt is a process of jumps.3 Wt is Brownian motion; µt and σt are random processes that can
be dependent with W . We also denote the continuous part of Xt by

dXc
t = µtdt+ σtdWt. (2)

The semimartingale model for prices is required by the no-arbitrage principle in finance theory
(Delbaen and Schachermayer (1994, 1995, 1998)).

Somewhat startlingly, the data had feedback to the theory: log prices are not semimartingales
after all. The authors found that in actual data, the RV does not, in fact, converge as predicted by
theory. This was clarified by the so-called signature plot (introduced by Andersen, Bollerslev, Diebold,
and Labys (2000), see also the discussion in Mykland and Zhang (2005)). This led researchers to
investigate a model where the efficient log price Xt is latent, and one actually observes a contaminated
process Ytj :

Ytj = Xtj + εtj (3)

The distortion εtj is called either “microstructure noise” or “measurement error”, depending on one’s
academic field (O’Hara (1995); Hasbrouck (1996)). The tj can be transaction times, or quote times.

The discovery of the impact of microstructure on inference led researchers to seek methods for
1See, in particular, the discussions in Jacod and Protter (2012, Chapter 16.5, pp. 521-563) and Aı̈t-Sahalia and

Jacod (2014, Appendix A.4, p. 496-502).
2An instantaneous version of RV was earlier proposed by Foster and Nelson (1996) and Comte and Renault (1998).

Antecedents can be found in Rosenberg (1972), French, Schwert, and Stambaugh (1987), and Merton (1980). For a
number of other early papers, see the anthology Shephard (2005). For further references, see the review by Shephard
and Andersen (2009).

3Some of the cited papers allow for jumps, others not.
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high frequency data which allow for such noise. So far, five main approaches have come to light:
• Two- and Multi-scale estimation: weighted subsampled RVs (Zhang, Mykland, and Aı̈t-Sahalia

(2005), Zhang (2006, 2011))

• Realised Kernel: weighted autocovariances (Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008))4

• Pre-averaging: take weighted local averages before taking squares (Jacod, Li, Mykland, Podol-
skij, and Vetter (2009a), Podolskij and Vetter (2009b))

• Quasi-likelihood (Xiu (2010))

• The local method of moments of Bibinger, Hautsch, Malec, and Reiss (2014)
All methods can achieve up to Op(n−1/4) convergence rate for volatility, which is as good as for
parametric inference (σ, µ constant), cf. Gloter (2000), Gloter and Jacod (2000, 2001).5 The
approaches mainly differ in treatment of edge effects. (See Mykland and Zhang (2014) for a systematic
discussion of edge effects.) Studies based on different microstructure models are also in development
(Robert and Rosenbaum (2009)). A recent, more abstract, line of enquiry is based on equivalence
of experiments (Hoffmann (2008), Reiss (2011), Jacod and Reiss (2012), Bibinger, Hautsch, Malec,
and Reiss (2014)). The latter path is related to our own; see Example 3 in Section 3.1.1.

However, existing literature has been confined to estimation of volatility and very closely related
objects.6 Also each estimator has been studied on a case by case basis. This is in contrast to
the much greater generality which can be achieved when there is no microstructure, including high
frequency regression, analysis of variance, powers of volatility (Mykland and Zhang (2006, 2009),
Kalnina (2012), Jacod and Rosenbaum (2013)), empirically based trading strategies (Zhang (2012)),
semivariances (Barndorff-Nielsen, Kinnebrock, and Shephard (2009b)), resampling (Kalnina and
Linton (2007), Gonçalves and Meddahi (2009), Kalnina (2011), Gonçalves, Donovon, and Meddahi
(2013)), volatility risk premia (Bollerslev, Gibson, and Zhou (2005), Bollerslev, Tauchen, and Zhou
(2009)), the volatility of volatility (Vetter (2011)), robust approaches to volatility,7 jump detection
and estimation8, and so on. In other words, the research assuming no microstructure has flourished.
To some extent, this is legitimate. As an old saying puts it, one has to learn to walk before one learns
how to run. Also, there is the hope that either subsampling or pre-averaging can be used to eliminate
the microstructure problem, and/or that data can be cleaned so hard that they don’t have error any

4Realised kernel and Multi-scale estimation can be given adjustments to be asymptotically equivalent, see Bibinger
and Mykland (2016).

5Other earlier methods based on parametric assumptions include, in particular, Zhou (1998) and Curci and Corsi
(2005), which uses the famous parameter-free diagonalisation of the covariance matrix.

6Specifically Bi- and Multipower Variation (Podolskij and Vetter (2009a), Jacod, Podolskij, and Vetter (2009b)) and
integrated covariance under asynchronicity (Zhang (2011), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009a),
Christensen, Kinnebrock, and Podolskij (2008a)). The only other main classes of estimators that have been studied
in the presence of noise are jump (see Footnote 8) and leverage effect (Wang and Mykland (2014), Aı̈t-Sahalia, Fan,
Wang, and Yang (2013)).

7In addition to the other papers cited, see, e.g., Andersen, Dobrev, and Schaumburg (2012, 2014).
8 References include Barndorff-Nielsen (2004), Aı̈t-Sahalia (2004), Mancini (2004), Barndorff-Nielsen, Graversen,

Jacod, Podolskij, and Shephard (2006), Aı̈t-Sahalia and Jacod (2007, 2008, 2009, 2012), Jacod and Todorov (2010),
Jing, Kong, Liu, and Mykland (2012) Lee (2005), Lee and Mykland (2008). Huang and Tauchen (2005), Fan and
Wang (2005), Jacod and Protter (2012), Lee and Mykland (2012), and Aı̈t-Sahalia and Jacod (2014) do consider
microstructure in connection with jumps.
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more. Even with this latter strategy, however, it is difficult to assess the impact of microstructure
noise without including it in the model. Data processing, such as subsampling or pre-averaging, may
also distort the jump characteristics of the data, and thus adversely affect subsequent inference.

This raises the question of whether we as a community will have to redo everything on an
estimator-by-estimator basis for more realistic models that allow for microstructure noise and/or
jumps.

The purpose of this paper is to find a way around this gargantuan task. We characterise the price
process with sound and fury in presence. We develop a general theory that asymptotically separates
the impact of the continuous evolution of a signal (i.e. latent efficient price), of the jumps, and of
the microstructure. The theory covers both pre-averaging and M-estimation. On the one hand, our
theory reduces the impact of microstructure, irrespective of the target of estimation. Our approach
will not solve all problems for going between the noise and no-noise cases, but it is a step in the
direction of typing these two together. On the other hand, our theory does not truncate jumps before
analysis, and we show that we can tightly control the degree of modification of jumps when using
a suitable M-estimator preprocessing before analysis. Thus the inference is transparent about how
jump characteristics play a role in inference, again regardless of the “parameters”.

We have two main clusters of results. One is Theorems 1-4 in Section 2.5, which show that by
moving from pre-averaging to pre-M-estimation, one can to a great extent avoid the pulverisation of
jumps that is present in pre-averaging. M-estimation also opens the possibility for better efficiency
(Section 2.5.4). The other main result is the Contiguity Theorem 11 in Section 4, which shows that,
under pre-averaging (including pre-M-estimation), one can behave as if there is no pre-processing at
all, but that there will appear to be extra micro-structure. This is up to contiguity, which can be
corrected for post-asymptotically.

In the next section, we outline the ingredients of our theory in local neighbourhoods. Then in
Section 3 we show how local behaviour in neighbourhoods can be converted into a global behaviour
using Edgeworth expansions and contiguity. Section 4 then contains our main contiguity results.
Examples of application are given in Section 59, whereupon we conclude the paper. Proofs are in
the Appendix.

2. The Elements of a General Theory: Local Behaviour

2.1. Background and some notation

Our general theory will be based on estimating the efficient price X in small neighbourhoods. Specif-
ically, we assume that observations Ytn,j of the form (1)-(3) are made at times

0 = tn,0 < ... < tn,i < ... < tn,n = T. (4)

9Other examples can be found in Mykland, Shephard, and Sheppard (2012), Mykland and Zhang (2014, Section 8),
and Mykland and Zhang (2016)
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The index n represents the total number of observations, and our arguments will be based on asymp-
totics as n → ∞ while T is fixed. Meanwhile, Kn neighbourhoods or blocks are defined by a much
coarser grid of τn,i, i = 1, ...,Kn, also spanning [0, T ], so that

block # i = {tn,j : τn,i−1 ≤ tn,j < τn,i} (5)

(the last block, however, includes T ; τn,Kn = T ). We then seek an estimate X̂n,i of the efficient price
X in the time period [τn,i−1, τn,i).

By “local behaviour” we mean the behaviour of a single X̂n,i in a single time period [τn,i−1, τn,i).
We show in the later Sections 3-4 how to sew together the local behaviours across all the time periods.

If we define the block size by

Mn,i = #{j : τn,i−1 ≤ tn,j < τn,i}, (6)

the hope is that substantial precision in the estimation of X is obtained if Mn,i → ∞ with n, but
with Mn,i increasing sufficiently slowly that the actual time interval [τn,i−1, τn,i) stays small. After
all, the efficient price X is a moving target.

Notation 1. When there is no room for confusion about the number observations, we occasionally
suppress the first subscript n, and write tj instead of tn,j, τi instead of τn,i, Mi instead of Mn,i, and
so on.

Example 1. (Pre-averaging.) This idea is behind the concept of pre-averaging (Jacod, Li, Mykland,
Podolskij, and Vetter (2009a), Podolskij and Vetter (2009a,b), Jacod, Podolskij, and Vetter (2009b)).
Define block averages for block i, [τi−1, τi):

Ȳi =
1
Mi

∑
τi−1≤tj<τi

Ytj ,

and let X̄i be defined similarly based on X. The averaging yields a reduction of the size of microstruc-
ture noise from Op(1) to Op(M

−1/2
i ), since, by central limit type considerations,

Ȳi = X̄i + ε̄i

= X̄i + Op(M
−1/2
i )

?≈ Xτi−1 + Op(M
−1/2
i )

The effect is clearly visible in the signature plot in Figure 1. The question, of course, is how to
characterise X̄i, and how the averaging procedure impacts overall estimation. The cited papers study
this for specific target quantities. We shall give a general form in this paper.
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Fig. 1. Realised volatility signature plots are given for CME’s S&P E-mini quote data (best bid
and ask, and midpoint), for both the raw data and for pre-averaged data. The conventional realised
variance (RV) on the quotes explodes as the sampling interval K shrinks. This does not occur for
the pre-averaged quotes.

As is seen from this example, pre-averaging is an appealing way to reduce the size of the noise.
It can also be regarded as a form of data cleaning. Arithmetic means, however, are not robust to
outliers, and we shall see that they are not robust to jumps. This raises the question of whether other
estimators X̂i can be found that are more robust, while at the same time also reduce the magnitude
of the noise. This would be more in the spirit of data cleaning.

2.2. Connection to the Location Problem

To find robust estimators of the efficient price, we seek to emulate the classical problem of estimating
location, where observations are i.i.d.,

Yj = θ + εj . (7)
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This permits us to look in the existing literature for ideas. There is a wide variety of such estimators.
The M-, L-, and R-estimators are discussed in the classical book by Huber (1981), P-estimators
are due to Johns (1979), estimators that are robust and efficient are displayed by Stone (1974,
1975). Robust estimation include medians and quantiles, see, for example, Bahadur (1966), Koenker
and Bassett (1978), Liu (1990), Donoho and Gasko (1992), and Chaudhuri (1996). It should be
emphasised that robustness is a large research area, and this is just a small selection of references. In
high frequency data, robust methods have been used (somewhat differently than here) by Christensen,
Oomen, and Podolskij (2008b) and Andersen, Dobrev, and Schaumburg (2009).

We shall here focus on M-estimation. Similar theory can presumably be developed for other
classes of robust estimators (such as L- and R- estimators).

2.3. Classical M-estimation

In the classical setting, M iid observations of the form (7) are made. The goal is to estimate θ.
The estimator θ̂ is given as the solution of the estimating equation

∑M
j=1 ψ(Yj − θ̂M ) = 0. Here, the

estimating function ψ is an anti-symmetric (ψ(−x) = −ψ(x)) and usually nondecreasing function.
ψ is usually bounded, but doesn’t have to be. It is assumed that the noise satisfies Eψ(ε) = 0 (more
about this in Condition 3). If the εj are iid: M1/2(θ̂M−θ) L→N

(
0, a2

)
where, subject to Eψ(ε)2 <∞,

a2 =
Var(ψ(ε))
(Eψ′(ε))2

. (8)

If the iid assumption is weakened to stationarity and exponential strong mixing, with exponential
decay of the mixing coefficients (see, e.g., Hall and Heyde (1980), p. 132 for discussion of mixing con-
cepts) then the theory goes through with a2 =

(
Var(ψ(ε)) + 2

∑∞
j=2 Cov(ψ(ε1), ψ(εj))

)
/E(ψ′(ε))2.

The theory presented in this paper is conjectured to also remain valid when the microstructure noise
is similarly stationary and strong mixing. – For bounded ψ, estimation is robust to outliers by
truncation: asymptotic variance is minimax in certain set of distributions for ε. It also has desirable
”breakdown properties” (see the references in the previous section).

2.4. Location of the Efficient Price: Definition and Conditions

In analogy with the classical theory, we define the estimated process X̂i in block i, [τi−1, τi). X̂i is
given by ∑

τi−1≤tj<τi
ψ(Ytj − X̂i) = 0 (9)

The “classical” forms of ψ are given as
1. For ψ(x) = x, (9) yields pre-averaging: X̂i = Ȳi;

2. For ψ(x) = sign(x), (9) yields pre-medianisation: X̂i = median(Ytj ) in block i. In the case of
an even number of observations, we define the median as the mean of the two middle order
statistics;
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3. An intermediate solution, the typical M-estimator form (Huber (1981), lets c a positive constant
and sets ψ to be

ψc(x) =

{
x for |x| ≤ c

c× sign(x) otherwise
(10)

This form represents a compromise: it behaves like the mean for small observations, and like
the median for large observations. We shall see that for X̂i, it means treating the jumps and the
microstructure robustly, while averaging the part of the returns that come from the continuous
Xc. The estimating function ψc can be smoothed around ±c if desirable.

We shall use two sets of conditions on ψ. The first order representation theorems in Section 2.5 have
weak conditions on ψ. For higher order order representation theorems, and for the global (contiguity)
results in Section 4, we need to make slightly more restrictive assumptions than what is common in
the iid setting, as follows.

Condition 1.A. x→ ψ(x) is nondecreasing in x.

Condition 1.B. (For results involving second order asymptotics or contiguity.) In
addition, the M-estimating function ψ is anti-symmetric (ψ(−x) = −ψ(x)), strictly increasing in a
neighbourhood of x = 0, with a bounded and continuous derivative ψ′ which is absolutely continuous.
Also, ψ′′ is bounded.

Unfortunately, Condition 1.B does not cover the median. As the median will turn out to be an
interesting special case, we believe the contiguity properties of the median deserves a separate paper.

As a warmup, we here show how X̂i relates to the classical M-estimator. We make assumptions
here that are stronger than what is used in this section, but they will be needed in later sections.

Condition 2. The Process. The observables Ytj are given by (1)-(3). The X process is a semi-
martingale, and µt and σt are random processes; µt is locally bounded, and σt is a continuous semi-
martingale. (Jt)0≤t≤T is a process of finitely many jumps, which is independent of the continuous
part Xc

t of Xt.10 We assume that the X process and all its components (such as σt, µt, Wt, and Jt)
are adapted to a filtration (Ft)0≤t≤T .

Condition 3. The Microstructure. We assume that the εtj are i.i.d.. Also assume that x →
Eψ(ε+x)2 is finite and continuous in x for all x ∈ R Also, we suppose that the function x→ Eψ(ε+x)
is continuously differentiable and strictly increasing in x. We further suppose that Eψ(ε) = 0, but this
latter assumption is only pro forma.11 The εtj are assumed to be independent of FT (in particular,
of the X process) and of the observation times.

Condition 4. The Observation Times. The observation times (4) are independent of FT (the
filtration where X lives), and of the microstructure noise. Suppose that, as n → ∞, max(tn,j+1 −

10We have omitted the infinitely many jumps case since small jumps can in many cases be absorbed into the continuous
part via contiguity (Zhang (2007)).

11If Eψ(ε) 6= 0 there will be a nonrandom bias in X̂i which is constant as a function of i. Since most estimators only
depend on increments ∆X̂i = X̂i − X̂i−1, this bias disappears in application.
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tn,j) = op(1), and
n−1∑
j=0

(tn,j+1 − tn,j)3 = Op(n−2). (11)

Let Kn be the number of blocks in [0, T ]. In terms of the relationship between the ∆τi’s, the
Mi’s, Kn, and n, we note that in an average sense M̄ = n/Kn, while at the same time, ∆τ = T/Kn.
This means that M̄ = n∆τ/T . We shall assume that this condition holds for each block in an order
sense, which motivates the following:

Condition 5. (Orders of Mi and ∆τi.) We assume that12

Mn,i = Op(n∆τn,i) exactly (12)

∆τn,i = Op(n−1/2) or smaller (13)

∆τ−1
n,i = op(n3/5) or smaller (14)

We note that the framework permits us to work with equisized blocks in clock time, i.e., ∆τn,i =
∆τn = T/Kn independently of i. It also permits us to work with equisized blocks in transaction
time, i.e., Mn,i = Mn = n/Kn, independently of i. Or something more complicated. This choice is
controlled by the econometrician.

2.5. Location of the Efficient Price: Decomposition Theorems, and How to Avoid the Pul-

verisation of Jumps

We now obtain the characterisation of the estimate X̂i of the latent efficient price process in block i.
The following theorem suggests that, to first order, the M-estimation averages the continuous part
of the signal X, but treats the jumps and the noise εtj robustly.

2.5.1 A First Decomposition Theorem

Theorem 1. (Fundamental Decomposition of Estimator of Efficient Price.) Let X̂n,i be the M-
estimator in block i, defined by (9). Assume Condition 1.A, and also Conditions 2-5. Also we
suppose that X̂i is either the median, or the estimating equation (9) has a unique solution with
probability tending to one as n → ∞. As above, let Mn,i be the number of observations in block i.
Finally, let θ̂n,i be the M-estimator based on the ε′tn,j = εtn,j + Jtn,j − Jτn,i−1, i.e.,∑

τn,i−1≤tn,j<τn,i
ψ(εtn,j + Jtn,j − Jτn,i−1 − θ̂n,i) = 0, (15)

12 A consequence of (12)-(13) is that Mi∆τi = Op(1). On the other hand, from (12) and (14), we obtain M−1
i =

op(∆τ
2/3
i ). Finally, if one wishes to think of ∆τi = Op(n

−α/2) (which is not required), then (12) means that Mi =
Op(n

1−α/2) exactly. Meanwhile, (13)-(14) is the same as 1 ≤ α < 6/5.
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and similarly for the median. Then

X̂n,i = θ̂n,i +Xτn,i−1 +Op(∆τ
1/2
n,i ). (16)

If we also assume Condition 1.B, then

X̂n,i = θ̂n,i +Xτn,i−1 +

∑
τn,i−1≤tn,j<τn,i(X

c
tn,j −Xc

τn,i−1
)ψ′(ε′tn,j − θ̂n,i)∑

τn,i−1≤tn,j<τn,i ψ
′(ε′tn,j − θ̂n,i)

+Op(∆τn,i). (17)

The above result shows that when there are no jumps in interval [τi−1, τi), then X̂i = X̄i + θ̂i +
Op(∆τi), where X̄i is the block average. In this case, therefore, (17) cleanly decomposes the X̂i as a
(potentially robust) M-estimator for the noise, and averaging for the continuous part of the signal,
i.e., Xc. On the other hand, when there are jumps in [τi−1, τi), the noise and the jumps are to first
order subject to M-estimation, cf. (16). In such intervals, the continuous part of the signal is subject
to a weighted averaging. The weighting scheme is more parsimoniously spelled out in (29) below.

2.5.2 Noise and Jumps: Behaviour of θ̂i, and a Second Decomposition Theorem

With Theorem 1 in hand, the behaviour of θ̂i achieves some importance. In intervals where there
are no jumps, we are back to the situation of Section 2.3, with θ = 0. If there are jumps, we can
proceed as follows.

Definition 1. (Formal Strategy for handling Jumps, and Observation Times.) De-
fine T = σ(tn,j , all (n, j)) (the sigma-field generated by all the observation times) and Gt = Ft ∨
σ((Jt)0≤t≤T ) ∨ T. In other words, we condition on the jump process and on the times. They can
still, however, have a probability distribution. If we need a full filtration, including the noise, we use
Hn,t = Gt ∨ σ(εtn,j , tn,j ≤ t). Stable convergence13 is defined with respect to the filtration (Gt)0≤t≤T .
Noise related items will converge conditionally on GT .14

Remark 1. From Conditions 2-4, the εtj are independent of GT . Also, (Xc
t )0≤t≤T remains a semi-

martingale with respect to filtration (Gt)0≤t≤T .

Definition 2. (The Meaning of an Interval having Jumps.) The intention of the following
is to deal with the problem that a small number of jumps can occur anywhere in a large number of

13 Stable convergence is as discussed in Rényi (1963), Aldous and Eagleson (1978), Hall and Heyde (1980, Chapter 3,
p. 56), Rootzén (1980). For use in high frequency asymptotics, see Jacod and Protter (1998, Section 2, pp. 169-170),
Zhang (2001), and later work by the same authors. Stable convergence commutes with measure change on GT (Mykland
and Zhang (2009, Proposition 1, p. 1408)). – Note that the converging random variable need not be GT -measurable, cf.
Zhang (2006). With this convention, we suppress the need to distinguish between stable and conditional convergence.
For discussions of stable convergence of instantaneous quantities, see Zhang (2001) and Mykland and Zhang (2008).

14The is similar to the dichotomy in Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang (2006).
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intervals, albeit with small probability.15 Define, as a function of the underlying ω ∈ Ω,

in,k = in,k(ω) = the kth i so that |∆Jτn,i(ω)| > 0 (18)

Suppose that there are N jumps in total in [0, T ], then there are at most N ′ such in,k, with N ′ ≤ N .
Set

Jn = {in,k : k = 1, ..., N ′} (19)

These are the intervals with jumps. The set J cn = {1, ...,Kn} − Jn is the set of intervals without
jumps.

Remark 2. (Asymptotically, each interval has at most one jump.) Let ζk be the time of
the kth jump. There are eventually, for n ≥ n0,16 at most one jump in each interval [τn,i−1, τn,i).
Hence

ζk ∈ [τin,k−1, τin,k). (20)

For n ≥ n0, equation (20) can serve as definition of in,k, in lieu of (18).

Notation 2. There is an ambiguity in notation in connection with the symbol ∆Jζk , which means
Jζk − Jζk−. We emphasise that ∆Jζk only depends on the process X, and not on n. This is the only
instance where we use this meaning of “∆”. In all other cases, ∆ refers to an increment on the grid
of the τn,i or the grid of the tn,j.

We are now in a position to define what θ̂i actually estimates.

Definition 3. (Fraction of Observations before a Jump, and Target for θ̂.) If i = in,k ∈
Jn, we proceed as follows. By Remark 2, there is, for n ≥ n0, only one jump in each such interval
in,k. When this happens, let M ′n,in,k = #{tn,j ∈ [τn,in,k−1, ζk)} and M ′′n,in,k = Mn,in,k −M ′n,in,k . Set

αn,k =
M ′n,in,k
Mn,in,k

. (21)

Also let
θn,in,k = h(∆Jζk ;αn,k) (22)

where the function (δ, α)→ h(δ;α) is implicitly defined as h in the form

F (h;α, δ) = 0 where

F (x;α, δ) = αf(x) + (1− α)f(x− δ) = 0 and f(x) = Eψ(ε− x). (23)

15This can occur, for example, if the jumps come from a Poisson process, and the intervals [τi−1, τi) are equidistant.
In this case, conditional on the total number of jumps N , the probability of having at least one jump in any nonrandom
interval i is easily seen to be 1−K−Nn , cf. Ross (1996, Chapter 2.3).

16where n0 can depend on ω
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Observe that (δ, α) → h(δ;α) exists and is unique since, by Condition 3, x → F (x;α, δ) is contin-
uous and strictly decreasing, with F (0;α, δ) = (1 − α)f(−δ) and F (δ;α, δ) = αf(δ). By the same
Condition, if δ > 0, f(δ) < 0 < f(−δ), and vice versa for δ < 0.

We can thus characterise the behaviour of θ̂n,i.

Theorem 2. (θ̂i in all intervals, including those containing jumps.) Assume the first set
of conditions in Theorem 1. Recall that Kn is the number of blocks, and let in be a sequence of
indices (1 ≤ in ≤ Kn) as n→∞. Then

θ̂n,in = θn,in + op(1). (24)

where

θn,i =

{
0 for i ∈ J cn
θn,i given by (22) for i ∈ Jn

(25)

Also, conditionally on GT ,

M
1/2
n,in

(θ̂n,in − θn,in)
L≈ N(0, a2

n,in) (26)

where17

a2
n,i =


f2(0)
f ′(0)2

for i ∈ J cn

αn,kf2(θn,in,k )+(1−αn,k)f2(θn,in,k−∆Jζk )“
αn,kf ′(θn,in,k )+(1−αn,k)f ′(θn,in,k−∆Jζk )

”2 for i = in,k ∈ Jn
(27)

and where f2(x) = Var(ψ(ε− x)).

Furthermore, if we also assume Condition 1.B, then the decomposition (17) can be sharpened,
as follows:

Theorem 3. (Sharper Decomposition of the Efficient Price: The Continuous Part of

the Signal Treated via Means of Xc.) Assume the framenwork and conditions of Theorem 2,
as well as Condition 1.B. Define means of Xc (overall, and before and after the jump) by

X̄c
n,i =

1
Mn,i

∑
τn,i−1≤tj<τn,i

Xc
tj , X̄

c,′
n,i =

1
M ′n,i

∑
τn,i−1≤tj<ζk

Xc
tj , and X̄c,′′

n,i =
1

M ′′n,i

∑
ζk≤tj<τn,i

Xc
tj ,

Also define the jump-adjusted mean of Xc as

X̄c,adj
n,i = =

{
X̄c
n,i for i ∈ J cn

γn,kX̄
c,′
n,i + (1− γn,k)X̄c,′′

n,i for i = in,k ∈ Jn
(28)

17For the case i ∈ J c, we are in conformity with the discussion in Section 2.3 and also our Condition 3. The definition
of a2 is as in (8). The same applies to (25).
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where the weights γn,k = αn,kf
′(θn,in,k)/F ′(θn,in,k ; ∆Jζk , αn,k), where f and F are defined in (23)

above.

Then
X̂n,in = θ̂n,in +Xτn,in−1 + ∆τ1/2

n,i Tn,in +Op(∆τ
1/2
n,in

M
−1/2
n,in

), where (29)

Tn,i = ∆τ−1/2
n,i

(
X̄c,adj
n,i −Xc

τn,i−1

)
(30)

We see that in all of (25), (27), and (30), the expressions for the jump case (i ∈ J) reduces to
those of the no-jump case (i ∈ Jc) by setting ∆J = 0. To see why (29) is an improvement on (17),
observe that while the former expression has Mn,i different weights for the Xc

tj −Xc
τi−1

, the formulae
(28) and (30) has only one (i ∈ Jc) or two (i ∈ J) such weights. This makes it clear that the main
remainder term Tn,i is a (possibly two-weighted) average of the continuous evolution of the process
X. This sets the stage for analysing Tn,i in Section 2.7, from which we can obtain a synthesis for the
M-estimation method in Section 2.8.

Remark 3. (The Form of our Central Limit Theorems.) The equation (26) is a bona fide

central limit theorem, as follows. When we say that Zn,1
L≈ Zn,2, we mean that the two probability

distributions are close in the sense of a metric that corresponds to convergence in law, such as the
Prokhorov metric (Billingsley (1995)). We resort to this formulation because both sides in (26) are
moving with n. Not only is the left hand side a triangular array, but the right hand side is also a
moving target. The latter is the case both because in moves, but also because, when in is of the form
in,k ∈ Jn, then αn,k is also not necessarily convergent. For similar reasons, we shall resort to this
formulation in all our limit theorems.

For the case where there is no jump in an interval, an even sharper decomposition is needed for
our global results in Section 4. Such a result is developed in Appendix A.2.

2.5.3 Going beyond Pre-averaging avoids the Pulverisation of Jumps

As a corollary to Theorems 2-3, we can define the effective18 jump signal process as

Je
n,i = θn,i + Jτn,i−1 . (31)

A first order consequence of (29) is that

X̂n,i = Je
n,i +Xc

τn,i−1
+ higher order terms, (32)

and the theorem provides the higher order terms.

From (22), we now see that in the case of pre-averaging, ψ(x) = x, the jump ∆Jζk is pulverised:
θn,i = (1− αn,k)∆Jζk , so that (asymptotically) a fraction of (1− αn,k) of ∆Jζk is allocated to Je

in,k
,

while the remaining (fraction αn,k) is allocated to Je
in,k+1

.19 In other words, fraction (1 − αn,k) of

18As opposed to “efficient”.
19This is in view of (22).
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the jump is allocated to time τi−1, while the rest is allocated to time τi.20 The implication is that
pre-averaged data dampen the size of a jump by a substantial fraction, and this may further affect
a wide range of statistics.21

As a contrast to pre-averaging, we now consider the case where ψ has a more general form.
f(x) = E(ψ(ε− x)) now depends on the distribution of ε. Since the size of the noise is presumably
small, one can consider the case where ε has cumulative distribution function G(·/v), and see what
happens to f(x) when v → 0. Obviously, f(x) = −ψ(x) + o(1) as v → 0. A deeper investigation
might take the form of an expansion in v, but is beyond the scope of this paper.22 We shall here use
a crude (but easy-to-see) bound, based on h0(δ;α), which is obtained by solving (23) with ψ is lieu
of f , i.e.,

αψ(h0) + (1− α)ψ(h0 − δ) = 0. (33)

Proposition 1. (Crude Bound on the Effect of Noise.) Let εv, v > 0, be a collection
of random variables so that |εv| ≤ v. Assume Condition 1.A, and that for each v, the function
x → E(εv + x) is strictly increasing in a neighbourhood of x = 0. Suppose that hv is given by (23).
Then, for all (α, δ) so that (33) has a unique solution, |hv(δ)− h0(δ)| ≤ v.23

We now consider the Huber form ψc, including c = 0 (the median) (Options 2 and 3 in Section
2.3; c = +∞ corresponds to the mean). It is easy to see that if |δ| > 2c (δ is a largeish jump, in
other words), then the solution hc,0 of (33) with ψc is

hc,0(δ;α) =

{
δ − c sign(δ) α

1−α for α < 1
2

c sign(δ)1−α
α for α > 1

2

(34)

The ideal solution, would be to get hc,0(δ;α) = δ when α < 1
2 , and zero otherwise. This would avoid

breaking up the jump. From (34) we see that the perfect estimator is thus the median, ψ0. It is
worth noting that this is not only a large sample result. When using the median, it is easy

20This is an asymptotic consideration, but it will be approximately true for finite n since θn,i is the limit of θ̂n,i in
(29).

21Pre-averaging followed by TSRV may be an exception to this. We shall also see in Section 5 another example of a
construction which is immune to jump-pulverisation. However, even in that example, one cannot set standard errors
under pulverised jumps.

22A more incisive investigation would presumably include the confinement to large jumps, and an expansion of the
error term f(x) + ψ(x). This can presumably be carried out with a combination of contiguity (Zhang (2007)) and
Laplace type methods for the asymptotic expansion of integrals, see, for example Jensen (1995, Chapter 3).

23For symmetric ε, the approximation will in most cases be of order O(v2).
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approximate location
of block median of Y ’s

jump in X

block i-1 block i block i+1↑
jump in X̄

no jump in block median

↑
jump in X̄

jump in block median

path of latent
signal X

Fig. 2. Intuition about the effect of ψ: We have here graphed a Brownian motion in three blocks, with
a jump in the latter half of the second block. We assume that observations are made at equidistant
times, and that the microstructure is negligible. The solid horizontal line is the mean in each block.
For blocks i − 1 and i + 1 this line is also the approximate median. In the middle block, however,
the median is indicated by the horizontal dashed line. – Because the majority of observations in
the middle block is before the jump, the median places itself based on the before-jump observations.
Thus the entire jump is allocated to the end time of the middle block. In the opposite case, if a
majority of observations in the middle block were after the jump, the jump would be allocated to
the starting point of block #i. This is what we mean by the jump being allocated by majority voting
when one uses the median. – As one can see, the mean tries to strike a compromise, and thereby
pulverises the jump by putting it partly at the beginning and partly at the end of the middle block.

to see that the allocation to [τi−1, τi) or [τi, τi+1) will happen by majority voting, cf. Figure 2 and
its caption. However, since one is most worried about large jumps (Zhang (2007)), an estimating
function of the form ψc for some c > 0 will, for small noise, be adequate.

Also for c > 0, there is an aspect of majority voting. If α < 1
2 , the majority of the observations

in the interval happen after the jump. The contamination is then limited by c in the direction
away from δ. On the other hand, α > 1

2 , the absolute value of the estimate |h(δ)| is maximally c.
Similarly, if hc,v if formed from (23) with a contaminated ψc, and the contamination ε has absolute
value bounded by v, if follows from Proposition 1 that
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Theorem 4. Assume the conditions of Proposition 1. Also assume that |δ| > 2c. Then

|hc,v(δ)− δ| < c+ v for α <
1
2

|hc,v(δ)| < c+ v for α >
1
2

(35)

To summarise, (34)-(35) says that, by majority decision, the main part of a large jump in interval
i will be allocated to one interval, either interval i or interval i + 1. In other words, the jump will
be recorded as having happened at either τn,i or τn,i+1. The amount of jump allocated to the other
interval is maximally c or c+ v, respectively. Under pre-averaging, on the other hand, up to half the
jump (δ/2) can be allocated to the other interval.

When there is noise, M-estimation is thus not perfect. But it pulversises large jumps much less
than does pre-averaging.

Remark 4. (Is Pulverisation a Problem?) We would like to emphasise that pulverisation is
not always a problem. When estimating the quadratic variation of X under pre-averaging, and when
using overlapping blocks, the problem disappears. A jump then occurs once in the first increment of
the pre-averaging statistic, once in the second, once in the third, and so on. By summing over all
such statistics, every jump then gets exactly the same factor in front.

It is not known whether this happy state of affairs would extend to any other statistics, or to
irregularly spaced times (the latter even for the estimation of quadratic variation). For example, for
rolling blocks of equidistant times, for the problem to be discussed in Section 5.1, the only previously
known solution (in the presence of microstructure noise) is based on linear combinations of estimators
of different powers of jumps and volatility (Jacod and Protter (2012, Chapter 16.5, pp. 521-563),
Aı̈t-Sahalia and Jacod (2014, Appendix A.4, p. 496-502))).

It is an interesting and important problem to try to determine to what extent rolling blocks can
mitigate the pulverisation for a general class of problems. This is beyond the scope of this paper, but
the question is indeed central.

With the technology of this paper (non-overlapping blocks), there are several possible inference
situations. In some cases, such as jump detection, the pulverisation is a major phenomenon that
has to be taken account of. One really wants the largest reading possible. In some other cases, the
knowledge that puliverisation occurs can help avoid bungled estimators. One such example is the
estimator in Section 5.1.

Another classical situation where pulverisation can be avoided is by leaving one space between each
X̂n,i in Bipower Variation. From Table 5.1 in the Section 5.1, it is clear that

∑
i |X̂n,i||X̂n,i−1| =∑

i |Zn,i||Zn,i−1| +
∑

k |∆Jζk − θn,in,k ||θn,in,k | + op(1). One therefore does not get rid of the jumps
except by completely avoiding the pulverisation (θn,in,k = 0 or = ∆Jζk). We have here used the
notation Zn,i from the Section 5.1. On the other hand,

∑
i |X̂n,i||X̂n,i−2| =

∑
i |Zn,i||Zn,i−2| exactly.

This latter equality is very much in the spirit of the original work by Barndorff-Nielsen and Shephard
(2002, 2004). The analysis may now be completed without further technology, but for reasons of space
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we leave the details for the reader.

2.5.4 M-estimation and Efficiency

Apart from a potentially better treatment of jumps, M-estimation also offers the possibility of greater
efficiency. A main difference between general ψ and pre-averaging, however, lies in the behaviour of
Zi = M

1/2
i (θ̂i − θi), and here the choice of ψ may affect the asymptotic variance of estimators. If

the noise is Gaussian, the asymptotic variance of Zi itself is, of course, minimized by pre-averaging,
but this will not be the case for other noise distributions (Huber (1981)). For iid data, ψ can be
chosen as the derivative of the log density of the data (Stone (1974, 1975)). We conjecture that this
methodology can apply here as well, though such a development would be beyond the scope of this
paper.

2.6. Intra-block behaviour

To find a compact characterisation of the error in M-estimation, we shall use the following concept.

Definition 4. Intra-block behaviour Define the random variable Ii = In,i inside each block i as
follows. Let tj0 = tjn,0 be the first tj ∈ [τn,i−1, τn,i), and set, for j = 1, ...,Mn,i − 1,

In,i =


Mn,i−j
Mn,i

with probability ∆tj0+j

∆τi

1 with probability tj0−τi−1

∆τi

0 with probability
τi−tj0+Mn,i−1

∆τi

(36)

We shall see various moments of I appearing in the theorems below. There are two strategies for
how to handle these moments. One is to plug in the actual times (in a data analysis). For theoretical
or applied purposes, one can alternatively impose the condition that the times are approximately
equispaced within blocks [τn,i−1, τn,i). This can take the following three forms:24

Definition 5. Regular Times. A sequence of times tn,j will be said to be “regular” provided, for
any sequence in ∈ [1,Kn], n→∞, In,in converges in law to a uniform (0,1) random variable.

Example 2. The following generating processes give rise to regular times:

T1. Equidistant times. This is where ∆tn,j = T/n. There is no reason to use anything but
equisized blocks, and here clock time and transaction time coincide. This is a common assumption
in the literature.

T2. Mildly irregular Times. This is where tn,j = f(j/n). We shall for simplicity assume
that f is continuously differentiable and increasing, and nonrandom. This assumption (or variants
thereof) has been used by Zhang (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008).

24Condition T1 is, of course, a special case of Condition T2, but is worth stating separately because of its ubiquity.
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T3. Time varying Poisson Process Times. This is where tn,j is the jth observation from a
Poisson process with intensity λn(t). We shall for simplicity assume that the function t → λn(t) is
continuously differentiable, and nonrandom. In order to make points denser as n → ∞, we impose
nλ− ≤ λn(t) ≤ nλ+.25

Behaviour of ∆τn,i, Mn,i and In,i under Regular Time Assumptions
Assumptions Effect

T1 Mn,i fixed = Mn ∆τn,i = Mn∆t In,i is
T1 ∆τn,i fixed = ∆τn Mn,i = ∆τn/∆t approximately
T2 Mn,i fixed = Mn ∆τn,i ≈Mnf

′(f (−1)(τn,i−1)) uniformly
T2 ∆τn,i fixed = ∆τn Mn,i ≈ f ′(f (−1)(i∆τn))/∆τn distributed
T3 Mn,i fixed = Mn ∆τn,i is approximately Erlang distributed in all

with parameters (Mn, λn(τn,i−1)) these
T3 ∆τn,i fixed = ∆τn Mn,i is Poisson distributed with parameter cases

∆τ−1
n

∫ i∆τn
(i−1)∆τn

λn(t)dt ≈ λn(i∆τn)

Table 1. Behavior of block lengths Mn,i and ∆τn,i, and of intra-block descriptor In,i under various
regular time assumptions. (For the distribution of In,i in the Poisson case, see Mykland and Zhang
(2012, Example 2.19(ii), p. 139).)

We note that Assumption T3 is quite different from Assumption T2, in that, for example, the
asymptotic quadratic variation of time doubles under T3 relative to T2 (Mykland and Zhang (2012,
Example 2.24, p. 148)). Note that all of conditions T1-T3 satisfy Condition 4 (ibid, Example 2.19,
p. 138-139).

2.7. After the Noise and the Jumps: Averaging the Continuous Part of Signal gives rise to

a Form of Microstructure

Section 2.5 details the estimation error θ̂i−θi from the microstructure noise and the jump component
J of the efficient price. We now investigate the estimation error from the continuous evolution of the
efficient price Xc.

We shall here see that the error which comes from estimating the mean of the efficient price is
asymptotically normal.

Definition 6. Define the returns of the continuous part of the efficient price in block # i by

Rn,i = ∆τ−1/2
n,i (Xc

τn,i −Xc
τn,i−1

) (37)

Meanwhile, the part of the estimation error which is due to continuous evolution of the signal is

Sn,i = ∆τ−1/2
n,i (X̂n,i −Xτn,i−1 − θ̂i). (38)

25As seen in Zhang (2011), such an assumption also permits useful subsampling arguments.
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Recall from the development in Section 2.5 that

Sn,i = Tn,i +Op(M
−1/2
n,i ) (39)

where Tn,i is the weighted mean of the Xc
tn,j − Xc

τn,i−1
given in (30) in Section 2.5.2. In the case

where there is no jump in the interval [τn,i−1, τn,i), one retrieves straight pre-averaging of the signal:

Tn,i = ∆τ−1/2
n,i (X̄c

i −Xc
τn,i−1

). (40)

From standard martingale central limit considerations, Rn,i/στn,i−1 is asymptotically N(0, 1). We
further obtain

Theorem 5. (Asymptotic Regression and Asymptotic Variance.) Assume Conditions 1.B-
5. Then there is a coefficient βn,i and a covariance matrix Cn,i, so that

T̃n,i = Tn,i − βn,iRn,i and S̃n,i = Sn,i − βn,iRn,i (41)

(which are identical up to Op(M
−1/2
n,in

)) are asymptotically independent of Rn,i given GT . Also,
(Rn,i, T̃n,i)/στn,i−1 are asymptotically independent, specifically N(0, Cn,i),26 where

Cn,i =

(
1 0
0 v2

n,i

)
. (42)

The convergence in law is stable.27 The quantities βn,i and Cn,i depend only the structure of the
times tn,j and on the jump process Jt. When there is no jump in [τn,i−1, τn,i),

βn,i = E(In,i) and v2
n,i = Var(In,i). (43)

When there is one jump28 in the interval [τn,i−1, τni), βn,i and v2
n,i are given in equation (B.8)-(B.9)

in Appendix B.2. For regular times, the expression for βn,i in a jump interval is given by (B.11).

Proof of Theorem 5: See Appendix B.1.

For regular times (Section 2.6) it is easy to see that,

E(In,i) =
1
2
, E(I2

n,i) =
1
3
, and Var(In,i) =

1
12

, up to op(1). (44)

Remark 5. (Asymptotic Regressions, and the Effective Price.) Apart from providing the
asymptotic distribution, Theorem 5 means that (41) represent the asymptotic regressions of Tn,i and
Sn,i on Rn,i. This matters because Rn,i is part of the return of the efficient log price, while the re-
mainders in the regression (T̃n,i and S̃n,i, respectively) are asymptotically (conditionally) independent

26Recall Remark 3.
27Recall Footnote 13.
28The sequence of intervals may then follow a scheme akin to the one described in Section 2.5.2.
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of the return Rn,i.

In analogy with (31) in Section 2.5.3, we define the effective (still as opposed to “efficient”)
continuous signal process

Xc,e
n,i = Xc

τn,i−1
+ ∆τ1/2

n,i βn,iRn,i. (45)

For regular times,

Xc,e
n,i = Xc

τn,i−1
+

1
2

(Xc
τn,i −Xc

τn,i−1
) =

1
2

(Xc
τn,i +Xc

τn,i−1
). (46)

For the continuous part of the signal, therefore, sanity prevails, no matter how one removes the jump
in Sections 2.5.2-2.5.3.

2.8. Synthesis for the M-Estimator: Estimation Error as a Form of Microstructure

If we combine Theorems 2-3 (in Section 2.5.2) and 5 (in Section 2.7), we obtain the following decom-
position of our estimated price:

X̂n,i = Xc,e
n,i + Je

n,i︸ ︷︷ ︸
“effective” signal

+ θ̂n,i − θn,i + ∆τ1/2
n,i S̃n,i︸ ︷︷ ︸

noise

, (47)

where we recall that Je
n,i is the effective jump signal process defined in (31) in Section 2.5.3. The

effective continuous signal process is given by (45) in the previous section.

We think of the terms
ηn,i = θ̂n,i − θn,i + ∆τ1/2

n,i S̃n,i (48)

as being noise because, having conditioned on G0,

1. M1/2
n,i (θ̂n,i− θn,i) is asymptotically normal and independent of the Xc process. The asymptotic

variance is a2 (from (8)) where there are no jumps, and given in Theorem 2-3 otherwise;

2. S̃n,i = T̃n,i+Op(∆τ
1/2
n,i ) is also asymptotically stably normal, and independent of the continuous

returns Rn,i. The (random) asymptotic variance is σ2
τn,i−1

Var(Ii) when there are no jumps, and
given in Theorem 5 otherwise, cf. (B.9) in Appendix B.2.

The two sources of noise are also independent (conditionally on G0). One can therefore, think of the
asymptotic variances as additive. In particular, when there is no jump in the interval #i,

AVAR(ηn,i) = M−1
n,i a

2 + ∆τn,iσ2
τn,i−1

Var(In,i). (49)

Remark 6. (Fixed spacings and balanced case.) In addition to assuming that ∆tn,j = ∆tn,
we also assume that we have equispaced blocks in both transaction and clock time, i.e.,

∆τn = Mn∆tn. (50)
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We here also consider that we are also in the balanced case. This is to say that both sources of noise
contribute to the asymptotic variance in (49). To achieve this, M−1

n and ∆τn must be of the same
order, whence Mn = cn1/2 (up to rounding to nearest integer), so that

∆τn = M∆tn = cn1/2T

n
= cTn−1/2. (51)

Here c is a tuning parameter determined by the econometrician. Fixed spacings is a special case of
regular times, whence X̂n,i has asymptotic mean (latent value) (46)-(47). If there are no jumps in
interval #i, the asymptotic variance becomes

M−1
n a2 + ∆τnσ2

τn,i−1
Var(In,i) = n−1/2

(
c−1a2 +

1
12
cTσ2

τn,i−1

)
. (52)

3. The Elements of a General Theory: Global Behavior

3.1. Contiguity and Partial Likelihood

We have seen in Section 2.5 that within each block, it is possible to decompose the estimator X̂n,i

into serval pieces that are each asymptotically normal: θ̂n,i, Rn,i, and Sn,i ≈ Tn,i. The question we
ask here is whether this asymptotic normality in each block can be transformed into normality for
the entire sequence. The benefits of such an apporach is that difficult-to-analyse objects such as Tn,i
can instead be handled as if they were normal.

The approach chosen here is to look at sequential normality (Gaussianity given the past). With
the help of contiguity, we shall see that approximate normality can be turned into exact normality.
We shall also see that partial likelihood permits us to choose which of θ̂n,i, Rn,i, and Sn,i ≈ Tn,i that
we would like to simplify to Gaussian structure.

3.1.1 Strong Contiguity

Section 2 is entirely about the estimated efficient price process X̂i on a local block i, viz. [τi−1, τi).
Various statistics will then be built by aggregating functions of X̂i across blocks. We shall use the
machinery of contiguity to study the behaviour of our aggregated estimators. This section explains
our theoretical device of contiguity. We shall move to the global results in Section 4.

In order to clarify the structure of results, it is often helpful to move to an alternative but closely
related probability distribution. Specifically begin by calling the original probability P . This is the
one under which (1)-(3) holds. As discussed in Section 2.2 of Mykland and Zhang (2009), one can
with little loss of generality move to an equivalent statistical martingale measure P ∗ where (1) is
replaced by29

dXt = σtdWt + Jt. (53)
29We abuse notation by using the same symbol W in both (1) and (53). Our apologies.
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This is because measure change commutes with stable convergence (ibid, same section, which also
defines stable convergence). Note that we shall not change measure on the pure jump process Jt.

This simplification increases the transparency of arguments. We will now define a slight generali-
sation of this concept. We shall consider approximate probabilities Pn under which the observations
(and possible also auxiliary variables) have exactly (and not asymptotically) the simplified structure
displayed in Sections 2.5 and 2.7-2.8, and at the same time provide for Pn to be close to P (and P ∗)
in a way that permits easy analysis. This is accomplished by the concept of strong contiguity.

Definition 7. (Strong contiguity.) Let Pn be a sequence of probability distributions on a set of
random variables (containing the relevant observables) Zn = {Un,1, ..., Un,n}. This set {Un,1, ..., Un,n}
can be X̂i, i = 1, ..., but is typically richer, cf. Section 3.1.2. Then Pn is strongly contiguous relative
to P provided that:

1. Pn and P are mutually absolutely continuous on the random variables Zn.

2. There is a a representation

log
dP

dPn
(Zn) = Ln −

1
2
η2 + op(1) (54)

where Ln is the endpoint of a Pn martingale, and where the quadratic variation of this mar-
tingale converges in probability to η2, while Ln itself converges in law stably to ηN(0, 1), where
N(0, 1) is independent of the underlying data.

We refer to the martingale Ln in (54) as the martingale associated with log dP
dPn

. Symbolically,
we write Pn ∼ P when the two measures are mutually strongly contiguous. More generally, both
probabilities can depend on n. Also, more generally, Ln can be of the form L′n + Bn, where L′n is a
Pn martingale, and Bn is the endpoint of a continuous finite variation process of order op(1). The
quadratic variation process is unchanged between Ln and L′n.

With reference to Definition 1 we also define the filtration

Zn,i = σ(Un,0, ..., Un,i) (55)

For ease of exposition, we take the process (Jt)0≤t≤T and the observation times as part of U0. This is
most convenient since (Jt)0≤t≤T is independent of Xc and the εtj s. We recall that the J process and
the observation times are G0 measurable, and note that Zn,i ⊆ Gn,τn,i (Definition 1). The difference
between the two types of filtration is that Gt contains all the process information up to time t, while
Zn,i only contains snapshots. Without this distinction, the contiguity would typically not be possible.

The statements about Ln and its quadratic variation are almost equivalent, see Jacod and
Shiryaev (2003), and also Mykland and Zhang (2012). It follows from the definition that dP

dPn
(Zn)

converges in law stably to likelihood ratio exp(ηN(0, 1)− 1
2η

2).

It will turn out that process structure can often be much more succinctly described under a
strongly contiguous approximation. Meanwhile, the change of probability measure hardly affects
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inferential results. Specifically, consistency, rate of convergence, and asymptotic variance are unaf-
fected. For example, if n1/4(γ̂n − γ) converges stably in law to N(b, a2) under Pn, then n1/4(γ̂n − γ)
converges stably in law to N(b′, a2) under P . The only alteration is therefore a possible change of b
to b′. Often there is no change (and b = b′ = 0), but to work out the change, one uses b′ = b+ the
asymptotic covariance of Ln and n1/4(γ̂n − γ). Post-asymptotic likelihood ratio correction is then
carried out as in Theorems 2 or 4 of Mykland and Zhang (2009).

The background for these statements is discussed in Section 2.3-2.4 of Mykland and Zhang (2009),
and this former paper implicitly uses the strong contiguity concept. We have here proceeded with
a formal definition because greater complexity of the problem in the current paper requires more
transparent notation and terminology.

As the name suggests, strong contiguity implies the usual statistical concept of contiguity (Hájek
and Sidak (1967); LeCam (1986); LeCam and Yang (2000); Jacod and Shiryaev (2003)). The stronger
version is suitable for our purposes.

Example 3. (Relationship to equivalence of experiments.) Our strong contiguity implies
that Pn is an equivalent experiment to P (and P ∗), cf. LeCam (1986); LeCam and Yang (2000). Our
analysis therefore ties in with the recent literature on equivalence of experiments for high frequency
data, see, in particular, Hoffmann (2008), Reiss (2011), Jacod and Reiss (2012), and Bibinger,
Hautsch, Malec, and Reiss (2014).

3.1.2 Partial likelihood, and the Target Approximation

We partition the variable Un,i = (An,i, Bn,i), where An,i are auxiliary random variables, and Bn,i are
variables of interest for which we seek normal distribution under a contiguous measure. We shall
consider the choices Bn,i are normalized versions of (Rn,i, S̃n,i) (Theorem 10 in Section 4), or of S̃n,i
(Theorem 11 in the same section). An,i will contain the essential random variables where we do not
change distribution, including as θ̂n,i. The form of An,i is spelled out in the theorems.

We shall alter the measure on Bn,i given the past, while the conditional measure of An,i stays
unchanged, and thereby obtaining a measure Pn. In analogy with Mykland and Zhang (2009), we
have the likelihood decomposition (where f is a generic density)

f(Un,1..., Un,i, ..., Un,K |U0) =
K∏
i=1

f(Bn,i|Un,0, ..., Un,i−1, An,i)︸ ︷︷ ︸
altered from P ∗ to Pn

K∏
i=1

f(An,i|Un,0, ..., Un,i−1)︸ ︷︷ ︸
unchanged from P ∗ to Pn

(56)

Our contiguous change of measure then becomes the partial likelihood (Cox (1975); Wong (1986))

log
dP ∗

dPn
(Zn) =

∑
i

log
(
f(Bn,i|Un,0, ..., Un,i−1, An,i)
fn(Bn,i|Un,0, ..., Un,i−1, An,i)

)
. (57)

The choice of variables Bn,i thus determines which partial likelihood one wishes to work on.
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Since we seek conditional normality for theBn,i, the requirement in (57) is that fBn,i(·|Un,0, ..., Un,i−1)
be a normal density with mean zero and covariance matrix VarP (Bn,i | Un,0, ..., Un,i−1) (or some
asymptotic approximation thereof).

The auxiliary variable An,i is whatever is left over from Bn,i and is needed to retain information
about the dynamic of the system. If we let (κn(τn,i−1)) be the process of the first four cumulants
given in Section 3.2.1 below, then Ai contains the variables (κn(τn,i−1), θ̂n,i). If Bn,i = S̃n,i/στn,ivn,i
only, then we add Rn,i/στn,i to An,i.

Why not also study Bn,i = (Rn,i, S̃n,i, θ̂n,i)? The reason for this is that adding θ̂n,i is the simplest
part of the problem and can easily be added to our results. Also, in order to have contiguity to a
normal distribution when including θ̂n,i one would need Mn to be of order O(n1/2). Since we operate
on differences, it may be possible to make statements also without this order conditions, but this
seems beyond the scope of this paper.

The above informs our definition of an approximate measure Pn which is conditionally normal
for the variables Bn,i

Definition 8. (Target Approximation) Define Pn to be the measure on the sigma-field Zn given
in Definition 7. for which,

LPn (Bn,i | Un,0, ..., Un,i−1, An,i) = exactly Gaussian with mean zero

and conditional covariance matrix VarP (Bn,i | Un,0, ..., Un,i−1, An,i),while

LPn (An,i | Un,0, ..., Un,i−1) = LP (An,i | Un,0, ..., Un,i−1) . (58)

Since Pn is uniquely defined, we shall refer to this measure as the “canonical normal approximation”
corresponding to the sequence Un,i = (Bn,i, An,i).

3.2. From Cumulants to Contiguity via Edgeworth Expansion

Our strategy is to obtain contiguity by Edgeworth expanding (57) term by term. Since there are
only finitely many intervals with jumps, it is enough to do this for the intervals with no jumps. We
shall first work with Bn,i as the vector Vn,i = (Rn,i/στn,i , S̃n,i/στn,ivn,i)

T . We recall from Theorem 5
in Section 2.7 that Vn,i is asymptotically standard normal, and that when there is no jump in interval
# i, v2

n,i = Var(In,i). For ease of expressions, we denote Vn,i = (V 0
n,i, V

1
n,i)

T .

3.2.1 Orders of cumulants, and the (κn(τn,i−1)) process

To obtain Edgeworth expansions, we need cumulants. We show the following theorem in Appendix
B-C. We call (κn(τn,i−1)) the full set of such κs with up to four indices.
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Theorem 6. Assume Conditions 2, 4, and 5. Assume that there is no jump in interval # i. Then

E(V r
n,i | Gτn,i−1) = ∆τ1/2

i κrn(τn,i−1) +Op(∆τn,i)

Cov(V r
n,i, V

s
n,i | Gτn,i−1) = δr,s(τn,i−1) +Op(∆τn,i)

cum(V r
n,i, V

s
n,i, V

t
n,i | Gτn,i−1) = ∆τ1/2

n,i κ
r,s,t
n (τn,i−1) +Op(∆τn,i) (59)

cum(V r
n,i, V

s
n,i, V

t
n,i, V

u
n,i | Gτn,i−1) = ∆τn,iκr,s,t,un (τn,i−1) + op(∆τn,i).

where (for r, s, t = 0, 1)

κrn(τn,i−1) = στn,i−1

Eψ′′(ε)
Eψ′(ε)

brn,iVar(In,i)−
1
2 ,

κr,s,tn (τn,i−1) =
{
σ−2
τn,i−1

〈σ,Xc〉′τn,i−1
ar,s,tn,i + στn,i−1

Eψ′′(ε)
Eψ′(ε)

br,s,tn,i

}
Var(In,i)−

r+s+t
2 , (60)

where δr,s = 1 if r = s and = 0 otherwise (the Kronecker delta,), where “prime” denotes derivative
with respect to time, so that 〈σ,Xc〉′t = d〈σ,Xc〉t/dt, and where

ar,s,tn,i = 2E
{

(In,i − E(In,i))r+s((In,i ∧ I ′n,i)− E(In,i))t
}

[3]− 3E
{

((In,i ∧ I ′i)− E(In,i))r+s+t
}

b0n,i = 0 and b1n,i =
1
2
E(In,i(1− In,i)) (61)

br,s,ti = 2
{
−cums+1(In,i)cumt+1(In,i) + E

(
(In,i ∧ I ′n,i)(In,i − E(In,i))s(I ′n,i − E(I ′n,i))

t
)}
δ{r=1}[3]

where I ′n,i is an independent copy of In,i, and where cum1 is the expectation and cum2 is the variance.

Note that ar,s,tn,i = 2ω̃k1k2,k3 [3] in the notation of Appendix B.3, cf, in particular, (B.16).

For regular times (Section 2.6), we obtain (from (42) and (44)) that for intervals with no jumps
Var(In,i) = b1n,i = 1

12 , while the three dimensional tensors ar,s,tn,i and br,s,tn,i are given in Table 3.2.1.

Three Dimensional Tensors under Regular Time Assumptions
{r, s, t} ar,s,tn,i br,s,tn,i

{0, 0, 0} -3/2 0
{1, 0, 0}, {0, 1, 0}, {0, 0, 1} 11/12 5/24
{1, 1, 0}, {1, 0, 1}, {0, 1, 1} −1/24 1/24

{1, 1, 1} 199/960 1/60

Table 3.2.1. Behavior of ar,s,ti of br,s,ti under regular time assumptions (Section 2.6).

3.2.2 Edgeworth expansion

The second leg of our development brings in Edgeworth expansions. Proofs are all in Appendix D.

Condition 6. (Validity of Formal Edgeworth Expansions) For all intervals i with no jump,
assume that the formal Edgeworth expansions of log f(vn,i|Un,0, ..., Un,i−1) and log fn(vn,i|Un,0, ..., Un,i−1)
around the standard normal distribution are valid up to Op(∆τ

3/2
n,i ). In other words, one can plug
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the first four cumulants of Vn,i into the Edgeworth form and have a valid expansion, cf. McCul-
lagh (1987, p. 147), and also Mykland and Zhang (2009, (A.13), p. 1434); in the latter, orders of
Op(∆tp/2) are replaced by orders of the form Op(∆τ

p/2
i ).

Remark 7. (Regularity Conditions.) We have here followed an approach which does not seek to
determine the conditions under which the relevant Edgeworth expansions hold. This would massively
expand the paper, and is beyond its scope. For references on rigorous conditions, see Wallace (1958),
Bhattacharya and Ghosh (1978), Bhattacharya and Rao (1976), Hall (1992), and Jensen (1995).
We also take intellectual refuge in the preface of Aldous (1989). For specific references concerning
expansions of semimartingales, consult the new results in Li (2012), as well as the references in
Remark 12 in Mykland and Zhang (2009). For the Edgeworth expansion of moments, see the proofs
or Theorem 19.2 and Theorem 22.1 in Bhattacharya and Rao (1976), cf. also Jensen (1995, pp.
21-22).

It is worth putting this assumption into a form which is consistent with our definition of contiguity.
Theorem 7 is a restatement of the one-period Edgeworth expansion. Proofs for this section can be
found in Appendix D.

Theorem 7. (One Period Edgeworth Expansion on Likelihood Ratio Form.) Assume
Conditions 2, 4, 5, and 6. If interval # i has no jump,

log
(
f(Vn,i|An,i, Un,0, ..., Un,i−1)
fn(Vn,i|An,i, U0, ..., Un,i−1)

)
= ∆Ln,i −

1
2

VarPn(∆Ln,i | Zn,i−1) +Op(∆τn,i) (62)

where ∆Ln,i =
1∑
r=0

∆τ1/2
n,i κ

r
n,i(τn,i−1)hr(Vn,i) +

1
3!

1∑
r,s,t=0

∆τ1/2
n,i κ

r,s,t
n,i (τn,i−1)hrst (63)

where the Hermite polynomials for interval # i are random variables given by hr = hr(v) = (vr −
κrn,i(τn,i−1)) and hrst = hrst(v) = hrhsht − hrδs,t[3]. – We have here suppresses the notational
dependence on (n, i) in the Hermite polynomials (but the (n, i) are there). and use the following
convention from McCullagh (1987, Chapter 5): “[3]” is the sum over the three possible combinations:
hrδs,t[3] = hrδs,t + hsδr,t + htδr,s.

Now set Ln as the end point of the Pn-martingale, where we sum ∆Ln,i over all intervals i that
have no jumps:

Ln =
∑
i

∆τ1/2
n,i

1∑
r=0

κrn,i(τn,i−1)hr(Vn,i) +
1
3!

1∑
r,s,t=0

∆τ1/2
n,i κ

r,s,t
n,i (τn,i−1)hrst(Vn,i)

 , (64)

Theorem 8. (Approximation to the Partial Likelihood Ratio (57).) Assume Conditions
2, 4, 5, and 6. Then the partial log likelihood (57) has the expansion

log
dP

dPn
= log

dP

dPn
(Zn) = Ln −

1
2

q.v. of Ln + op(1), (65)
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where “q.v.” is the discrete time predictable quadratic variation process (with filtration Zn,i).

The preceding theorem is almost a statement of strong contiguity, but we need a small extra
piece to get there.

Theorem 9. (Strong Contiguity of the Partial Likelihood Ratio (57).) Assume Condi-
tions 2, 4, 5, and 6. Suppose that, for 0 ≤ t ≤ T ,

∆τn,i
∑

τn,i−1≤t
(κAn (τn,i−1))2 p→ η2

A(t) (66)

where A runs through the index sets {1}, {000}, {001}, {011}, and {111}. Set η2 = η2
{1} +

(3!)−2
(

6η2
{000} + 2η2

{001} + 2η2
{011} + 6η2

{111}

)
, all evaluated at t = T . Let Pn be defined from P by

(57), and with the choice B = V and A = (κn(τn,i−1), θ̂n,i). Then Pn and P are strongly contiguous
with Ln is given by (64), and η2 given in this theorem.

4. The main one-step contiguity results

The first result is a spelling out of the properties that are derived in Section 3.2.

Theorem 10. (Contiguity to one-step normal distribution for (Ri, S̃i).) Assume Con-
ditions 1.B - 6, as well as eq. (66) in Theorem 9. Let Pn,1 be the canonical normal approximation
corresponding to Bn,i = Vn,i = (Rn,i/στn,i , S̃n,i/στn,ivn,i)

T . The auxiliary variables are

An,i−1 = (κn(τn,i−1), θ̂n,i)
1. Pn,1 is strongly contiguous with respect to P and P ∗, and relative to the set Zn ;

2. Under Pn,1, Zn,i = M
1/2
n,i (θ̂n,i − θn,i) are independent with the same distribution as under P ,

and Zn,i is independent of Xc. Recall that θn,i is zero in intervals with i with no jumps, and
defined in (22) and (25) in Section 2.5.2 otherwise;

3. Under Pn,1, S̃n,i/στn,i−1vn,i are iid normal N(0,1), and independent of the Xc and the Z pro-
cesses, where vn,i is given in Theorem 5. In intervals i with no jumps, v2

n,i = Var(In,i);

4. Under Pn,1, Rn,i/στn,i−1 is normal N(0,1) and independent of Zn,i;
5. Eq. (54) is satisfied with Ln given by (64), and η2 given in Theorem 9.

We here isolate the hardest part of the result, namely the behaviour of S̃n,i. – We obtain from
Appendix D that

Theorem 11. (M-estimation as additional noise.) Let Pn,2 be the canonical normal approxi-
mation corresponding to the sequences Ai−1 = (κi−1, θ̂i, Ri) and Bn,i = S̃n,i/στn,i−1vn,i.

1. Pn,2 is strongly contiguous with respect to P and P ∗, and relative to the set Zn;

2. Under Pn,2, Zn,i = M
1/2
n,i (θ̂n,i − θn,i) are independent with the same distribution as under P ,

and Zn,i is independent of Xc;
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3. Under Pn,2, S̃n,i/στn,i−1vn,i are iid normal N(0,1), and independent of the Xc and the Z pro-
cesses, where vn,i is given in Theorem 5. In intervals i with no jumps, v2

n,i = Var(In,i);

4. Under Pn,2, X has the same distribution as under P ∗;

5. Let Ln,2 be given as

Ln,2 =
∑
i

∆τ1/2
n,i

κ1(τn,i−1)h1(Vn,i) +
∑

(r,s,t) 6=(0,0,0)

1
3!
κr,s,t(τi−1)hrst(Vn,i)

 (67)

where Vn,i, h, and κ are the quantities from Theorem 10. Ln,2 satisfies (65).

Remark 8. Note that because of asymptotic independence, there is no asymptotic adjustment to
Ln,2 due to change of measure from Pn,1 to P ∗ (Mykland and Zhang (2009, Theorem 2, p. 1412)).
The exact martingale would be30 Ln,2 − 3

∑
i ∆τ1/2

i ∆ < Xc, σ2 >τi. The correction term, however,
is negligible and thus Ln,2 conforms with Definition 7.

5. Examples of Application

We here present one example of application, namely the estimation of even functions of returns.
Other examples of application can be found (with reference to this current paper) in the follow-
ing locations: (1) Mykland, Shephard, and Sheppard (2012) which addresses bi- and multi-power
estimators, (2) Mykland and Zhang (2014, Section 8) which adds microstructure to the estimator
of Andersen, Dobrev, and Schaumburg (2012, 2014), and (3) Mykland and Zhang (2016), which
addresses efficiency, and shows that one can think of X̂i as having an MA(1)-process structure.

5.1. Functions of Returns

We here consider estimators of the “parameter”

γ =
N∑
k=1

h(∆Jζk) (68)

where N is the number of jumps of the process J , ζk are the actual jump times, and ∆Jζk is the
size of the jump of J at ζk. We take the function x → h(x) to be even and such that h(x) = o(x3)
as x → 0. This is a problem which is well understood in the absence of microstructure (Jacod and
Protter (2012, Chapter 5.1, pp. 125-133)).

When adding microstructure, however, the problem is substantially more difficult. We refer to
the treatment for the case where X̂i is handled by pre-averaging (Jacod and Protter (2012, Chapter
16.5, pp. 521-563), Aı̈t-Sahalia and Jacod (2014, Appendix A.4, p. 496-502)). We emphasise that,

30See Mykland (1994, p. 23) and Wang and Mykland (2014, p. 205).
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of course, the cited works deal with a much more complicated underlying process, infinitely many
jumps. Also, they use overlapping blocks.

To otherwise be on the same ground as the cited authors, we assume that we are in the equispaced
and balanced case, i.e., we are in the situation from Remark 6 in Section 2.8. This is only to make
expressions simpler, as the equation (71) below does not depend on spacings or blocks.

Recall the representations (46)-(47), in Section 2.8, X̂n,i = Je
n,i +

1
2(Xc

τn,i +Xc
τn,i−1

) + ηn,i where
ηn,i is given by (48) in the same section, so that

∆X̂n,i = ∆Je
n,i +

1
2

(Xc
τn,i −Xc

τn,i−2
) + ∆ηn,i. (69)

We now position ourselves in the situation of Remark 2, and we shall strengthen the earlier
statement to say that n0 is such that for n ≥ n0 not only is there only one jump in each interval,
but there are no other jumps within three intervals on each side. Because expressions of the form
h(∆Je

τn,i−1
) will provide the dominating terms in an estimator of (68), we shall need some peace and

quiet in the neighbourhood to investigate each jump with due diligence.

As in Remark 2, we study the kth jump of J , at time ζk ∈ [τin,k−1, τin,k). Note that the kth jump
takes place at the ithn,k block. The situation is then as in Table 5.1. Summing over one and two scales

· · · ∆Je
in,k−1 ∆Je

in,k
∆Je

in,k+1 ∆Je
in,k+2 · · ·

0 0 θn,in,k ∆Jζk − θn,in,k 0 0

Table 5.1. Values of ∆Je around jump at ζk.
in a small neighbourhood of ζk then gives

in,k+1∑
i=in,k

h(∆Je
n,i) = h(θn,i) + h(∆Jζk − θn,i) and

in,k+2∑
i=in,k

h(Je
n,i − Je

n,i−2) = h(θn,i) + h(∆Jζk) + h(∆Jζk − θn,i) (70)

so that, whether or not one pulverises one’s jumps, one gets a two scale construction. One can
sum over all k ∈ [1, N ], i.e., over the jumps, and exploit that the ∆Je

n,i are zero except when i or
i− 1 ∈ Jn. We obtain (recall that Kn is the number of blocks)

Kn∑
i=3

h(Je
i − Je

i−2)−
Kn∑
i=2

h(∆Je
i ) =

N∑
k=1

(
2nd − 1st line in (70)

)
=

N∑
k=1

h(∆Jζk) = γ. (71)

Our proposed estimator of (68) is, therefore,

γ̂n =
∑
i

h(X̂n,i − X̂n,i−2)−
∑
i

h(∆X̂i) (72)
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Set Zn,i = 1
2(Xc

τn,i −Xc
τn,i−2

) + ∆ηn,i. Because of the balanced case assumption, Zn,i = Op(∆τ
1/2
n ).

We obtain
Kn∑
i=2

h(∆X̂n,i) =
Kn∑
i=2

h(∆Je
n,i) +

Kn∑
i=2

h′(∆Je
n,i) (Zn,i)︸ ︷︷ ︸

error term (i)

+op(∆τ1/2
n ), and (73)

Kn∑
i=3

h(X̂n,i − X̂n,i−2) =
Kn∑
i=3

h(Je
n,i − Je

n,i−2) +
Kn∑
i=3

h′(Je
n,i − Je

n,i−2) (Zn,i + Zn,i−1)︸ ︷︷ ︸
error term (ii)

+op(∆τ1/2
n ). (74)

There are only finitely many terms in the two sums on the r.h.s. of (73) - (74), and we can write the
difference between the error term in (74) and the one in (73) as

error term (ii) − error term (i)

=
N∑
k=1

{
h′(θn,in,k)

(
Zn,in,k−1

)
+ h′(∆Jζk − θn,i)

(
Zn,in,k+2

)
+ h′(∆Jζk)

(
Zn,in,k + Zn,in,k+1

)}
(75)

We now invoke the contiguity of Theorem 11 in Section 4 to say that under Pn,2, the ∆Xc
τn,i and

ηn,i processes are independent of each other and of the J and θi processes. We shall work with Pn,2
until further notice.

For given k, ∆τ1/2
n (Zn,in,k−1,Zn,in,k ,Zn,in,k+1,Zn,in,k+2)

L≈ 1
2(Yin,k−1+Yin,k−2,Yin,k+1+Yin,k+2,Yin,k+

Yin,k−2 + 2∆τ−1/2∆Xc
τin,k−1

) where the symbol
L≈ means that the two expressions have the same

asymptotic limit, in this case under Pn,2. We have here taken Yn,i = τ1/2(∆Xc
τn,i + 2ηn,i), and

the approximation in law stems from ∆τ−1/2(∆Xc
τn,i , ηn,i)

L≈ ∆τ−1/2(∆Xc
τn,i ,−ηn,i) by combining

Theorems 2–3 and 11. Under an obvious combination of stable and conditional convergence, the

Yn,in,k+j

L≈ Yk,j jointly (there are only finitely many of them that matter), where (Yk,j , j = −2, ..., 2)
is defined as a five dimensional random variable with is (conditionally on GT ) independent normal
with mean zero and variance of the form

Var(Yk,j |GT ) =


4
3σ

2
ζk

+ 4a2

c2T
for j 6= 0

(1 + 4v2
n,in,k

)σ2
ζk

+
4a2
n,in,k

c2T
for j = 0

(76)

We have here again invoked Theorems 2, 5, and 11. The quantities, a2, a2
n,in,k

and v2
n,in,k

are given
in equations (8) (Section 2.3), (27) (Section 2.5.2), and (B.9) (Appendix B.2), respectively. Also,

jointly with the above, 2∆τ−1/2∆Xc
τin,k−1

L≈ Y ′k where the Y ′k are conditionally independent (given
GT ) of each other, and of Yk,j , all j 6= −1. (Y ′k, Yk,−1) are jointly normal with (conditional) covariance
2σ2

ζk
. Meanwhile Y ′k have conditional variance 4σ2

ζk
.



Between Data Cleaning and Inference 30

From eq. (51), n1/4 = (cT )1/2∆τ−1/2, hence, in view of the development above,

n1/4(γ̂n − γ)
L≈ 1

2
(cT )1/2

N∑
k=1

{
h′(θn,in,k)(Yk,−1 + Yk,−2) + h′(∆Jζk − θn,i)(Yk,2 + Yk,1)

+h′(∆Jζk)(Yk,0 + Yk,−2 + Y ′k)
}

(77)

This is all under Pn,2, but it is easy to see that there is no contiguity adjustment (since h is an even
function) back to P ∗ and hence P . The conditional variances and covariance remain the same. This
is all in analogy with Mykland and Zhang (2009, Theorem 2, p. 1412).

It is now easy to see that term #k has conditional variance

ν2
n,k =

1
4
cT

{
2(h′(θn,in,k)2 + h′(∆Jζk − θn,i)2)

(
4
3
σ2
ζk

+
4a2

c2T

)
+h′(∆Jζk)2

(
(
19
3

+ 4v2
n,in,k

)σ2
ζk

+
4(a2 + a2

n,in,k
)

c2T

)
+ 4h′(∆Jζk)h′(θn,in,k)σ2

ζk

}
. (78)

Hence, stably in law

n1/4(γ̂n − γ)
L≈
(

N∑
k=1

ν2
n,k

)1/2

U (79)

where U is standard normal, and independent of GT .

In other words, for this estimator, the potential pulverisation discussed in Section 2.5.3 does
not impact the estimator γ̂n, or its convergence to the target γ, but it does impact the setting of
asymptotic variance. The case for robust estimation thus also occurs in this example.

6. Conclusion

In this paper, we have taken the view that pre-averaging is a way of estimating the efficient price under
market microstructure noise. This opens the possibility of using other and more robust estimators,
and we have here investigated one class of these, namely M-estimators. It turned out that this
procedure is robust with respect to the noise and the jumps, while averaging the continuous part of
the signal.

We have two main sets of results. One is Theorems 1-4 in Section 2.5, which show that by moving
from pre-averaging to pre-M-estimation, one can to a great extent avoid the pulverisation of jumps
that is present in pre-averaging. M-estimation also opens the possibility for better efficiency (Section
2.5.4).

The other main result is to analyse estimators globally, as follows. Under a contiguous measure,
the estimation error from M-estimation (including pre-averaging) can be seen as an additional com-
ponent to the microstructure noise. This sequence of results is initiated (as a local result) in Theorem
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5 in Section 2.7. The global contiguity result for our estimators are then contained in Theorems 10-11
in Section 4. The error due to contiguity can, as usual, be offset with a post-asymptotic likelihood
ratio correction. We saw in Section 5 that the result is highly applicable.

As part of the development, Section 3 set up a general framework for finding contiguity results
in data systems of this nature. using partial likelihood and Edgeworth expansions.

An issue that has not been addressed in the foregoing is how to handle X̂s when blocks are
overlapping. We conjecture that the results in the current paper will still provide consistency and
the correct convergence rate. One approach may be to combine this with an “observed” standard
error, based on the development in Mykland and Zhang (2014). But that is a story for another time.
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Rényi, A., 1963. On stable sequences of events. Sankyā Series A 25, 293–302.
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APPENDIX: PROOFS

A. Proofs for Section 2.5

A.1. Proof of Theorem 1

First note that as in discussed in Section 4.5 of Mykland and Zhang (2012), we can assume without
loss of generality that σ2

t is bounded by a constant σ2
+ on the whole interval [0, T ]. Also, as discussed in

Section 2.2 of Mykland and Zhang (2009), we can assume that we are under an equivalent martingale
measure where µt ≡ 0. Set ε′tj = εtj + Jtj − Jτi−1 and X̄ ′i = X̄c

i + Jτi−1 .
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To first establish the nature of the approximation, let Gi = ∆τ−1/2
i maxτi−1≤t≤τi |Xc

t − Xc
τi−1
|.

We note that Gi = Op(1).31 Since Ytj − (X̄ ′i + ε′tj ) = Xc
tj − X̄c

i

|Ytj − (X̄ ′i + ε′tj )| = |Xc
tj − X̄c

i | ≤ |Xc
tj −Xc

τi−1
|+ |X̄c

i −Xc
τi−1
| ≤ ∆τ1/2

i 2Gi

Hence,
0 =

∑
τi−1≤tj<τi

ψ(Ytj − X̂i) ≤
∑

τi−1≤tj<τi
ψ(X̄ ′i + ε′j − X̂i + ∆τ1/2

i 2Gi).

In the case where (15) has a unique solution, it follows since ψ is non-decreasing that X̂i−(X̄ ′i+ θ̂i) ≤
∆τ1/2

i 2Gi eventually. Repeating the same argument on the other side yields that

|X̂i − (X̄ ′i + θ̂i)| ≤ ∆τ1/2
i 2Gi = Op(∆τ

1/2
i ). (A.1)

In the case of the median, one goes through the same procedure with each of the end points of the
solution interval to eq. (9). This proves the first part of Theorem 1.

To get a more precise form of the remainder, let

δi = X̂i − (X̄ ′i + θ̂i). (A.2)

In view of (A.1), we can Taylor expand safely. Since

Ytj − X̂i − (ε′tj − θ̂i) = Xc
tj + Jτi−1 − X̂i + θ̂i = Xc

tj + Jτi−1 − X̄ ′i − δi = Xc
tj − X̄c

i − δi,

we obtain from Taylor’s formula that

0 =
∑

τi−1≤tj<τi
ψ(Ytj − X̂i)

=
∑

τi−1≤tj<τi
ψ(ε′tj − θ̂i) +

∑
τi−1≤tj<τi

(Xc
tj − X̄c

i − δi)ψ′(ε′tj − θ̂i)

+
∑

τi−1≤tj<τi

∫ Xc
tj
−X̄c

i−δi

0
(Xc

tj − X̄c
i − δi − s)ψ′′(ε′tj − θ̂i + s)ds

=
∑

τi−1≤tj<τi
(Xc

tj − X̄c
i − δi)ψ′(ε′tj − θ̂i) +Op(Mi∆τi) (A.3)

where, in the final step, we have used the definition of θ̂i, the boundedness of ψ′′, as well as the
31 See Lévy (1948), and also Karatzas and Shreve (1991, Theorem 3.6.17, pp. 211-212). Alternatively, use the

Burkholder-Davis-Gundy Inequalities, Ibid, Theorem 3..3.28, p. 166. Observe that Gi is not O(1), cf. the discussion
of the modulus of continuity of Brownian motion (Ibid, Theorem 2.9.25, and eq. (9.26)-(9.27), p. 114.)
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bound (A.1). Hence,

δi =

∑
τi−1≤tj<τi(X

c
tj − X̄c

i )ψ
′(ε′tj − θ̂i)∑

τi−1≤tj<τi ψ
′(ε′tj − θ̂i)

+Op(∆τi). (A.4)

Observe that the order of the denominator in (A.4) is Op(Mi). – In particular,

X̂i − θ̂i −Xτi−1 = X̄ ′i −Xτi−1 + δi

=

∑
τi−1≤tj<τi(X

c
tj −Xc

τi−1
)ψ′(ε′tj − θ̂i)∑

τi−1≤tj<τi ψ
′(ε′tj − θ̂i)

+Op(∆τi), (A.5)

thus proving the rest of Theorem 1. 2

A.2. A sharper decomposition of the M-estimator for intervals with no jumps

For the development in Appendix C, we need a stronger result than those of Section 2.5.

Theorem 12. (Remainder Term in the Continuous Case in the Fundamental Decomposition of the
Estimator of Efficient Price.) Assume Conditions 1.B-5. Let [τi−1, τi) be a block with no jump. Set

Di =
∑

τi−1≤tj<τi
(Xtj − X̄i)(ψ′(εtj )− Eψ′(ε)) +

1
2
s2
iEψ

′′(ε) (A.6)

where s2
i =

∑
τi−1≤tj<τi(Xtj − X̄i)2. Then

X̂i − X̄i = θ̂i +M−1
i (Eψ′(ε))−1Di +Op(M

−3/2
i ) + op(∆τi) (A.7)

= θ̂i +M−1
i (Eψ′(ε))−1Di + op(∆τi) (A.8)

Note that in view of the assumptions, θ̂i is an estimator of θi = 0 (since there is no jump in
the block), so that M1/2

i θ̂i = Op(1). This follows from classical i.i.d. M-estimation, see, e.g., Huber
(1981, Theorem 3.1, p. 133).

Proof of Theorem 12. We now assume that the process Xt is continuous, and will denote Xc

by X. Let s2
i be as in the statement of Theorem 12. We first show that, if T = σ(tn,j , all (n, j)) (see

Definition 1),

E(s2
i | Fτi−1 ∨ T) = σ2

τi−1
∆τiMn,iE(Ii(1− Ii))× (1 + op(1)), (A.9)

where E(Ii(1− Ii)) refers to the expectation over the random variable Ii(1− Ii), where Ii is defined
in Section 2.6. To see (A.9), use the decomposition (C.1) below. The first term in this decomposition
is handled by appealing to the moment calculation underlying the central limit argument in Section
B.1. The second term becomes E

{
(∆τiMi)−1

∑
τi−1≤tj<τi(Xtj −Xτi−1)2 | Fτi−1 ∨ T

}
= σ2

τi−1
(1 +
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op(1))(∆τiMi)−1
∑

τi−1≤tj<τi(tj − τi−1) = σ2
τi−1

E(Ii)(1 + op(1)). Combining the two terms yields
(A.9).

To see (A.7), we continue the development from Appendix A.1, but recall that Xt is continuous.
δi gets the form

δi = X̂i − (X̄i + θ̂i). (A.10)

Also, since θ̂i = Op(M
−1/2
i ),∑

τi−1≤tj<τi
ψ′(εtj − θ̂i) = MiEψ

′(ε) +Op(M
1/2
i ) and (A.11)

∑
τi−1≤tj<τi

(Xtj − X̄i)ψ′(εtj − θ̂i) =
∑

τi−1≤tj<τi
(Xtj − X̄i)ψ′(εtj ) +Op(∆τ

1/2
i M

1/2
n,i )

= Op(∆τ
1/2
i M

1/2
n,i ). (A.12)

The last transition above comes from an argument similar to (A.15) below (using (A.9)). The first
transition in (A.12) comes from noting that P (|θ̂i| > θ+) = o(1) for any constant θ+ > 0. Set
θ̃i = (θ̂i ∧ θ+) ∨ (−θ+). For simplicity of notation set Aj = ψ′(εtj − θ̃i) − ψ′(εtj ) As in Section
2.5.4, we let tj0 = tjn,0 be the first tj ∈ [τn,i−1, τn,i), and similarly tj1 is the second such tj . We are
interested in Bi =

∑
τi−1≤tj<τi(Xtj − X̄i)Aj . Since E(Bi | X ∨ T) = 0, we bound Bi in probability

by oberving that, by symmetry, Var(Bi | X ∨ T) = (Var(Aj0) − Cov(Aj0 , Aj1))s2
i . This is because∑

τi−1≤tj 6=tk<τi(Xtj − X̄i)(Xtk − X̄i) =
∑

τi−1≤tj ,tk<τi(Xtj − X̄i)(Xtk − X̄i) − s2
i = −s2

i . Hence the
order follows from (A.9) above.

Combining (A.11)-(A.12) with (A.4), we obtain

δi = Op(M
−1/2
n,i ∆τ1/2

i ) +Op(∆τi). (A.13)

Using (A.11)-(A.13), we now continue from the exact form of (A.3).

0 = −δiMiEψ
′(ε) +

∑
τi−1≤tj<τi

(Xtj − X̄i)ψ′(εtj )

+
1
2

∑
τi−1≤tj<τi

∫ Xtj−X̄i

0
(Xc

tj − X̄c
i − s)ψ′′(εtj − θ̂i − s)ds+Op(∆τ

1/2
i )

= −δiMiEψ
′(ε) +Di +Op(∆τ

1/2
i ), (A.14)

where we have used the first equation in Footnote 12 to Condition 5, and where Di is given by (A.6).
The conditional mean and variance of Di given the X process are

E(Di|X ∨ T) =
1
2
s2
iEψ

′′(ε) and Var(Di|X ∨ T) = s2
iVar(ψ′(ε)) (A.15)

where Hence, from (A.9), Di = Op(1). In particular, δi = Op(M−1). We can use this to sharpen
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the error term in (A.14) (when passing from (A.3)) to Op(M
−1/2
i ) + Op(∆τ

1/2
i ) + op(Mi∆τi) =

Op(M
−1/2
i ) + op(Mi∆τi) by the first equation in Footnote 12 to Condition 5. Rewriting this version

of (A.14), we obtain

δi =
1

MiEψ′(ε)
Di + Op(M−1

i ∆τ1/2
i ). (A.16)

This shows (A.7). The transition from (A.7) to (A.8) follows by the second equation in Footnote 12
to Condition 5, and since Di = Op(1). 2

A.3. Proofs for Sections 2.5.2-2.5.3.

Proof of Theorem 2. First consider the part (24)-(27). As the result is standard for intervals
with no jumps (Huber (1981, Theorem 6.3.1, pp. 132-133) and references therein), we assume that
we have a sequence in,k so that ∆Jτn,in,k is nonzero, with a single jump ∆Jζk We show the proof for
other M-estimating functions than the median. (For the median, one can operate directly on order
statistics on the side of the jump that has the most observations, and this also reduces to a standard
problem.) As is standard for M-estimators, we note that (on the set of unique solution to (15)),
{M1/2

n,in,k
(θ̂n,in,k − θn,in,k) ≤ x} = {θ̂n,in,k ≤ θn,in,k + M

−1/2
n,in,k

x} = {∑τn,in,k−1≤tn,j<τn,in,k
ψ(εt′n,j −

(θn,in,k + M
−1/2
n,in,k

x)) ≤ 0} = {Zn,k ≤ M
1/2
n,in,k

F (θn,in,k + M
−1/2
n,in,k

x;αn,in,k ,∆Jζk)}, where Zn,k =

M
−1/2
n,in,k

∑
τn,in,k−1≤tn,j<τn,in,k

[
ψ(ε′tn,j − (θn,in,k +M

−1/2
n,in,k

x))− f(θn,in,k +M
−1/2
n,in,k

x− (Jtn,j − Jτn,in,k−1)
]
.

In law, the ε′tn,j come from a mixture of two populations (before and after the jump) but are other-
wise i.i.d. There is thus no need for the Lindeberg Condition (e.g., Billingsley (1999, p. 359)), and
Zn,k is asymptotically normal provided Eψ(ε − x)2 is finite for all x. The asymptotic mean is zero
by construction, and the asymptotic variance is αn,kf2(θn,in,k) + (1 − αn,k)f2(θn,in,k − ∆Jζk). The

asymptotic normality (26) (and in particular the consistency (24)) then holds since M1/2
n,in,k

F (θn,in,k +

M
−1/2
n,in,k

x;αn,in,k ,∆Jζk) = xF ′(θn,in,k ;αn,in,k ,∆Jζk) + op(x). 2

Proof of Theorem 3.
To see (29), consider separately the numerator Nn and denominator Dn in (17). For the numerator,
Nn−Mn,in,k

[
(X̄c,′

n,in,k
−Xc

τin,ik
−1

)αn,kf ′(θn,in,k) + (X̄c,′′
n,in,k

−Xc
τin,ik

−1
)(1− αn,k)f ′(θn,in,k −∆Jζk)

]
equals∑

τn,i−1≤tn,j<τn,i(X
c
tn,j−Xc

τn,i−1
)
[
ψ′(ε′tn,j − θ̂n,i)− f ′(θn,i − (Jtn,j − Jτn,i−1))

]
= Op((∆τn,in,kMn,in,k)1/2)

by a similar argument to the proof of Theorem 12 in Appendix A.2. Similarly,
Dn = Mn,in,kF

′(θn,in,k ; ∆Jζk , αn,k) +Op(M
1/2
n,in,k

). The result then follows. 2

Proof of Proposition 1. Let Fv(h;α, δ) be as in eq. (23), for some |ε| ≤ v. Let h−0 = h0 − v.
Since ψ is nondecreasing and since ε+ v ≥ 0. Fv(h−0 ;α, δ) = αψ(ε+ v−h0) + (1−α)ψ(δε+ v−h0) ≤
αψ(−h0) + (1 − α)ψ(δ − h0) = 0 by definition. By Condition 3, however, h−0 ≤ hv. The opposite
inequality is proved in the same way. 2
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B. Proofs of Theorem 5, and Higher Order Formulae for (Ri, Ti)

For simplicity of notation, we assume that τi−1 and τi coincide with a tj ; the further generalisation
is simple but tedious, and does not impact our results to the relevant order of approximation. Set

U
(k)
i = ∆τ−1/2

i

∑
τi−1≤tj<τi

(
M − j
M

)k
∆Xc

tj . (B.1)

With Ri and Ti are as previously defined in (37) and (40). Ri = U
(0)
i and Ti = U

(1)
i . Note first that,

in obvious notation,

〈U (k1), U (k2)〉 = ∆τ−1
M−1∑
j=1

(
M − j
M

)k1+k2

∆〈Xc, Xc〉tj

= ∆τ−1
M−1∑
j=1

(
M − j
M

)k1+k2 ∫ tj

tj−1

σ2
t dt

= σ2
0E(Ik1+k2

1 )(1 + op(1)). (B.2)

B.1. First order behaviour of (Ri, Ti), including proof of Theorem 5 in the continuous case

Consider first the case where there is no jump in [τi−1, τi), when Si = Ti +Op(∆τ
1/2
i ). For the first

part of the result, the form (42) of the asymptotic covariance of (Ri, Ti)/στi−1 follows from (B.2)
above. – To see stable convergence, let ξt be another continuous Itô process, set Ξi = ∆ξτi , and note
that

〈U (k), ξ·/
√

∆τ〉τi = 〈X, ξ〉′τi−1
E(Iki )(1 + op(1)) and

〈ξ·/
√

∆τ , ξ·/
√

∆τ〉τi = 〈ξ, ξ〉′τi−1
(1 + op(1)). (B.3)

where U (k) is given by (B.1) above. “prime” denotes derivative with respect to time, so that 〈X, ξ〉′t =
d〈X, ξ〉t/dt, cf. also same usage in Theorem 6 in Section 3.2.1. The CLT then yields that (with some
abuse of notation) Ti

Ri
Ξi

 L≈ N

0,

 σ2
τi−1

E(I2
i ) σ2

τi−1
E(Ii) 〈X, ξ〉′τi−1

E(Ii)
σ2
τi−1

E(Ii) σ2
τi−1

〈X, ξ〉′τi−1

〈X, ξ〉′τi−1
E(Ii) 〈X, ξ〉′τi−1

〈ξ, ξ〉′τi−1


 . (B.4)

A linear transformation yields that Ti − E(Ii)Ri
Ri
Ξi

 L≈ N

0,

 σ2
τi−1

Var(Ii) 0 0
0 σ2

τi−1
〈X, ξ〉′τi

0 〈X, ξ〉′τi−1
〈ξ, ξ〉′τi−1


 . (B.5)
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This shows the result of Theorem 5 for intervals with no jump.

B.2. First order behaviour of (Ri, Ti), including proof of Theorem 5 for the discontinuous

case

Assume that there is no more than one jump ∆Jζk in interval [τn,in,k−1, τn,in,k). This will eventually
occur. For notational convenience write ik for in,k. – Let Ti be as in (30) in Theorem 2 in Section
2.5.2. Because of asymptotic negligibility, we can take tj0 = τik−1 and tj0+M ′i−1 = ζk. Rewriting as
above,

Ti = ∆τ−1/2
i D−1

n,k×M ′
i−1∑
j=1

∆Xc
tj0+j

(
M ′i − j
Mi

f ′(θn,ik) +
M ′′i
Mi

f ′(θn,ik −∆Jζk
)
)

+
Mi∑

j=M ′
i+1

∆Xc
tj0+j

(
M ′′i − j
Mi

)
f ′(θn,ik −∆Jζk

)


(B.6)

where Dn,k = αn,if
′(θn,in,k) + (1− αn,i)f ′(θn,in,k −∆Jζk). We obtain in the same way as before the

CLT (
Ti
Ri

)
L≈ N

(
0, σ2

τi−1

(
v̆2
n,i βn,i
βn,i 1

))
, (B.7)

where

βn,i = D−1
n,k {Eχn,k [Ii,kf ′(θn,ik)− (1− αn,ik)(f ′(θn,ik)− f ′(θn,ik −∆Jζk

))] + E(1− χn,k)f ′(θn,ik −∆Jζk
)}

(B.8)
Here χn,k = I{Iin,ik > 1−αn,ik}, where I{·} is the indicator function. Also v̆2

n,i = v2
n,i +β2

n,i, where

v2
n,i = D−2

n,k

{
wn,i,11f

′(θn,ik)2 + 2wn,i,12f
′(θn,ik)f ′(θn,ik −∆Jζk + wn,i,22f

′(θn,ik −∆Jζk)2
}
, (B.9)

where

wn,i,11 = E
{

(In,ik − 1)2χn,k
}
− (E {(In,ik − (1− αn,ik))χn,k})2,

wn,i,12 = (E {(In,ik − (1− αn,ik))χn,k})(1− E(In,ikχn,k)), and

wn,i,22 = Var(In,ik)− wn,i,11 − 2wn,i,12. (B.10)

The first order regressions of Ti and Si on Ri are given by (41). In this form, T̃i/στi−1 and S̃i/στi−1

are asymptotically independent of Ri/στi−1 , and are stably normal with variance v2
n,i. The stable

convergence follows in the same way as before. – In the case of regular times,

βn,in,k =
α2
n,if

′(θn,ik) + (1− α2
n,i)f

′(θn,ik −∆Jζk)
αn,if ′(θn,ik) + (1− αn,i)f ′(θn,ik −∆Jζk)

. (B.11)
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B.3. Preparation for Proof of Theorem 6: Second order behaviour of (Ri, Ti)

To avoid clutter, denote Xc by X for the rest of this appendix, and also Appendix C. Also, for
calculations, focus on the first block. The later blocks follow by the same method but more notation.
For simplicity, write M for M1 and ∆τ for ∆τ1. We do not assume equidistant spacings. – For the
non-asymptotic covariance expression in (B.2) above, we obtain from that

Cov(U (k1), U (k2)) = σ2
0E(Ik1+k2

1 )(1 +Op(∆τ)) (B.12)

since E∆〈Xc, Xc〉tj = ∆tjσ2
0 + Op(

∫ tj
tj−1

tdt) = ∆tjσ2
0(1 + Op(∆τ)). – We now turn to the third

cumulant, where we similarly obtain,

cum3(U (k1), U (k2), U (k3)) = Cov(〈U (k1), U (k2)〉, U (k3))[3] (notation of McCullagh (1987))

= ∆τ−3/2Cov(
M−1∑
j=1

(
M − j
M

)k1+k2 ∫ tj

tj−1

σ2
t dt,

M−1∑
l=1

(
M − l
M

)k3
∆Xtl)[3]

= ∆τ−3/2
M−1∑
j=1

(
M − j
M

)k1+k2 ∫ tj

tj−1

dtCov(σ2
t ,
M−1∑
l=1

(
M − l
M

)k3
∆Xtl)[3]

Now note that

Cov(σ2
t ,
M−1∑
l=1

(
M − l
M

)k3
∆Xtl) = Cov(σ2

0 + 2
∫ t

0
σudσu + 〈σ, σ〉t,

M−1∑
l=1

(
M − l
M

)k3
∆Xtl)

≈ Cov(2
∫ t

0
σudσu,

M−1∑
l=1

(
M − l
M

)k3
∆Xtl)

≈ 2σ0〈σ,X〉′0
∑
tl−1≤t

(
M − l
M

)k3
min(∆tl, t− tl−1),

where the first “≈” is exact in the double Gaussian case (Mykland and Zhang (2011)]. Hence

cum3(U (k1), U (k2), U (k3))

≈ ∆τ−3/22σ0〈σ,X〉′0
M−1∑
j=1

(
M − j
M

)k1+k2 ∫ tj

tj−1

dt
∑
tl−1≤t

(
M − l
M

)k3
min(∆tl, t− tl−1)[3]

= ∆τ−3/22σ0〈σ,X〉′0
M−1∑
j=1

(
M − j
M

)k1+k2
(
j−1∑
l=1

(
M − l
M

)k3 ∫ tj

tj−1

dt∆tl +
(
M − j
M

)k3 ∫ tj

tj−1

(t− tj−1)dt

)
[3]

= ∆τ−3/22σ0〈σ,X〉′0
M−1∑
j=1

(
M − j
M

)k1+k2
(
j−1∑
l=1

(
M − l
M

)k3
∆tl∆tj +

(
M − j
M

)k3 1
2

∆t2j

)
[3]

= ∆τ1/22σ0〈σ,X〉′0ωk1k2,k3 [3], (B.13)
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where ωk1k2,k3 = E
(
Ik1+k2

1 (I ′1)k3χ)
)

with χ = I{I ′1 < I1} + 1
2I{I ′1 = I1}, and where I ′1 is an

independent copy of I1, and I{·} is the indicator function.

To get a further handle on ωk1k2,k3 , observe that

E
(
Ia1 (I ′1)bχ

)
= E

(
Ia1 (I1 ∧ I ′1)bχ

)
= E

(
Ia1 (I1 ∧ I ′1)b

)
− E

(
Ia1 (I1 ∧ I ′1)b(1− χ)

)
= E

(
Ia1 (I1 ∧ I ′1)b

)
− E

(
(I1 ∧ I ′1)a+b(1− χ)

)
= E

(
Ia1 (I1 ∧ I ′1)b

)
− 1

2
E
(

(I1 ∧ I ′1)a+b
)
. (B.14)

where we have used that, by symmetry, E
(
(I1 ∧ I ′1)a+b(1− χ)

)
= E

(
(I1 ∧ I ′1)a+bχ

)
while the left

and right hand side must sum to E
(
(I1 ∧ I ′1)a+b

)
. From (B.14) we thus obtain that

ωk1k2,k3 [3] = E
(
Ik1+k2

1 (I1 ∧ I ′1)k3
)

[3]− 3
2
E
(

(I1 ∧ I ′1)k1+k2+k3
)
. (B.15)

Using (B.15), define ω̃k1k2,k3 as the quantity which arises when replacing T by T̃ , to obtain

ω̃k1k2,k3 [3] = E
(

(I1 − E(I1))k1+k2((I1 ∧ I ′1)− E(I1))k3
)

[3]− 3
2
E
(

((I1 ∧ I ′1)− E(I1))k1+k2+k3
)
.

(B.16)

C. Proof of Theorem 6: The complete cumulants

C.1. Cumulants involving s2
i

For expressions involving s2
i , we will use (A.9), and also that

s2
i

∆τiMi
= −T 2

i +
1

∆τiMi

∑
τi−1≤tj<τi

(Xtj −Xτi−1)2 (C.1)

and so, for example,

Cov(Ti,
s2
i

∆τiMi
| Zn,i−1) = −cum3(Ti | Zn,i−1)

+
1
Mi

∑
τi−1≤tj<τi

cum3(Ti,∆τ
−1/2
i (Xtj −Xτi−1),∆τ−1/2

i (Xtj −Xτi−1) | Zn,i−1) = Op(∆τ
1/2
i ); (C.2)

for the first term, this is explicitly shown in Section B.3, and for the second term, it follows by a
very similar calculation (replace Ri by R

(j)
i = ∆τ−1/2

i (Xtj −Xτi−1) and proceed in the same way).
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By similar methods,

cum3(U (k1)
i , U

(k2)
i ,

s2
i

∆τiMi
| Zn,i−1)

= −cum4(U (k1)
i , U

(k2)
i , Ti, Ti | Zn,i−1) +

1
Mi

∑
τi−1≤tj<τi

cum4(U (k1)
i , U

(k2)
i , R

(j)
i , R

(j)
i | Zn,i−1)

− 2Cov(U (k1)
i , Ti | Zn,i−1)Cov(U (k2)

i , Ti | Zn,i−1)

+ 2
1
Mi

∑
τi−1≤tj<τi

Cov(U (k1)
i , R

(j)
i | Zn,i−1)Cov(U (k2)

i , R
(j)
i | Zn,i−1) + op(1)

= 2σ4
τi−1

{
−E(Ik1+1

i )E(Ik2+1
i ) + E

(
(Ii ∧ I ′i)Ik1i (I ′i)

k2
)}

+ op(1) (C.3)

where I ′i is an independent copy of Ii. (Very similar expressions are given in Section B.3.) Note
that the fourth cumulants do not contribute to the expression, and we have used (B.12) in the final
transition. If we set

Ũ
(1)
i = U

(1)
i − E(Ii)U

(0)
i and Ũ

(0)
i = U

(0)
i , (C.4)

we obtain similarly that

cum3(Ũ (k1)
i , Ũ

(k2)
i ,

s2
i

∆τiMi
| Zn,i−1)

= 2σ4
τi−1

{
−cumk1+1(Ii)cumk2+1(Ii) + E

(
(Ii ∧ I ′i)(Ii − E(Ii))k1(I ′i − E(I ′i))

k2
)}

+ op(1),

(C.5)

where cum1 is the expectation and cum2 is the variance.

C.2. Conditional cumulants of Hi = ∆τ
−1/2
i

(
X̂i − X̄i − θ̂i

)
= ∆τ

−1/2
i δi

Set Zi = M
1/2
i θ̂i, and D̃i = ∆τ−1/2

i M
−1/2
i (Di − E(Di | X)). Also denote Θ = (θ̂i)i=1,2,··· and

X = (Xt)0≤t≤T . – First, note that by symmetry,

E(Di | X,Θ,T) = E(Di | X ∨ T) =
1
2
s2
iEψ

′′(ε). (C.6)

Meanwhile, from p. 164 in McCullagh (1987), and since the information in (θ̂v)v 6=i is negligible,

Var(D̃i | X,Θ,T) = Var(D̃i | X,Zi,T) +Op(M−1
i ) = (∆τiMi)−1s2

i +Op(M−1
i )

cum3(D̃i | X,Θ,T) = cum3(D̃i | X,Zi,T) +Op(∆τ
1/2
i M

−3/2
i ) = Op(∆τ

1/2
i M

−3/2
i ) (C.7)

The biggest order terms go away as follows. On the one hand, by construction, Cov(Zi, Di |
X,T) = cum3(Zi, Si, Di | X,T) = 0. On the other hand, we calculate by stochastic expansion.
For example, for the second third order cumulant, set Z(1)

i = M
1/2
i Eψ′(ε))−1

∑
j ψ(εtj ) so that
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Zi = Z
(1)
i + Op(M

−1/2
i ). Then, by stochastic expansion, cum3(Zi, D̃i, D̃i | X) = cum3(Z(1)

i , D̃i, D̃i |
X) +Op(M

−7/2
i ) = Op(M−1

i ).

Set Hi = ∆τ−1/2
i

(
X̂i − X̄i − θ̂i

)
. Also, since this term will occur a lot, set

K1 =
1
2
Eψ′′(ε)
Eψ′(ε)

. (C.8)

From Theorem 1, Hi = M
−1/2
i (Eψ′(ε))−1 ×∆τ−1/2

i M
−1/2
i Di + op(∆τ

1/2
i ). Thus

E(Hi | X,Zi,T) = E(Hi | X) = ∆τ1/2
i

s2
i

∆τiMi
K1 + op(∆τ

1/2
i )

Var(Hi | X,Zi,T) = ∆τ−1
i M−2

i s2
i (Eψ

′(ε))−2 +Op(M−2
i ) + op(M

−1/2
i ∆τ1/2

i ) + op(∆τi) = op(∆τ
2/3
i )

cum3(Hi | X,Zi,T) = M
−3/2
i Op(∆τ

1/2
i M

−3/2
i ) + op(∆τi) = op(∆τi), (C.9)

where both the second transitions were due to the second equation in Footnote 12 to Condition 5,
as well as the order of s2

i .

C.3. Conditional cumulants of Si = Hi + Ti and S̃i

Recall that Si = ∆τ−1/2
i

(
X̂i −Xτi−1 − θ̂i

)
= Hi + Ti. Set Ūi

(k) = Ri for k = 0 and = Si for k = 1.

Thus Ūi
(k) = Ui

(k) + Hiδ{k=1}. From (C.9), E(Si | X,Θ,T) = Ti + ∆τ1/2
i

s2i
∆τiMi

K1 + op(∆τ
1/2
i ),

Var(Si | X,Θ,T) = op(∆τ
2/3
i ), and cum3(Si | X,Θ,T) = op(∆τi). By rules for conditional cumulants

(Brillinger (1969); Speed (1983)), and since E(Ri | Zn,i−1) = E(Ti | Zn,i−1) = 0, we obtain

E(Si | Zn,i−1) = ∆τ1/2
i

E(s2
i | Zn,i−1)
∆τiMi

K1 + op(∆τ
1/2
i )

= ∆τ1/2
i σ2

τi−1
E(Ii(1− Ii))K1 + op(∆τ

1/2
i ) [ by (A.9) ]

Cov(Si, Ūi
(k) | Zn,i−1) = Cov(E(Si | X,Θ), E(Ūi

(k) | X,Θ) | Zn,i−1) + E(Cov(Si, Ūi
(k) | X,Θ) | Zn,i−1)

= Cov(Ti, Ui(k) | Zn,i−1) + ∆τ1/2
i (k + 1)Cov(

s2
i

∆τiMi
K1, Ui

(k) | Zn,i−1) + op(∆τ
1/2
i )

= Cov(Ti, Ui(k) | Zn,i−1) + op(∆τ
1/2
i ) [ from (C.2) and (B.12) ]

cum3(Ūi
(k1)

, Ūi
(k2)

,Ūi
(k3) | Zn,i−1) = cum3(E(Ūi

(k1) | X,Θ), E(Ūi
(k) | X,Θ), E(Ūi

(k) | X,Θ) | Zn,i−1)

+ Cov(E(Ūi
(k1) | X,Θ),Cov(Ūi

(k2)
, Ūi

(k3) | X,Θ) | Zn,i−1)[3]

+ E(cum3(Ūi
(k1)

, Ūi
(k2)

, Ūi
(k3) | X,Θ) | Zn,i−1)

= cum3(E(Ūi
(k1) | X,Θ), E(Ūi

(k) | X,Θ), E(Ūi
(k) | X,Θ) | Zn,i−1) + op(∆τi)

= cum3(Ui(k1), Ui
(k2), Ui

(k3) | Zn,i−1)

+ ∆τ1/2
i K1cum3(

s2
i

∆τiMi
, Ui

(k2), Ui
(k3))δ{k1=1}[3] + op(∆τ

1/2
i ) (C.10)
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The third cumulant cum3(Ui(k1), Ui
(k2), Ui

(k3) | Zn,i−1) is given in Section B.3, where it is seen to be
of exact order Op(∆τ

1/2
i ), as required. For expressions involving s2

i , we have used (A.9), and also

the results from Section C.1. The third cumulant cum3( s2i
∆τiMi

K1, Ui
(k2), Ui

(k3)) is given by (C.5) in
Section C.1.

Finally, set V 0
i = Ri and V 1

i = S̃i = Hi + T̃i. We obtain, with Ũ given in (C.4),

cum3(V k1
i , V k2

i , Vi
k3 | Zn,i−1) = cum3(Ũi

(k1)
, Ũi

(k2)
, Ũi

(k3) | Zn,i−1)

+ ∆τ1/2
i K1cum3(

s2
i

∆τiMi
, Ũi

(k2)
, Ũi

(k3)
)δ{k1=1}[3] + op(∆τ

1/2
i )

= ∆τ1/2
i (bk1k2k3i + ak1k2k3i ) + op(∆τ

1/2
i ) (C.11)

where ak1k2k3i and bk1k2k3i are given in equation (61) in Theorem 6. The expressions for the expectation
and variance terms follow similarly.

D. Proofs for Sections 3.2.2 and 4

Proof of Theorems 7-8. The Ln terms describe to main order the behaviour of log dP ∗

dPn
via

Edgeworth expansion.This is essentially the same arguments that take you from (A.13) to (A.21)
(pp. 1434-5) in Mykland and Zhang (2009). Orders of Op(∆tp/2) are replaced by orders of the form
Op(∆τ

p/2
i ), but in compensation, there are much fewer terms in the sum that makes up (64). 2

Proof of Theorem 9. To assure strong contiguity, we need to establish the convergence of (65).
Since the intervals with jumps are negligible,, and in view of Jacod and Shiryaev (2003, Theorem
IX.7.28 (p. 590-591)), we need to establish that η2 is the limit of the predictable quadratic variation
of the martingale with end point Ln. – To calculate the Pn-predictable quadratic variation of Ln,
note that CovPn(hrst, habc | Zn,i−1) = δr,aδs,bδt,c[3!] (McCullagh (1987), p. 156). Hence, with ∆Ln,i
from (63), we obtain that Var(∆Ln,i | Zn,i−1) equals

∆τn,i


1∑

r,s=0

κr(τn,i−1)κs(τn,i−1)δr,s +
(

1
3!

)2 1∑
r,s,t,a,b,c=0

κr,s,t(τn,i−1)κa,b,c(τn,i−1)δr,aδs,bδt,c[3!]

 =

∆τn,i

{
(κ1(τn,i−1))2 +

(
1
3!

)2 (
6
(
κ0,0,0(τn,i−1)

)2 + 2
(
κ0,0,1(τn,i−1)

)2 + 2
(
κ0,1,1(τn,i−1)

)2 + 6
(
κ1,1,1(τn,i−1)

)2)}

where κ1 = κ1
n(τn,i−1), etc. This shows the result given the assumption of the theorem. 2

Proof of Theorem 12. Recall that Pn,2 is the canonical normal approximation corresponding
to the sequence where An,i = (κn(τn,i−1), θ̂n,i, Rn,i/στn,i) and Bn,i = S̃n,i/στn,ivn,i. Also let Ăn,i =
(κn(τn,i−1), θ̂n,i) and B̆n,i = (Rn,i/στn,i , S̃n,i/στn,ivn,i) be the partition from Theorem 10. In both
cases, Un,i = (Rn,i/στn,i , S̃n,i/στn,ivn,i, θ̂n,i, κn,i−1) (except for Un,0, cf. Definition 7.)

Observe that under all of P ∗, Pn,1 and Pn,2, log f(Bn,i | An,i, Un,i−1, ..., Un,0) = log f(B̆n,i |
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Ăn,i, Un,i−1, ..., Un,0)− log f(Rn,i/στn,i | Ăn,i, Un,i−1, ..., Un,0). Thus

log
fP ∗(Bn,i | An,i, Un,i−1, ..., Un,0)
fPn,2(Bn,i | An,i, Un,i−1, ..., Un,0)

= log
fP ∗(B̆n,i | Ăn,i, Un,i−1, ..., U0)
fPn,1(B̆n,i | Ăn,i, Un,i−1, ..., Un,0)

− log
fP ∗(Rn,i/στn,i | Ăn,i, Un,i−1, ..., Un,0)

fPn,1(Rn,i/στn,i | Ăn,i, Un,i−1, ..., Un,0)
. (D.1)

The problem therefore reduces to

log
dP ∗

dPn,2
based on (Bn,i, An,i) = log

dP ∗

dPn,1
based on (B̆n,i, Ăn,i) as in Theorem 10

− log
dP ∗

dPn,0
, where (D.2)

dP ∗

dPn,0
= log

dP ∗

dPn,1
based on (Rn,i/στn,i , Ăn,i). (D.3)

Observe that Pn,0 is the restriction of Pn,1 to a smaller sigma-field.

Pn,0 falls under the setup in Section 3.1.2. Because of the independence of the θ̂is, Pn,0 is
multiplicatively related to the one step contiguous normal target measure studied in Mykland and
Zhang (2009, Sections 2.3-2.4). In particular, the cumulants are, in this case, additively related.

The martingale Ln (under Pn,1) from (64) corresponding to log dP ∗

dPn,1
is Ln,1 from Theorem 10.

Meanwhile, if Ln,0 is the martingale (also under Pn,1) corresponding to log dP ∗

dPn,0
. We obtain in the

same way as Theorem 10 that

Ln,0 =
∑
i

∆τ1/2
n,i κ

0
n(τi−1)h0(Vn,i) +

1
3!

∆τ1/2
n,i κ

0,0,0
n (τn,i−1)h000(Vn,i), (D.4)

whence Ln,2 = Ln,1 − Ln,0. The result then follows from the proof of Theorem 10 (in this paper) as
well as the proofs of Theorems 1-2 in Mykland and Zhang (2009). 2
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