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ABSTRACT. We find the asymptotic distribution of the multi-dimensional multi-scale and kernel
estimators for high-frequency financial data with microstructure. Sampling times are allowed to be
asynchronous and endogenous. In the process, we show that the classes of multi-scale and kernel
estimators for smoothing noise perturbation are asymptotically equivalent in the sense of having
the same asymptotic distribution for corresponding kernel and weight functions. The theory leads
to multi-dimensional stable central limit theorems and feasible versions. Hence, they allow to draw
statistical inference for a broad class of multivariate models, which paves the way to tests and con-
fidence intervals in risk measurement for arbitrary portfolios composed of high-frequently observed
assets. As an application, we enhance the approach to construct a test for investigating hypotheses
that correlated assets are independent conditional on a common factor.

Key words: asymptotic distribution theory, asynchronous observations, conditional indepen-
dence, high-frequency data, microstructure noise, multivariate limit theorems

1. Introduction

The estimation of daily integrated volatility and covolatility has become a key topic of statis-
tics of high-frequency data and a central building block in model calibration for financial risk
analysis. Recent years have seen a tremendous increase in trading activities along with ongo-
ing build-up of computer-based trading. The broad availability of recorded asset prices at such
high frequencies magnifies the appeal of statistical methods to efficiently exploit information
from the high-frequency data. This article contributes to this strand of literature by considering
a continuous semimartingale

Xt D X0 C

Z t
0

�s ds C

Z t
0

�s dWs ; t 2 RC ; (1)

with drift �, volatility � and a standard Brownian motion W , comprising current stochastic
volatility models, observed over a fixed time span Œ0; T � on a discrete grid and by investigat-
ing asymptotics when the mesh size of the grid tends to zero. The natural estimator for the
quadratic variation (integrated volatility) from equidistant observations of X at iT=n; i D
0; : : : ; n is the discrete version called the realized volatility. In the one-dimensional framework,
it gives a consistent estimator that weakly converges with the usual

p
n-rate to a mixed nor-

mal distribution where twice the integrated quarticity occurs as random asymptotic variance
(cf. Jacod & Protter (1998), Zhang (2001), Barndorff-Nielsen & Shephard (2002)). Therefore,
the concept of stable weak convergence by Rényi (1963) has been called into play to pave the
way for statistical inference and confidence intervals. In our setting, stable convergence is equiv-
alent to joint weak convergence with every measurable bounded random variable and thus,
accompanied by a consistent estimator of the asymptotic variance, allows to conclude a feasible
central limit theorem. This reasoning makes stable convergence a key element in high-frequency
asymptotic statistics.
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The aspiration to progress to more complex statistical models in this research area has been
mainly motivated by economic issues. First of all, in a multi-dimensional framework, different
assets are usually not traded and recorded at synchronous sampling times but geared to individ-
ual observation schemes. Employing simple interpolation approaches has led to the so-called
Epps effect (cf. Epps (1979)) that covariance estimates get heavily biased downwards at high fre-
quencies by the distortion from an inadequate treatment of non-synchronicity. In the absence
of microstructure, the estimator by Hayashi & Yoshida (2005) remedies this flaw of naively
interpolated realized covolatilities, and a feasible central limit theorem has been attained in
Hayashi & Yoshida (2011). For synchronous equidistant high-frequency observations of (1),
increasing sample sizes are expected to render the estimation error by discretization smaller
and smaller. Contrary to the feature of the statistical model, in many situations, high-frequency
financial data exhibit an exploding realized volatility when the sampling frequency is too high.
This effect is ascribed to market microstructure frictions as bid-ask spreads and trading costs.
A favoured way to capture this influence is to extend the classical semimartingale model, where
the semimartingale acts to describe dynamics of the evolution of a latent efficient log-price,
which is corrupted by an independent additive noise. Following this philosophy from Zhang
et al. (2005), several integrated volatility estimators have been designed that smooth out noise
contamination first. The optimal minimax convergence rate for this model declines to n1=4

what is known from the mathematical groundwork provided by Gloter & Jacod (2001). This
rate can be attained using the multi-scale realized volatility by Zhang (2006), pre-averaging as
described in Jacod et al. (2009), the kernel estimator by Barndorff-Nielsen et al. (2008) or a
quasi-maximum-likelihood approach by Xiu (2010). Although the estimators have been found
in independent works and rely on various principles, it turned out that they are in a certain
asymptotic sense equivalent, which is clarified in Section 3 below.
Recently, methods to deal with noise and non-synchronicity in one go have been established
in the literature. In fact, to each of the aformentioned smoothing techniques (at least) one
extension to non-synchronous observation schemes has been proposed. First, the multivariate
realized kernels by Barndorff-Nielsen et al. (2011) using refresh time sampling are eligible to
estimate integrated volatility matrices and guarantee for positive semi-definite estimates at the
cost of a sub-optimal convergence rate. Aït-Sahalia et al. (2010) suggested to combine a gen-
eralized synchronization algorithm with the quasi-maximum-likelihood approach. Park et al.
(2016) use Fourier methods on the same problem. Eventually, a feasible asymptotic distribu-
tion theory for the general non-synchronous and noisy setup has been provided by Bibinger
(2012) and Christensen et al. (2013) for hybrid approaches built on the Hayashi–Yoshida esti-
mator and the multi-scale and pre-average smoothing, respectively. Although these estimators
combine similar ingredients, they behave quite differently, because for the approach in Bibinger
(2012), interpolation takes place on the high-frequency scale after smoothing is adjusted with
respect to a synchronous approximation, whereas Christensen et al. (2013) suggest to denoise
each process first and take the Hayashi–Yoshida estimator from pre-averaged blocks, which
results in interpolation with respect to a lower-frequency scale.
Presented limit theorems and asymptotic distributions of several of these estimators in the lit-
erature are univariate, that is, only the asymptotic variances of (co-)variation estimators are
established. An apparent problem pertinent to applications is, however, to quantify the risk of
a collection of high-frequently observed assets. When X in (1) is d -dimensional, for instance,
estimating the quadratic variation of some portfolio as w1X .1/ Cw2X .2/ with weights w1; w2
is based on estimates for the integrated volatilities and the integrated covolatility. As the three
estimates are correlated, we are in need of a multivariate limit theorem to deduce the asymptotic
variance of the compound estimator. In this work, we establish multivariate stable limit theo-
rems with the asymptotic variance–covariance matrix of the (generalized) multi-scale estimator

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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and a related realized kernel estimator, along with feasible versions. Thereto, beyond techniques
from statistics of high-frequency data, we exploit elements of matrix calculus. Introduce the
multivariate notation by the stable central limit theorem for the realized volatility matrix from
regular observations as estimator of the integrated volatility matrix

R T
0
†s ds;† D ��

>:

n
1
2 vec

 
nX
iD1

�
XiT
n
X.i�1/T

n

��
X iT

n
X .i�1/T

n

�>Z T
0

†sds

!
st
!MN

 
0; T

Z T
0

.†s ˝†s/Z ds
!
:

(2)

The vec-operator transforms the .d � d/ matrix on the left-hand side into a d2-dimensional
vector by stacking the columns below each other:

vec.A/D
�
A.11/;A.21/; : : : ; A.d1/;A.12/;A.22/; : : : ;A.d2/; : : : ;A.d.d�1//;A.dd/

�>
2 Rd

2

;

for A D
�
A.pq/

�
1�p;q�d

2 Rd�d. The mixed normal limit right-hand side comprises a

.d2 � d2/ random asymptotic variance–covariance matrix with the Kronecker square of †.
The Kronecker product A˝ B 2 Rd

2�d2 for A;B 2 Rd�d is defined by

.A˝ B/.d.p�1/Cq;d.p
0�1/Cq0/ D A.pp

0/B.qq
0/; p; q; p0; q0 D 1; : : : ; d:

The matrix Z describes the variance–covariance structure of the empirical covariance matrix
of a standard Gaussian vector

Z D Cov.vec.ZZ>// 2 Rd
2�d2 for Z � N.0; Id / ; (3)

with Id the .d � d/ identity matrix. Z is explicit, that is, with ıp;q D 1¹pDqº:

Z.d.p�1/Cq;d.p0�1/Cq0/ D .1C ıp;q/ı¹p;qº;¹p0;q0º; p; q; p0; q0 D 1; : : : ; d;

by the property Zvec.A/ D vec.A C A>/ for all A 2 Rd�d . The matrix Z is twice the
so-called symmetrizer matrix from Abadir & Magnus (2005). For realized volatilities to esti-
mate

R T
0
�2s ds with �s one-dimensional, we recover their well-known asymptotic variance

2T
R T
0
�4s ds. In a two-dimensional setup with volatilities � .1/s ; �

.2/
s and a correlation pro-

cess �s , we derive as limit variance of the realized covolatility T
R T
0
.1 C �2s /

�
�
.1/
s �

.2/
s

�2
ds.

Less familiar are the limiting covariances between realized volatility and realized covolatility

2T
R T
0
�s

�
�
.1/
s

�3
�
.2/
s ds and symmetrically. The form of the asymptotic variance–covariance

in (2) is proved in Appendix A.
Relying on the asymptotic distribution of the considered quadratic covariation matrix esti-

mators, we design a statistical test for investigating hypotheses, if two processes have zero
covariation conditioned on a third one. We obtain an asymptotic distribution free test. This
test, which we call conveniently conditional independence test, renders information about the
dependence structure in multivariate portfolios and can be applied to test for zero covaria-
tion of idiosyncratic factors in typical portfolio dependence structure models, as the one by
Eberlein et al. (2008). In particular, we may identify dependencies between single assets not
carried in common macroeconomic factors that influence the whole portfolio and disentangle
those from correlations induced by market influences.

The outline of the article is as follows. In Section 2, we first unify the asymptotic analysis of
quadratic covariation estimation under noise by proving equivalence of methods. Then, multi-
variate stable limit theorems are developed. Section 3 proceeds to statistical experiments with
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noise and non-synchronous endogenous observation times. The conditional independence test
is introduced in Section 4 and applied in an empirical study in Section 5 to high-frequency
financial data. The proofs can be found in the Appendix.

2. Estimating the quadratic covariation matrix in presence of noise

Assumption 1. Consider a continuous d -dimensional Itô semimartingale (1) adapted with
respect to a right-continuous and complete filtration .Ft / on a filtered probability space
.�;F ; .Ft /;P/ with adapted locally bounded drift process �, a d -dimensional .Ft /-Brownian
motion W and adapted .d � d 0/ càdlàg volatility process � . Suppose that � itself is a continu-
ous Itô semimartingale again, given by an equation similar to (1). The processes � and W can
be dependent, allowing for leverage effect.

The d -dimensional continuous semimartingale X from (1) is discretely observed on Œ0; T � with
additive noise:

Yj D Xtj C �j ; j D 0; : : : ; n :

The synchronous observation times tj ; 0 � j � n, satisfy

ın D sup
j

��
tj � tj�1

�
; t0; T � tn

�
D O

�
n�

8
9�˛

�
(4)

for a constant 0 < ˛ � 1=9, stating that we allow for a maximum time instant tending to zero
slower than with n�1, but not too slow. The microstructure noise is given as a discrete-time process
for which the observation errors are assumed to be i. i. d. and independent of the efficient process
X . Furthermore, the errors have mean zero, and eighth moments exist.

The variance–covariance matrix of �j ; 0 � j � n is denoted by H and Cov
�
�j �
>
j

�
D

H˝Z; 0 � j � n. In case that �j � N.0;H/, we already know that H˝ D .H ˝ H/, but we
allow for much more general noise. We write

�jY D Ytj � Ytj�1 and �ijY D Ytj � Ytj�i ; 1 � j � n; 2 � i � j ; (5)

for the increments and for increments to longer lags, respectively. An i. i. d. assumption on the
noise is standard in related literature, an extension to m-dependence and mixing errors can be
attained as in Aït-Sahalia et al. (2011). For notational convenience and to find the multivariate
analogues of known one-dimensional asymptotic variances of considered estimators, we also
restrict ourselves to i. i. d. noise here. Increments in this microstructure noise model

�jY D

Z tj
tj�1

�s ds C

Z tj
tj�1

�s dWs C �j � �j�1

are substantially governed by the noise, because any component of the second addend is
OP.ı

1=2
n / and the drift acts only as nuisance term of order in probability OP.ın/ for each com-

ponent. For an accurate estimation of the quadratic covariation matrix in the presence of noise,
smoothing methods are applied. We now discuss several main approaches and integrate them
in a unifying theory. To this end, we show that two prominent methods are asymptotically
equivalent.
The asymptotic distributions of considered estimators hinge on the random volatility pro-
cess �s . Thus, stable weak convergence is an essential concept. Let Zn be a sequence of
X -measurable random variables, with FT � X . We say that Zn converges stably in law to Z
as n ! 1 if Z is measurable with respect to an extension of X so that for all A 2 FT and
for all bounded continuous g, EŒIAg.Zn/�! EŒIAg.Z/� as n!1. IA denotes the indicator
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function of A, and D 1 on A and D 0 otherwise. Here, we have X D FT . We refer to Jacod
(1997) and Jacod & Protter (1998) for background information on stable convergence for this
estimation problem. Stable central limit theorems allow for feasible limit theorems and hence
confidence if the asymptotic variance–covariance matrix can be estimated consistently.

2.1. The multivariate multi-scale and kernel estimators

For the estimation of the quadratic variation, the following rate-optimal estimators with similar
asymptotic behaviour have been proposed in the literature: the multi-scale approach by Zhang
(2006), pre-averaging by Jacod et al. (2009), the kernel estimator by Barndorff-Nielsen et al.
(2008) and a quasi-maximum-likelihood estimator by Xiu (2010). We investigate the variance–
covariance structure of the multivariate multi-scale estimator explicitly, but because all these
estimators have a similar structure as quadratic form of the discrete observations, analogous
reasoning will apply to the other methods. In particular, we shed light on the connection to
the kernel approach to profit at the same time from the considerations by Barndorff-Nielsen
et al. (2008) pertaining parametric efficiency and the asymptotic features of different kernel
functions. The multivariate multi-scale estimator

Œ̂X;X�
.multi/

T D

MnX
iD1

˛i

i

nX
jDi

�ijY
�
�ijY

�>
(6)

arises as linear combination of averaged lower-frequent realized volatility matrices using fre-
quencies i D 1; : : : ;Mn. Estimator (6) is the multi-dimensional version of the estimator from
Zhang (2006).

For discrete weights ˛i ; 1 � i � Mn, with
PMn

iD1
˛i D 1 and

PMn

iD1
.˛i=i/ D 0, the

expression

˛i D
i

M 2
n

h

�
i

Mn

�
�

i

2M 3
n

h0
�
i

Mn

�
C

i

6M 4
n

.h0.1/�h0.0//�
i

24M 5
n

.h00.1/�h00.0// ; (7)

adopted from Zhang (2006), with twice continuously differentiable functions h satisfyingR 1
0
xh.x/ dx D 1 and

R 1
0
h.x/ dx D 0, gives access to a tractable class of estimators. The multi-

scale frequency is chosen Mn D c
p
n with a constant c, minimizing the overall mean square

error to order n�1=4. The estimator is thus rate-optimal according to the lower bounds for con-
vergence rates by Gloter & Jacod (2001) and Bibinger (2011).
At the present day, it is commonly known that the non-parametric smoothing approaches to
cope with noise contamination have a connatural structure and related asymptotic distribu-
tions. A prominent intensively studied alternative to the multi-scale approach is the (realized)
kernel estimator

Œ̂X;X�
.kernel/

T

nX
jD1

�jY.�jY /
>

HnX
hD1

K

�
h

Hn

�0@ nX
jDhC1

�jY.�j�hY /
>�j�hY.�jY /

>

1
A ;
(8)

with a four times continuously differentiable kernel K on Œ0; 1�, which satisfies the conditions

max
Ź 1
0

K2.x/ dx;

Z 1
0

.K0.x//2 dx;

Z 1
0

.K00.x//2dx

μ
<1;K.0/D 1;K.1/D K0.0/D K0.1/D 0:
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This is the multi-dimensional version of the non-flat-top realized kernel estimator considered
in Section 4.6 of Barndorff-Nielsen et al. (2008). In the one-dimensional setup, (8) has been
motivated as linear combination of realized autocovariances of the discretely observed process.
The subsequent explicit relation between kernel and multi-scale estimator enables us to embed
the findings about several kernels and the construction of an asymptotically efficient one for
the parametric model provided by Barndorff-Nielsen et al. (2008). Because the multi-scale
approach exhibits good finite-sample properties in the treatment of end-effects, it can be worth
to road-test resulting transferred multi-scale estimators in practice.

2.2. Asymptotic equivalence of the multi-scale and kernel estimators

The multi-scale and kernel estimators defined in (6) and (8) are sensitive to end-effects, which
is caused by the dominating noise component whose variance–covariance matrix H does not
depend on n. Because of end-effects, on Assumption 2, the estimators (6) and (8) with weights
determined by (7) and corresponding kernels have a bias �2H and 2H, respectively. We here
investigate a correction to each of the two types of estimator:
Correction to multi-scale: Follow Zhang (2006) by modifying the first two weights

˛1 7! ˛1 C 2=n; ˛2 7! ˛2 � 2=n; .˛i /3�i�Mn
7! .˛i /3�i�Mn

: (9)

Correction to the kernel estimator:

multiplying the realized volatility matrix in the first addend with
n � 1

n
: (10)

This correction is different from the ‘jittering’ approach provided in Barndorff-Nielsen
et al. (2008), Section 2.6. The bias-corrections do not affect the asymptotic variance–
covariance structure of the estimators. We call the adjusted estimators, respectively,

Œ̂X;X�
.multi;adj/

T and Œ̂X;X�
.kernel;adj/

T . We then obtain the following direct asymptotic
equivalence of the two estimators.

Theorem 2.1. For each kernel function K matching the assertions earlier, for the estimators
defined in (6) and (8) with weights determined by (7) and h D K00, we have

n
1
4

�
Œ̂X;X�

.multi;adj/

T � Œ̂X;X�
.kernel;adj/

T

�
p
! 0 ; (11)

as n!1, Mn D Hn D c
p
n with some constant c.

Remark 1. (Dependent noise.) In the case ofm-dependence, it will be convenient to discard the
first m frequencies and renormalize in (6). The adjusted estimator is robust.

Remark 2. (Strong representation.) The result of Theorem 2.1 is similar to other ‘strong rep-
resentation’ results in the high-frequency literature, such as in Zhang (2011) (see key equation
(39) on p. 41) and Mykland et al. (2012), Theorem 4. (The convergence is in probability,
but is comparable with strong representation through a standard subsequence-of-subsequence
argument.)

Because the motivation of the multi-scale and the kernel approach is quite different, the
asymptotic equivalence in Theorem 2.1 is an intriguing result. The equivalence and its proof
also reveal how refinements and results for one estimator can be transferred to the other.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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2.3. Optimal choice of weights and asymptotic distribution

The standard weights employed in Zhang (2006)

˛i D

 
12i2

.M 3
n �Mn/

�
6i

.M 2
n � 1/

�
6i

.M 3
n �Mn/

!
D
12i2

M 3
n

�
6i

M 2
n

.1CO.1// (12)

minimize the variance by noise and lead to, as mentioned by Barndorff-Nielsen et al. (2008),
the same asymptotic properties as for the kernel estimator (8) with a cubic kernel. However, as
derived by Barndorff-Nielsen et al. (2008), there are kernels surpassing the cubic kernel in effi-
ciency by shrinking the signal and cross parts of the variance while allowing for an increase in
the noise variance and striving for the best balance of all three. A fourth term appearing in the
asymptotic (co-)variances, see (14), induced by end-effects and noise, can be circumvented by
their ‘jittering’ technique. Asymptotically, Tukey-Hanning kernels as listed in Table 1 combined
with this ‘jittering’ can attain the optimal asymptotic variance in the one-dimensional paramet-
ric case known from the inverse Fisher information in Gloter & Jacod (2001). All weights (7)
satisfy the relations

PMn

iD1
˛i D 1 and

PMn

iD1
˛i=i D 0. Classical pre-averaging is asymptoti-

cally equivalent to the Parzen kernel. This linkage has been shown by Christensen et al. (2010);
see also the discussion in Jacod et al. (2009) (Remark 1, p. 2255). At this stage, we derive the
multivariate stable central limit theorem along with the asymptotic variance–covariance matrix
for the equidistant observations setup.

Theorem 2.2. On the Assumptions 1 and 2 with ti D iT=n; 0 � i � n, the multi-scale estimator
(6) with Mn D c

p
n, and weights (7), and by the equivalence also the corresponding kernel

estimator obey multivariate stable central limit theorems

n
1
4 vec

 
Œ̂X;X�

.multi/

T �

Z T
0

†s ds

!
st
!MN .0;ACOV/ ; (13)

with mixed normal limit distribution and with the asymptotic variance–covariance matrix

ACOV D 4D˛ c T
Z T
0

.†s ˝†s/Z ds C 2N˛1 c�3 .H˝H/Z

C 2 c�1M˛

Z T
0

.H˝†s C†s ˝H/Z ds C 2 c�1N˛2H˝Z ;
(14)

with constants D˛ , N˛
1

, N˛
2

and M˛ depending on the specific kernel (Table 2).

Table 1. Collection of important kernels and corresponding weights for the multi-scale
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Table 2. Constants in asymptotic covariance for important kernels

A generalization for irregular sampling is covered by Theorem 3.1 in Section 3. In the special
case d D 1, we obtain the asymptotic variance of the one-dimensional multi-scale estima-

tor as given in Zhang (2006). The last addend involving H˝Z D Cov
�
�j �
>
j

�
is induced by

end-effects and noise and can be circumvented by the jittering technique, see Section 2.6 of
Barndorff-Nielsen et al. (2008). For the cross terms, note the identity

.H˝†s C†s ˝H/Z D Z .H˝†s/Z D Z .†s ˝H/Z :

3. Estimating the quadratic covariation matrix under asynchronicity and noise

3.1. Asymptotic distribution of the generalized multi-scale estimator

This section focuses on the general model – comprising non-synchronous observation times
and noise perturbation – and a hybrid approach founded on a combination of the estimators
from Section 2 and the estimator for non-synchronous non-noisy observations by Hayashi &
Yoshida (2005). First, observation times are deterministic or random and independent of Y . In
Section 3.2, robustness against endogenous sampling is established.

Assumption 3.1. The process X is observed non-synchronously with additive microstructure
noise:

Y
.p/

t
.p/

j

D X .p/
t
.p/

j

C �.p/
j

; j D 0; : : : ; np; p D 1; : : : ; d; on Œ0; T � :

The sequences of observation times are regular in the sense that np=nq ! Kpq with constants
0 < Kpq <1. For a constant 0 < ˛ � 1=9, it holds that

ın D sup
.i;p/

��
t
.p/

i
� t .p/
i�1

�
; t
.p/

0
; T � t .p/np

�
D O

�
sup
p

.np/
� 89�˛

�
: (15)

The observation errors are i. i. d. sequences, independent of the efficient processes, centred and
eighth moments exist. Noise components can be mutually correlated only at synchronous
observations.

We establish the asymptotic variance–covariance matrix for a generalized multi-scale method
proposed in Bibinger (2011). It arises as a convenient composition of the multi-scale estima-
tor from Section 2 and a synchronization approach inspired by the estimator suggested in
Hayashi & Yoshida (2005). To handle non-synchronicity, introduce next-tick and previous-tick
interpolations:

tCp .s/ D min
i2¹0;:::;npº

�
t
.p/

i
jt .p/
i
� s

�
and t�p .s/ D max

i2¹0;:::;npº

�
t
.p/

i
jt .p/
i
� s

�
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for p D 1; : : : ; d and s 2 Œ0; T �. An important synchronous grid is given by the refresh times
introduced in Barndorff-Nielsen et al. (2011):

T0 D max
p

�
tCp .0/

�
; Ti D max

p

�
tCp .Ti�1/

�
; i D 1; : : : ; N :

For the construction of the estimator, virtually, we can think of an idealized synchronous
approximation given by the .N C 1/ refresh times, apply subsampling and the multi-scale
extension to this scheme and afterwards interpolate to the next observed values on the highest
available frequency. This generalized multi-scale estimator is

Œ̂X;X�
.multi/

T D

MNX
iD1

˛i

i

NX
jDi

�
YC
Tj
� Y �Tj�i

� �
YC
Tj
� Y �Tj�i

�>
;

with YC
Tj
D

�
Y
.p/

t
C
p .Tj /

�>
1�p�d

; Y �Tj D
�
Y
.p/

t�p .Tj /

�>
1�p�d

; j D 0; : : : ; N:

(16)

Without loss of generality, suppose all next-tick interpolations for j D N and previous-
tick interpolations for j D 0 exist (simply exclude the first and last refresh time else). This
estimator crucially differs from the approach by Christensen et al. (2013), which mimics the
form of the traditional Hayashi–Yoshida estimator but bound to a low-frequency scheme of
pre-averaged observations over blocks of order

p
n high-frequency observations. The estima-

tor (16) relies more on the principle of the refresh-time approximation and exhibits a simpler
and for most setups much smaller variance. Contrarily to Barndorff-Nielsen et al. (2011), we
utilize pre-tick and next-tick interpolations such that the final estimator has no bias because
of non-synchronicity. For the reason of various estimators in the general model using differ-
ent compositions of the methods, the article on hand cannot accomplish a unified theory that
is applicable to all alternative approaches as Aït-Sahalia et al. (2010), Barndorff-Nielsen et al.
(2011) and Christensen et al. (2013). Unlike their roots from Section 2, they are not asymptoti-
cally equivalent any more. We focus on (16) because the method is rate-optimal, and a feasible
univariate central limit theorem is accessible from Bibinger (2012).

Remark 3. (Identical results for kernel estimators.) Because Eqns (4) and (15) are the same, it
follows from Section 2 that our results on irregular sampling for the synchronous case, where
the generalized multi-scale estimator (16) coincides with the original one (6), in the following
apply identically to kernel estimators. Furthermore, all results for the estimator (16) apply to a
generalized kernel estimator with refresh time sampling as in (16).

Definition 1. For observation times t .p/
j
; 0 � j � np; 1 � p � d , define the functional

sequences

GN;r .t/ D
N

r

X
Tl�t

.Tl � Tl�1/

r^lX
qD1

�
Tl�qC1 � Tl�q

�
; (17)

and SN .t/ 2 Rd�d for each t 2 Œ0; T � with entries

�
SN.t/

�.pq/
D
1

N

X
Tl�t

 
1°
t
C
p .Tl /Dt

C
q .Tl /

±C21°
t
C
p .Tl /Dt

C
q .Tl�1/

±C
lX

uD0

1°
t
C
p .Tl /Dt

�
q .Tu/

±
!
:

(18)
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Assumption 3.2. Assume that the sequence GN;r from (17) and the sequences (18) satisfy the
convergences

(i) As N ! 1 and r ! 1 with r D O.N /: GN;r .t/ ! G.t/ and SN .t/ ! S.t/, for
continuous differentiable (in t ) limiting functions G and S on Œ0; T �.

(ii) For any null sequence .hN /; hN D O
�
N�1

�
:

GN;r .t C hN / �GN;r .t/

hN
! G0.t/ ;

SN .t C hN / � S
N .t/

hN
! S 0.t/ ; (19)

uniformly on [0,T] as N !1.
(iii) Assume that for all p; p0; q; q0 2 ¹1; : : : ; dº, the following limits exist:

	
pp0

qq0
D lim
N!1

M 3
N

N

MNX
iD1

˛2
i

i2

NX
jDiC1

�
1
¹t
C
p .Tj /Dt

C

p0
.Tj /º

1°
t�q .Tj�i /Dt

�
q0
.Tj�i /

±

C21°
t
C
p .Tj /Dt

C

p0
.Tj�1/

±1°
t�q .Tj�i�1/Dt

�
q0
.Tj�i�1/

±
�
:

(20)

(iv) Assume the existence of

lim
N!1

M�1N

0
@MNX
jD1

�
1°
t
C
p .Tj /Dt

C
q .Tj /

±C21°
t
C
p .Tj /Dt

C
q .Tj�1/

±
�

C

NX
jDN�MN

1¹t�p .Tj /Dt�q .Tj /º

1
A :

(21)

The existence of the limit G of GN;r is essential to establish an asymptotic distribution
theory, because it dominates the terms that appear in the (co-)variances of the multi-scale
and related estimators and contribute to the asymptotic (co-)variance, namely, the following
existing limit:

D˛.t/D lim
N!1

0
@ N
MN

X
Tl�t

.Tl � Tl�1/

MNX
i;kD1

˛i˛k

min .l;i;k/X
qD1

�
1 �

q

i

� �
1 �

q

k

�
.Tl�qC1 � Tl�q/

1
A:

(22)

In the equidistant synchronous setup D˛.t/ D D˛t T , with the constant D˛ found in
Theorem 2.2.

Theorem 3.1. On the Assumptions 1, 3.1 and 3.2, the generalized multi-scale estimator (16) with
MN D c

p
N and weights (7) obeys the multivariate stable central limit theorem:

N 1=4

 
Œ̂X;X�

.multi/

T �

Z T
0

†s ds

!
st
!MN .0;ACOV/ ; (23)

with mixed normal limit distribution and with the asymptotic variance–covariance matrix

ACOV D4 c
Z T
0

.D˛/0.s/.†s ˝†s/Z ds C 2 c�3 .H˝H/� Z

C c�1M˛

Z T
0

�
QHs ˝†s C†s ˝ QHs

�
Z ds C c�1N˛2 QH˝Z ;

(24)
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with (22) and the following existing limits:

�
QHs
�.pq/

D H.pq/
�
S 0.s/

�.pq/
; (25a)

�
.H˝H/�

�.d.p�1/Cq ;d.p0�1/Cq0/
D H.pp

0/H.qq
0/	
pp0

qq0
; (25b)

�
QH˝

�.pq/
D
�

H˝
�.pq/0@ lim

N!1
M�1N

MNX
jD1

�
1°
t
C
p .Tj /Dt

C
q .Tj /

± C 21°
t
C
p .Tj /Dt

C
q .Tj�1/

±
�

C lim
N!1

M�1N

NX
jDN�MN

1¹t�p .Tj /Dt�q .Tj /º

1
A ;

(25c)

for p; p0; q; q0 2 ¹1; : : : ; dº with S 0 from (19) and 	pp
0

qq0
from (20).

In a synchronous setting .H˝H/� D N˛
1
.H˝H/ (N˛

1
D 12 for the cubic kernel), QHs D 2H

and QH˝ D 2H˝, and then (24) coincides with (14) except for the influence of irregular sam-
pling. In particular, the asymptotic variance–covariance matrix of the multi-scale estimator
for synchronous but non-equidistant sampling coincides with (14), but in the discretization
part the derivative of (22), analogously defined for the one observation scheme replaces the
constant D˛T .
Interestingly, in most situations, non-diagonal entries of S.t/ equal zero as well as 	pp

0

qq0
when-

ever p ¤ p0 or q ¤ q0, such that the noise part of covariances vanishes. We obtain the following
important result for the completely non-synchronous case.

Corollary 3.3. In the case that no synchronous observations take place, t .p/
i
¤ t

.q/

j
for all i; j

and p ¤ q (or the amount of synchronous observations tends to zero as N ! 1), (23) holds
and (25a), (25b) and (25c) simplify, with ıp;q D 1¹pDqº, to

�
QHs
�.pq/

D 2H.pq/ıp;q (26a)�
.H˝H/�

�.d.p�1/Cq ;d.p0�1/Cq0/
D ıp;p0ıq;q0H.pp/H.qq/N˛1 (26b)�

QH˝
�.pq/

D 2
�

H˝
�.pq/

ıp;q : (26c)

Remark 4. Our major focus is not on the theoretical limits G and of other sequences, because
in the general case, they are specified only as limits. We do not need these values, however,
for feasible inference. Convergence of (17) is the natural assumption to derive a central limit
theorem for irregularly spaced (non-equidistant) observations already in the one-dimensional
framework. It emulates the asymptotic quadratic variation of time for realized volatility to an
asymptotic long-run variation of time emerging in the variance for subsampling and the other
smoothing approaches. Not directly, the limit of (17) will appear in the asymptotic variance,
but some limiting function additionally involves specific weights (the kernel). If we think of ran-
dom sampling independent of Y , the structure of (17) will be particularly simple for i. i. d. time
instants. Virtually, only the expectation will matter, and we can apply the standard law of large
numbers. Assuming (19) is less restrictive than the assertion in Zhang (2006). Remarkably, for
the popular model of homogenous Poisson sampling independent of Y with expected time
instants T=n, the asymptotic variance of the integrated volatility estimator is the same as for
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equidistant observations. This emanates from the i. i. d. nature of time instants and the vanish-
ing influence of the first addend 2T=.nr/ in (17) as r !1. The finite sample correction factor
of the term with GN;r in (19) for this Poisson setup is thus .r C 1/=r .

Remark 5. (Pairwise refresh times) Instead of subsampling geared to the refresh time scheme
in (16), we can as well use pairwise refresh times to estimate each entry of the integrated
volatility matrix, that is, to estimate

R T
0
†
.pq/
s ds, we work with refresh times build from

.t
.p/

i
/1�p�np ; .t

.q/

i
/1�q�nq . Especially in case of very different liquidities, the pairwise esti-

mation can be more efficient in finite samples. The variance–covariance structure for a pairwise
generalized multi-scale estimator is slightly more cumbersome – but of the same nature as (24).

At first glance, the simple appearance of the variance–covariance of generalized multi-scale
estimates in the typical setup where all observations are non-synchronous is intriguing. It hinges
only on the discretization error as if we had synchronous observations at the refresh times
Ti ; i D 0; : : : ; N . The noise falls out of the asymptotic covariances on the assumption that
observation errors at different observation times are independent.
This constitutes another nice property of the generalized multi-scale method that a multivari-
ate limit theorem (23) is available and covariances are pretty simple. Here, we benefit from
the construction of (16), where interpolation effects and hence the discretization error due to
non-synchronicity is asymptotically negligible. This is in line with the result of Bibinger et al.
(2014) that in this general model with microstructure noise and non-synchronicity, the noise
prevails such that the discretization variance–covariance is asymptotically not affected by non-
synchronicity.
With a consistent estimator ÂCOV D ÃCOVZ of (24), which is provided in the Supporting
Information, we derive the feasible multivariate central limit theorem

N 1=4ÃCOV
�1=2

 
Œ̂X;X�

.multi/

T �

Z T
0

†s ds

!
st
! N.0;Z/ : (27)

3.2. Robustness of multi-scale estimators under endogenous sampling

One crucial limitation of the observation model with Assumption 3.1 is that observation times
are supposed to be exogenous and not dependent on the process Y . This appears unrealistic
when observations come at random trading times. A prominent contribution in which volatil-
ity estimation in presence of endogenous random observation times has been considered is
Fukasawa (2010), other works dedicated to endogenous sampling include Li et al. (2013, 2014).
Especially, the limit theorem for realized volatility by Fukasawa (2010) has attained a lot of
attention as the limit law is, in general, different to the case of exogenous sampling. This pointed
out that endogeneities can lead to completely new surprising effects and complicate estimators’
asymptotic properties. We provide a concise review of the main findings of Fukasawa (2010) in
the Supporting Information. Here, we shall reveal that under mild regularity conditions, simi-
lar effects of endogeneity do not arise for multi-scale estimators. Thus, the estimation approach
is robust against endogeneity of observation times. This finding is in line with recent works by
Koike (2014) and Koike (2016) proving that asymptotic properties of pre-average estimators
are not affected by endogenous sampling. The different impact of endogenous sampling on
the multi-scale estimator compared with realized volatility is due to the smoothing. Realized
volatility is the sum of squared increments such that fourth powers of increments trigger its
variance. For the multi-scale approach instead, the variance–covariance induced by squared
increments is asymptotically negligible and instead cross products of increments over disjoint
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time segments trigger the (co-)variances of the discretization error (see (43) in the proofs). While
the higher moments of increments driving the asymptotics of realized volatility are quite sensi-
tive to endogenities, similar effects do not occur for multi-scale estimators, and generalized Itô
isometry implies (co-)variances of the same type as under exogenous observation times.

Assumption 3.4. We have observations at random times t .p/
i
; i D 0; : : : ; np; p D 1; : : : ; d with

0 < EŒnp�=EŒnq � < 1. We introduce a sequence of sub-filtrations .FNt / of the augmented
.Ft / such that t .p/

i
; i D 0; : : : ; np; p D 1; : : : ; d are sequences of .FNt /-stopping times and X

is adapted to .FNt /. For a constant 0 < ˛ � 1=9, it holds that

ın D sup
.i;p/

��
t
.p/

i
� t .p/
i�1

�
; t
.p/

0
; T � t .p/np

�
D OP

�
sup
p

.np/
� 89�˛

�
: (28)

Assume as N !1 and for r !1; r D O.N /, that

r
N

r

NX
lD1

 Z Tl
Tl�1

�s ds

!
r^lX
qD1

 Z Tl�q
Tl�q�1

�s dWs

!>
p
! 0 ;

N

r

NX
lD1

 Z Tl
Tl�1

†s ds

!
˝

0
@ r^lX
qD1

0
@Z Tl�q
Tl�q�1

†s ds �

r^lX
q0D1

Z Tl�q
Tl�q�1

�s dWs

 Z Tl�q0
Tl�q0�1

�s dWs

!>1A
1
A p
! 0:

Furthermore, assume stochastic convergence of the sequences in Assumption 3.2 (i). When the

indicator functions in Assumption 3.2 are replaced by P
�
tCp .Tj / D t

C
p0
.Tj /jFNTj

�
and analo-

gously for the other sets, assume convergence of the respective series. We use the same notation
for the limit objects as earlier.

Additional conditions of Assumption 3.4 set mild constraints on the random sampling times
and the drift required to obtain a stable central limit theorem of the same type as in the
exogenous case. These conditions are ensured, for example, by some constraint on long-range
dependence of sampling times, see Assumption [A4](v) of Koike (2016), and by some regularity
of the drift as in Assumption [A1] of Koike (2016).

Corollary 3.5. On the Assumptions 1 and 3.4, as well as Assumption 3.1 on the noise, the gen-
eralized multi-scale estimator (16) with deterministic MN , MNN�1=2 ! c for some constant
c, and weights (7) obeys the multivariate stable central limit theorem (23) with asymptotic
variance–covariance matrix (24).

4. An application to conditional independence testing

This section is devoted to the design of a statistical test in order to investigate if the corre-
lation of two assets is only induced by a factor to which both are correlated. For portfolio
modelling and management, information about such relations can provide valuable informa-
tion. Conclusions that significant integrated covolatilities between high-frequency assets are
fully explained by their dependence on a joint factor or another asset, respectively, facilitate
dimension reduction of covariance matrix estimation, which is particularly important when
considering multivariate limit theorems with variance–covariance matrices of dimension (35).
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Beyond this practical implication, our test reveals the dependence structure useful, for example,
for default contagion as well as for many other economic applications. For instance, we can
think of two observed asset processes X1 and X2 listed within one index Z being conditionally
on Z independent. To put it the other way round, pairs that are not conditionally independent
exhibit significant covariance that carries information about the direct mutual influence. We
understand independence here in terms of orthogonal quadratic covariation processes and test
for zero integrated covolatility – so the term ‘independence’ is used here for a simple illustrative
phrasing. X1 and X2 are orthogonally decomposed in the sum of Z and a process independent
of Z. The constants �X1 ; �X2 quantify the degree of dependence on Z.

X1 D �
X1 Z CZ? ; X2 D �

X2 Z CZ� with ŒZ;Z?� � 0 ; ŒZ;Z�� � 0 : (29)

With ŒX1; X2� � 0 for two semimartingales X1; X2, we express that ŒX1; X2�s D 0 for all
s 2 Œ0; T �. For the conditional independence hypothesis, we set

H0 W ŒZ
?; Z��T D 0 : (30)

Essentially, we do not distinguish between pairs for which the orthogonal parts are uncorrelated
on the whole line and pairs for which this correlation process integrates to zero. Our focus is on
a resulting zero quadratic covariation over Œ0; T �.
A suitable test statistic to decide whether we reject H0 or not is

T.X1; X2; Z/ D ŒX1; Z�T ŒX2; Z�T � ŒX1; X2�T ŒZ;Z�T ; (31)

which is zero under H0.
In our high-frequency framework, we can estimate the single integrated (co-)volatilities via the
approaches considered in the preceding sections. The vital point is to deduce the asymptotic
distribution of the estimated version

OTn D ̂ŒX1; Z�
.multi/

T
̂ŒX2; Z�

.multi/

T � ̂ŒX1; X2�
.multi/

T Œ̂Z;Z�
.multi/

T ; (32)

with one of the estimators (6) or (16). This test statistic is more complex to analyse than linear
combinations, because we face products of our estimators. Therefore, the asymptotic law of (31)
is not directly obtained from Theorem 2.2 or Theorem 3.1, respectively. In lieu of determining
the distribution of the test statistic, we apply the �-method for stable convergence.

T � OTn D ŒX2; Z�T

�
ŒX1; Z�T � ̂ŒX1; Z�

.multi/

T

�
CŒX1; Z�T

�
ŒX2; Z�T � ̂ŒX2; Z�

.multi/

T

�

� ŒX1; X2�T

�
ŒZ;Z�T � Œ̂Z;Z�

.multi/

T

�
�ŒZ;Z�T

�
ŒX1; X2�T � ̂ŒX1; X2�

.multi/

T

�

COP

�
n�

1
2

�
:

(33)

The asymptotic variance of the test statistic is random as a linear combination of the quadratic
(co-)variations and entries of the asymptotic variance–covariance matrix. Denote by AVAR.U /
and ACOV.U; V / in the sequel asymptotic variances and covariances of one-dimensional
random variables U; V . An elementary calculation yields
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AVAR. OTn/ D ŒX2; Z�2TAVAR
�

̂ŒX1; Z�
.multi/

T

�
C ŒX1; Z�

2
TAVAR

�
̂ŒX2; Z�

.multi/

T

�

C ŒX1; X2�
2
TAVAR

�
Œ̂Z;Z�

.multi/

T

�
C ŒZ;Z�2TAVAR

�
̂ŒX1; X2�

.multi/

T

�

C 2 ŒZ;Z�T ŒX1; X2�TACOV
�

̂ŒX1; X2�
.multi/

T ; Œ̂Z;Z�
.multi/

T

�

C 2 ŒX1; Z�T ŒX2; Z�TACOV
�

̂ŒX1; Z�
.multi/

T ; ̂ŒX2; Z�
.multi/

T

�

� 2 ŒX1; Z�T ŒZ;Z�TACOV
�

̂ŒX1; X2�
.multi/

T ; ̂ŒX2; Z�
.multi/

T

�

� 2 ŒX2; Z�T ŒZ;Z�TACOV
�

̂ŒX1; X2�
.multi/

T ; ̂ŒX1; Z�
.multi/

T

�

� 2 ŒX1; X2�T ŒX1; Z�TACOV
�

̂ŒX2; Z�
.multi/

T ; Œ̂Z;Z�
.multi/

T

�

� 2 ŒX1; X2�T ŒX2; Z�TACOV
�

̂ŒX1; Z�
.multi/

T ; Œ̂Z;Z�
.multi/

T

�
:

Inserting consistent estimators for the asymptotic (co-)variances, we obtain with our multivari-
ate stable central limit theorem that

n
1
4

�
̂

AVAR
�
OTn

���1=2
OTn

st
! N.0; 1/ ; (34)

or with scaling N 1=4 for non-synchronous observations, under H0 what gives an asymptotic
distribution free test.

The role of Z in the model can be also some macro variable that is either known or can
be estimated with faster rate of convergence, which simplifies the terms earlier. For regularly
observed high-frequency data without noise, the same kind of test can be constructed using the
realized volatility matrix, and the faster rate n1=2 is attained.

5. An empirical example

We survey our methods in an application study on NASDAQ intra-day trading data, recon-
structed from first-level order book data from August 2015. We consider a sample portfolio
with five assets, namely, Apple (AAPL), Microsoft (MSFT), Oracle (ORCL), Exxon Mobil
Corporation (XOM) and Pfizer (PFE). Traded prices are recorded at non-synchronous times,
and market microstructure noise is clearly indicated such that we suppose the model from
Assumption 3.1. We quantify the integrated volatility matrix over the whole month (where
we discard overnight returns) and for the first trading day, 3 August 2015, respectively, using
generalized multi-scale estimates (16) with weights (12) and pairwise refresh times. Precise
selection of tuning parameters for the univariate asymptotic variance estimation is outlined in
Algorithm 2 of Bibinger (2012). Pre-analysing diagonal entries according to this algorithm,
in view of robustness of the method against moderate changes of MN , we set for simplicity
MN D 0:2

p
N permanently for the analysis here. In order to infer covariances between covari-

ation estimates, we use for each entry the number of refresh times of all involved assets asN and
the histogram multi-scale approach with tuning parameters given dependent on N and MN in
Algorithm 2 of Bibinger (2012) and in the Supporting Information. The complete variance–
covariance matrix of the estimates is quantified. For a d -dimensional portfolio, the number of
free entries of this symmetric variance–covariance matrix is given by
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1

2

d.d C 1/

2

�
d.d C 1/

2
C 1

�
D d C 3

 
d

4

!
C 3 	 2

 
d

3

!
C 4

 
d

2

!
: (35)

In Table 3, we list the estimates for the integrated volatility matrices ˙ estimated standard
deviations. The estimated variance–covariance matrices, not rescaled with the rates, of these
estimates are listed in Table 4. One key insight is that involving covariances of estimates is
indispensable when facing questions for multivariate portfolio management. The estimated
quadratic variation of a sum of all five assets is 92:04 	 10�3 for August 2015 and 90:16 	 10�5

for 3 August 2015. The risk of the estimated volatilities for these portfolios, 4:88 	 10�6 and
12:72 	 10�10, is mainly induced by covariances (3.97/8.96), whereas the trace of the variance–
covariance matrix, that is, the sum of estimated variances, is much smaller. If one would
mistakenly act as if the estimators were uncorrelated, this leads to a tremendous underestimate
of uncertainty.

We perform the test from Section 4 to investigate three hypotheses: if MSFT and ORCL have
a zero covariation conditional on XOM; ORCL and XOM conditional on MSFT and MSFT
and XOM conditional on ORCL. We obtain the following p-values as test results

p D 1:27 	 10�37I 2:26 	 10�114I 0:02 (August 2015) ;

p D 4:24 	 10�6I 0:87 I 2:62 	 10�4 (3 August 2015):

In conclusion, this empirical evidence suggests that on 3 August 2015 MSFT and ORCL as
well as MSFT and XOM have some dependence not explained by conditioning on the third
asset (and further tests show that also not by conditioning on all others). On the contrary,
we can not reject a zero covariation for XOM and ORCL conditional on MSFT. For August
2015, the hypothesis that XOM and MSFT have conditionally on ORCL zero covariation is
the only one with non-vanishing, but still small, p-value. This gives a heuristic that the port-
folio dependence structure is not completely persistent. Although there are some limitations
where the additive noise model does not perfectly fit the stylized facts of the considered high-
frequency data as discreteness of returns and zero returns, the approaches developed in this
research area and advancements of this article provide reliable tools to quantify risk measures
from high-frequency asset prices and to determine confidence intervals for the estimates.

Table 3. Estimates for the integrated volatility matrix (� 103) 2015/08 (top) and (� 105)
2015/08/03 (bottom)
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Appendix A: Preliminaries

The local boundedness condition in Assumption 1 can be strengthened to uniform bound-
edness on Œ0; T � by a localization procedure carried out in Jacod (2012), Lemma 6. 6 of Section
6 .3. Let C be a generic constant and denote �iW D Wti �Wti�1 ; i D 1; : : : ; n, for the Brow-
nian motion W driving the SDE with solution X in (1) and �i� D �ti � �ti�1 . Consider some
norm k 	 k, for example, the euclidean norm, on Rd . Suppose Assumption 1 holds. By sev-
eral applications of the Burkholder–Davis–Gundy and Hölder inequality, one can obtain the
following estimates:

E
h
k�iXk

2 C k�iW k
2
ˇ̌
Fti�1

i
� Cn�1; E

h
k�i�k

2
ˇ̌
Fti�1

i
� Cn�1 ; (36a)

E
h
k�iX � �ti�1�iW k

2
ˇ̌
Fti�1

i
� Cn�2 ; (36b)

for equidistant observation schemes ti D iT=n. For general synchronous sampling, (36a) and
(36b) remain valid when replacing n by ı�1n with ın D supi .ti � ti�1/. The estimates (36a)
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and (36b) are proven in Jacod (2012), among others. They are used repeatedly in the analysis
below. We write an 
p bn if an D OP.bn/ and bn D OP.an/ and express analogously an 
 bn
for an D O.bn/ and bn D O.an/.
A summary including the elements of matrix algebra, which are heavily used throughout the
proofs, can be found in Sections 10.1, 10.2 and 11.2 of Abadir & Magnus (2005). Let us
calculate next the asymptotic variance–covariance matrix of the realized volatility matrix in
(2), which serves as well as preparation for the proofs in the succeeding sections. Denote by
Zi 2 Rd ; i D 0; : : : ; n, independent standard normally distributed random vectors. We apply
the rule vec.ABC/ D .C> ˝ A/vec.B/ for matrices A;B;C frequently in the following texts.
The multivariate stable central limit theorems are proved based on Theorem 3–1 of Jacod
(1997). The limiting variance–covariance matrix in (2) is random and obtained as the stochastic
limit of the sum of conditional variance–covariance matrices. We find that

nX
iD1

Cov
�

vec
�
�iX.�iX/

>
� ˇ̌̌

F .i�1/T
n

�


p
nX
iD1

Cov

 
vec

 r
T

n
†
1=2
.i�1/T
n

�
Zi .Zi /

>
�rT

n
†
1=2
.i�1/T
n

! ˇ̌̌
F .i�1/T

n

!

D
T 2

n2

nX
iD1

Cov
��
†
1=2
.i�1/T
n

˝†1=2.i�1/T
n

�
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�
ZiZ

>
i

� ˇ̌̌
F .i�1/T

n

�

D
T 2

n2

nX
iD1

�
†
1=2
.i�1/T
n

˝†1=2.i�1/T
n

�
Z
�
†
1=2
.i�1/T
n

˝†1=2.i�1/T
n

�

D
T

n

nX
iD1

�
† .i�1/T

n

˝† .i�1/T
n

� T
n
Z 
p T

n

Z T
0

.†s ˝†s/Z ds :

All other ingredients required to conclude (2) by Theorem 3–1 of Jacod (1997) are readily
established here and we skip the details. We use analogous transforms for computing terms of
the form

Cov
�

vec
�
�jX ˝ .�lX/

>
��
D Cov

�
vec

�
�jX.�lX/

>
��

frequently in the succeeding texts without repeating each step.

Appendix B: Proofs of Section 2

Proof of Theorem 2.1. For the proof that Œ̂X;X�
.multi/

T � Œ̂X;X�
.kernel/

T D �4HCOP

�
n�

1
4

�
if

K00 D h in (7), it suffices to focus on the first-order term of the weights. Transforming (6) yields

MnX
iD1

˛i

i

nX
jDi

�ijY.�
i
jY /
> D

MnX
iD1

˛i

0
@ nX
jD2
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�
1 �
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i

��
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�1AC nX
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> �Rn

D

MnX
lD1

nX
jDlC1

MnX
iDl
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�
1 �

l

i

��
�jY.�j�lY /

> C�j�lY.�jY /
>
�

C

nX
jD1

�jY.�jY /
> �Rn :
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The term Rn induced by end-effects

MnX
iD1

˛i

0
@ i�1X
jD1

 
i � j

i
�jY.�jY /

> C

.j�1/^1X
lD1
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�
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�
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>
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has an expectation by noise:

2H
MnX
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0
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i
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i � nC j

i

1
AD4H :

The variance–covariance matrix of this term is asymptotically negligible, what can be shown
with standard bounds. For the main term above, we can detach the inner sum and find that

MnX
iDl

˛i

�
1 �

l

i

�
D
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n
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�
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�
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1
4

�
;

by partial integration under the restrictions made on K. This yields the form (8) of the trans-
formed kernel estimator and our claim. That the integral approximation does not harm the
aforementioned equality up to the O

�
n�1=4

�
-term can be seen by the estimate

Z .iC1/=Mn

i=Mn

ˇ̌̌
ˇf .x/ � f

�
i

Mn

�ˇ̌̌
ˇ dx �

Z .iC1/=Mn

i=Mn

C

ˇ̌̌
ˇx � i

Mn

ˇ̌̌
ˇ dx � C M�2n

with generic constant C , i � l , for the Lipschitz function f .x/ D K00.x/
�
x � l

Mn

�
on the

compact support Œ0; 1�, where Lipschitz continuity is ensured by the preconditioned continuous
differentiability.

Proof of Theorem 2.2. Decompose the multi-scale estimator (6)
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with �j
i
� D �j � �j�i , in a signal part, a noise part and cross terms, which are uncorrelated.

We analyse the variance–covariance matrices consecutively. Write the signal term
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1
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(37)

The first addend is the realized volatility matrix, converging with rate n1=2 to the inte-
grated volatility matrix, and thus contributing only an asymptotically negligible error term.
Because of
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it is enough to consider one addend. Using
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and Z2 D 2Z, we derive that
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The bounds in (36a), (36b) suffice that the approximation errors above are asymptotically negli-
gible. Verifying all other conditions of Theorem 3–1 of Jacod (1997), which readily follow along
the same lines as in the proof of Proposition A.3 of Bibinger (2012), we obtain first stable cen-
tral limit theorems for discretization errors of subsampling estimators with fixed subsampling
frequencies. The covariances between them are determined with
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Hence, we are left to evaluate the deterministic sum:
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where m D min .i; i 0/ and M D max .i; i 0/. Including the weights according to (7), we set

D˛ D lim
n!1

M�1n

MnX
kD1

kX
lD1

l

6Mn

�
3 �

l

k

�
˛k˛l :

With the covariances for different subsample frequencies above we obtain a stable central limit
theorem for vectors spanning over finite sets of different frequencies. The Cramér-Wold device
implies central limit theorems for linear combinations of the components. The final stable
limit theorem

n
1
4 vec
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i
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�ijX
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!

(38)

is concluded by extending this to infinitely many subsample frequencies adopting the analogous
step from Zhang (2006) for the univariate multi-scale estimator. Thereby we conclude the signal
term of (14). D˛ is a constant showing up in the asymptotic discretization variance depending
on the weights, where for the standard weights (12) or cubic kernel D˛ D 13=70.
Next, consider the noise term
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1
A :

The last two sums lead for the non-adjusted multi-scale estimator (6) to the negative bias by
noise and end-effects. The first inner sum on the right-hand side earlier does not depend on i ,
and the term vanishes because

PMn

iD1
˛i=i D 0. The variance–covariance matrices of the

remaining uncorrelated addends contribute to the total variance–covariance matrix because
of noise perturbation. As the noise variance–covariance matrix H is fixed, we may work con-
ditional on X and consider covariances directly instead of conditional covariances as for the
discretization part. Denote the constant limits
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Rewriting
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we obtain that
M 3
n

n
Cov

0
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0
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(39)
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MnCov
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A! 2N˛2 H˝Z : (40)

Using once again that vec.A C A>/ D Zvec.A/ for A 2 Rd�d , we conclude the noise parts
in (14). For the specific weights (12) corresponding to the cubic kernel, we have N˛

2
D 6=5 and

N˛
1
D 12, which gives the minimum of the variance due to noise, cf. Zhang (2006).

Finally, consider the cross terms. They can be decomposed in addends of the form
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:

In order to derive the asymptotic variance–covariance matrix, observe that
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:

Now, if we assume without loss of generality 1 � i � i 0 �Mn, it holds forMn � j � .n�Mn/
that
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We obtain for the sum of conditional variance–covariance matrices the following convergence:
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(41)

with the constant of the limit depending on the weights (7): M˛ D limMn!1

MnP
i;kD1

˛i˛k
ik

.i ^ k/ :

For the specific weights (12), the constant takes the value M˛ D 6=5. For the asymptotic
variance–covariance matrix of the cross terms, we can use that

Z.A˝ B/Z D .A˝ B C B ˝ A/Z D Z.B ˝ A/Z : (42)

We restrict ourselves to the evaluation of the general multivariate variance–covariance structure
and derive (14) by (38), (39), (40) and (41). The remaining elements of the proof of the stable
central limit theorem are close to Zhang (2006) and Bibinger (2012) and omitted.
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Appendix C: Proof of Theorem 3.1 and Corollary 3.5

We only highlight the impact of irregular and endogenous sampling on the discretization term,
a more detailed complete proof is provided in the Supporting Information. A decomposition
analogous to (37) gives

N

MN

NX
jD1

Cov

0
@vec

0
@MN^jX

iD1

˛i

i

�
XC
Tj
�X�Tj�i

� �
XC
Tj
�X�Tj�i

�>1A
ˇ̌̌
ˇ̌̌FTj�1

1
A


p
N

MN

NX
lD1

Cov

0
@MN^lX

iD1

˛iZvec

0
@�XTl �XTl�1�

i^lX
jD1

�
1 �

j

i

� �
XTl�j �XTl�j�1

�>1A
ˇ̌̌
ˇ̌̌

�FTl�1

!

where conditioning on
�
FTl�1

�
l

is each time replaced by
�
FN
Tl�1

�
l

defined within

Assumption 3.4 for the endogenous case. On the regularity conditions of Assumption 3.4, we
derive that
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by generalized Itô-isometry. The following computation is analogous for exogenous and
endogenous observation times:
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such that Assumption 3.2 (resp. Assumption 3.4) ensures the convergence in probability to
4
R T
0
.D˛/0.s/ .†s ˝†s/Z ds. �
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