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Throughout this supplement, we refer to the article “A CLT for second difference estima-
tors with an application to volatility and intensity” (Stoltenberg, Mykland and Zhang, 2022)
as the main text.

APPENDIX A: NOTATION AND CONDITIONS
We start by recalling some definitions from the article “Assessment of uncertainty in high
frequency data: The observed asymptotic variance” (Mykland and Zhang, 2017a).

DEFINITION A.1. (ORDERS IN PROBABILITY) For a sequence a§”> of semimartingales,

we say that (agn)) = Op(1) if the sequence is tight, with respect to convergence in law relative
to the Skorokhod topology on [0, 7], with D[0, T'] the space of cadlag functions on [0, 7]
(Jacod and Shiryaev, 2003, Theorem VI.3.21, p. 350). For scalar random quantities, Op(-)
and o (+) are defined as usual, see e.g., Pollard (1984, Appendix A).

CONDITION A.1. Let a%") and Bt(n) be sequences (in n) of semimartingales. Each of
these sequences are (separately) assumed to be O, (1).

DEFINITION A.2. (NOTATION). The symbol .% will refer to a collection of nonrandom
functions f.(l’n), cadlag on [0,7], withn € N, and [ = 1, ..., 2K, satisfying

\ft(l’n)| <1 forall t,l, and n.

Similarly, ¢ will refer to a collection glgl’n) with the same size and properties. Given .# and

&, set
t t
albm) = / 4ol and g = / g™ dg™  fori=1,...,2K,
0 0

where o) and 3(") are sequences of semimartingales satisfying Condition A.1. For two
semimartingales \ and 6, their quadratic covariation is denoted [f, \], and for two locally
square integrable martingales 6™ and A™&, (§™& A™8) denotes their predictable quadratic
covariation, see Jacod and Shiryaev (2003, Theorem 1.4.2, p. 38 and Definition 1.4.45, p. 51).
For a random variable X € LP(§, F, P) the norm is || X ||, = (E|X[?)!/7. If f(s) and g(s)
are defined on [0,7"] and f(s) < cg(s) for all 0 < s <T, for a fixed constant ¢, we write
f(s) < g(s). To indicate that a sequence of random variables or processes converges in law
(or in distribution) to X, we write X,, = X. Stable convergence in law, defined in Defini-
tion 2 on p. 5 of the main text, is denoted X, = X stably.
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CONDITION A.2. (CONDITIONS FOR RATE-OF-CONVERGENCE AND CLT) The se-

quence of semimartingales aﬁn), possibly defined on a sequence of ﬁltrations (FMo<t<T,

is said to satisfy this condition if it can be decomposed as ag = 04(() + fo (Mds + a,E”),

where for each n, a,g " is a locally square integrable martingale with predictable quadratic

variation (a(™, a(™)); that is absolutely continuous, while ,u,g") and d(a™, a(™),/dt are lo-
cally bounded uniformly in n. The process ugn) itself also satisfies the preceding assumptions

of this condition.

We emphasize that Condition A.2 is not an infinite recursion. That is, we say nothing about
the coefficients of ,ugn) other than that they are locally bounded uniformly in n.

A single semimartingale «; is said to satisfy Condition A.2 if the above is satisfied for
the constant sequence a; = a§">. Note also that Condition A.2 implies that each agn) 1s an

It6-semimartingale (see Jacod and Protter (2012, Eq. (4.4.1), p. 114)).

REMARK A.1. Let us untangle Condition A.2 a bit. Let {an(t)},>1c(0,m) be a se-
quence of adapted processes. For each n > 1, that a,(t) is locally bounded means that
there are positive constants, say (a,’ m)m>1, and a sequence of stopping times (7, m)m>1
5o that |a, ., (t)| < a , as. for all t < 7,,,, and that P(7,,, = T) — 1 as m — oo.
That {an( )¥n>1,tefo,r) is locally bounded uniformly in m means that for each m > 1,
Sup,,>1 at m < a;’, say. This assumption has two consequences that are used repeatedly in
the followmg, partlcularly in the proofs in Appendix E and F. We collect these consequences
in two lemmata.

LEMMA A1, Let {an(t)}n>1c(0,1) be as described in RemarkA 1, and let {ry(t) }n>1

be a sequence of adapted processes. Set Yy ( fo an(s s)ds. IffO |Tn(s)|ds —p 0 as
n — oo for all t, then sup,<p|Yn(t)|—p 0 asn —) 0.

PROOF. For any ¢ > 0 we have P(sup;<r|Yyn(t)|> ¢) < P(sup<,,  |[Ya(t)|>€) +

P(tym # T). Since f0|rn s)|ds is continuous and adapted, it is predlctable And since
Y. ()| < af,, f0|rn s)|ds for all t < 7, , Yy, is L-dominated by a,!,, f0|rn s)| ds. For
any £,1 > 0, P(sup,<,,  |Yau(t)|>€) <n/e+ P(a mf0|rn s)|ds > n) by Lenglart’s in-
equality (Jacod and Shlryaev 2003, Lemma 1.3. 30 p. 35). By the unlformlty in n, i.e.,
since sup,,>; a,; ,, < a;, and fo [rn(s)| ds —p 0, we can make P(a,!,, fo [Tn(s)|ds >n) <

P(a} fo |7 (5)] ds > 1) arbitrarily small by choosing n large. For each n > 1 we can make
P(1y,m # T') arbitrarily small by choosing m large. O

The argument used in the proof above is the type of localisation argument we use repeat-
edly in the following. From the proof, it is also clear how the assumption of {ay,(t) },>1 te[0,7)
being locally bounded uniformly in n comes into play. In the following we will also drop the
index m from the bounding constants, for example, a! in the lemma is simply a™.

The next lemma is ‘local and stable’ version of one of the Cramér—Slutsky rules (see e.g.,
van der Vaart (1998, Lemma 2.8(i), p. 11) for the finite dimensional version). This lemma is
used in the proof of Theorem 3.2 in Appendix F.

LEMMA A.2. Let (X,,)n>1 be a sequence of cadlag processes with values in D[0, T, all
defined on the same probability space (2, F, P). Let (Tp,m)n>1,m>1 be an array of stopping
times such that P (7, =T) — 1 as m — oo for each n. Suppose that X, =Y,, + Z, for
each n, and that (i) sup,;<, |Zn(t)|= 0p(1) as n — oo, and (ii) Y, converges F-stably to
Y. Then X,, converges F-stablytoY .



SUPPLEMENT TO “A CLT FOR SECOND DIFFERENCE ESTIMATORS” 3

PROOF. We have that sup,.r | Z,(t)| —, 0 because of the inequality P(sup,«r|Zy(t)|>
g) < P(supy<,. | Zn(t)|> €) + P(Tnm # T) for any € > 0. Since Y, converges stably
to Y, Y, also cbnverges in law to Y, so by Jacod and Shiryaev (2003, Lemma VI.3.31,
p. 352), X,, converges in law to Y, and so X, is tight (Billingsley, 1999, Theorem 5.2,
p. 60). Let {¢1,...,tx} be any subset of [0,7]. From the F-stable convergence of Y,, to
Y, (U,Y,(t1),...,Yu(tr)) =4 (U, Y(t1),...,Y(tx)) for any bounded F-measurable ran-
dom variable U (Jacod and Shiryaev, 2003, Prop. VIL.5.33, p. 513). Because Z,(t) —, 0
for all ¢, (U, Xn(tl), e ,Xn(tk)) = (U, Yn(tl), ceey Yn(tk)) - (0, Zn<t1), ceey Zn(tk)) —d
(U,Y(t1),...,Y(tx)) by the Cramér—Slutsky rules (van der Vaart, 1998, Lemma 2.8(i),
p. 11). Combined with the tightness of (U, X,,) (special case of Corollary VI.3.33 in Ja-
cod and Shiryaev (2003, p. 353)), this yields that Eg(U)f(X,,) — Eg(U)f(Y) for all
bounded and continuous functions f and g. This means that Definition 2 on p. 5 of the
main text (stable convergence) holds for all g(U) with g bounded and continuous. What
we need is that Eg(U) f(X,,) — Eg(U)f(Y) holds for all bounded g. Proceed as in the
proof of Lemma 2.1 in Jacod and Protter (1998, p. 270). Assume that g is bounded (so not
necessarily continuous), and let (gx)r>1 be a sequence of bounded and continuous func-
tions such that E|gx(U) — g(U)|— 0 as k& — oo. Then |[Eg(U)f(X,) — Eg(U)f(Y)|<
|Egx(U)f(Xn) — Egr(U)f(Y)|+2sup,|f(z)|E|g(U) — gx(U)| which can be made ar-
bitrarily small by choosing n and k sufficiently large.

O

DEFINITION A.3. A sequence of processes (fg”))nzl is locally continuous in mean
square if for each n

sup E (fgn) — fg”))Q —0, as 6—0,
0<[t—s| <6

for t Vs < 7y m, Where (Tym)n>1,m>1 are stopping times such that P(7,,, =T) — 1 as
m — oo.

For the proof of Theorem 3.2 of the main text, given in Section F, we need to be more
specific about the construction of the probability space on which the sequence of processes
o™ 8™ as well as potentially stochastic spot-processes related to these two, are defined.
Since the result of said theorem is a stable convergence result, we need everything (except,
possibly, microstructure noise) to be defined on the same probability space. Let (2, F,F, P),
with F = (F})o<t<7 be a filtered probability space on which the processes are defined, and
for each n let " = (F}*)o<¢<7 be a filtration on (9, F).

CONDITION A.3. A filtration (F;)o<¢<7 on (€2, F) is said to satisfy the current condition
if it is generated by (p, wo we, .) where 1 is a Poisson random measure with determin-
istic compensator v that is absolutely continuous as a function of time, and W) W@
are independent one-dimensional Wiener processes.

CONDITION A4. For any finite family of F;-adapted bounded martingales (X7, ..., X))
there is a sequence of F;'-adapted martingales (X7, ..., X}}) such that (XT,..., X}}) =,
(X1,...,Xp).

By Cohen and Elliott (2015, Theorem 14.5.7, p. 360), Condition A.3 is sufficient to rep-
resent the local martingales encountered in Theorem 3.2 of the main text. Importantly, any
martingale X (resp. X") adapted to I (resp. F") has a predictable quadratic variation process
(X, X) (resp. (X™, X™)) that is absolutely continuous with respect to Lebesgue measure.



APPENDIX B: A STABLE CENTRAL LIMIT THEOREM FOR CADLAG
MARTINGALES

We find the following theorem and its corollaries to be convenient in applications. It is
a generalisation of Theorem 2.28 in Mykland and Zhang (2012, p. 152) (originally stated
in Zhang (2001)), and it is a special case of a theorem found in Jacod and Shiryaev (2003,
Theorem IX.7.3, p. 584), but with a different and perhaps more accessible statement and
proof. The proof of the present theorem employs techniques from the proofs of both these
earlier theorems. The formulation of our theorem also gives rise to Corollary B.2. This corol-
lary provides alternative Lindeberg type conditions that might be easier to check.

We have a filtered probability space (2, F,IF, P), where F = (F})o<¢<7. For each n, we
have a filtration F" = (F}")o<t<r and a F;'-adapted square integrable martingale M" =
{M]*: 0 <t <T}. This is the martingale that we wish to show that converges stably in law.

If the o-algebra F is countably generated, that is, F = o (A1, As,...) for a countable
sequence Aj, As,... in €, then there is a sequence (Y};,)m,>1 of random variables that is
dense in Ll(Q, F, P) (Kolmogorov and Fomin, 1970, Theorem 3, p. 382). For m =1, 2,...
set N/ = E (Y}, | ¢). Then each V™ is a bounded martingale on (2, F,F, P), and we have
the following result, stated in Jacod (1997, p. 239),

(b) If (Gt)o<t<r is the smallest filtration with respect to which (N;™),,>1 is adapted, then
G; = F; up to P-null sets.

The countably many F;-adapted bounded martingales [V} play a role similar to the Wiener
processes appearing in Condition 2.26 in Mykland and Zhang (2012, p. 151).

THEOREM B.1. Assume Condition A.4. Let M™ = {M]": 0 <t < T} be a sequence of
square integrable local martingales on (2, F, P), adapted to F[* for each n. Suppose that
there is an Fi-adapted process f; such that

() (M, M"™); —, [3 f2ds for all t;
(I 22v"([0,T] x dz) — 0 for all € > 0;
(iii) (M™,X™); — 0 for all t and all bounded martingales X on (2, F,F, P).

Then M™ converges stably in distribution to M; = fot fs AW, where Wy is a Wiener process
defined on an extension of the original probability space.

PRrROOF. Convergence in probability implies convergence in distribution, so (i) implies that
(M™ M"™) —q fot f2 ds in the sense of finite dimensional distributions. Combining this with
the facts that (M"™, M™), is a non-decreasing process and has a non-decreasing and continu-
ous limit, Theorem VI1.3.37 in Jacod and Shiryaev (2003, p. 354) yields process convergence
of (M™, M™) to [; f2ds. The sample paths ¢ — fot f2 ds are continuous, so (M™, M™) is C-
tight (Jacod and Shiryaev, 2003, Def. 3.25, p. 351), which implies that M™ is tight (Jacod and
Shiryaev, 2003, Theorem VI.4.12, p. 358). Condition (ii) implies that sup,.p |AM]*| =, 0,
which, combined with the tightness of M", implies that M™ is C-tight (Jacod and Shiryaev,
2003, Lemma VI1.4.22, p. 360, and Theorem VI.3.26(iii), p. 351). Assume now that F is
countably generated, and let (Y;,)m>1 be dense in L1(Q, F, P). Set N* = E(Y™ | ),
and denote .#" = (N™),,>1. By Condition A.4 there is a sequence 4™ = (NJ*, N7, ...),
such that 4™ —, 4. Since M" is C-tight and A" = (NJ*, N3, ...) is tight by Condi-
tion A.4, Corollary 3.33 in Jacod and Shiryaev (2003, p. 353) gives that (M™, .4") is tight.
By Prokhorov’s theorem (see e.g., (Billingsley, 1999, Theorem 5.1, p. 59)), this tightness
entails that we can for any subsequence ny find a further subsequence ny, such that

(B.1) (M"™5 , N5 ) = (M, N).
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For each n, write
(B.2) MP =M™ + aI{|z| > 1} * (1" — ™),

in terms of the measure u™ associated with the jumps of M™, and its compensator v, and
where M," * is a local martingale with bounded jumps. For the decomposition in (B.2), see
e.g., Jacod and Protter (2012, Eq. (2.1.10), p. 29) and use that M™, their X, is a martingale; or
see Proposition I1.2.29 in Jacod and Shiryaev (2003, p. 82), and the fact that their A = 0 in the
martingale case. Since x/{|z| > 1} » v is the predictable compensator of xI{|x| > 1} » u",
it follows from Lenglart’s inequality (Jacod and Shiryaev, 2003, Lemma 3.30(a), p. 35) and
Condition (ii) that 1 {|x| > 1} % > —, 0 for all ¢ € [0,T7], thus

(B.3) sup |[M]* — M**| % 0.

t<T
But (B.3) must also hold for any subsequence, so (B.1) and the Cramér—Slutsky rules en-
tail that (M™° _#™) converges in law to (M,.4#"). Since M™" has bounded jumps
|AM™?| < 1, Theorem IX.1.17 in Jacod and Shiryaev (2003, p. 526) gives that M is a lo-
cal martingale with respect to the filtration generated by .4 (hence the importance of fact
(b), and where we use that Theorem IX.1.17 extends from the finite to the countable case,
see Jacod and Shiryaev (2003, p. 586)).

We now want to show that M™" is P-UT, because that will ensure joint convergence of
(M [M™, M™]). Let H" € 7™, where 7™ as well as the elementary stochastic in-
tegral H™ - M* are as defined in Jacod and Shiryaev (2003, p. 377). Then E|H" - M]*|*=
E(H™)?. [M",M"); <E[M", M"]; = E(M", M");. So by Lenglart’s inequality Jacod
and Shiryaev (2003, Lemma 1.3.30(a), p. 35), for every ¢, and for any H" € J#, and for any
a,n >0,

P(H" - M| > a) < P( sup |H" - M| >a) < -5 + P((M",M"); > 7).
0<t<T a
But since (M™, M™), is tight, this shows that M™ is P-UT. Since M" is P-UT, Theorem
V1.6.26 in Jacod and Shiryaev (2003, p. 384) gives that (M~ [M™:, M™:]) converges
in law to (M, [M, M]); from continuity of M we get that [M, M| = (M, M) (Jacod and
Shiryaev, 2003, Theorem 1.4.52, p. 55); and by Condition (i), (M, M), = fg fs2 ds.

Assume without loss of generality that fs > 0 (see Mykland and Zhang (2012, p. 152)),
and set W; = fg fs V2am s. Then (W, W), =t and by Condition (iii) the quadratic covari-
ation (W, X); = fg f;1/2<M, X)+ = 0 for any bounded martingale X. Lévy’s theorem (Ja-
cod and Shiryaev, 2003, p. 102) then gives that W is a Wiener process. Since W is in-
dependent of F by Condition (iii), we can realise W on the extension Q = Q x C 0,77,
F=F®B, Fi = NgtFs @ Bs, P(w,dz) = P(dw)Q(w,z). Here C[0,T] is the space of
all continuous functions on [0,77], B is the Borel-o-algebra and (B;)o<¢<7 the filtration,
and for w fixed, Q(w,dx) is the Wiener measure on (C[0,77],B) (see Billingsley (1999,
Ch. 2)). Then, for each w, W(w,z) = W(w) is a Wiener process relative to (B;)o<t<7,
and M;(w) = fg fs(w)dWs(w) is a continuous process on the extension, orthogonal to all
bounded martingales on (2, F,FF, P), and (M, M), = fg f2ds is F-measurable by Condi-
tion (i). Thus, M is an F-conditional Gaussian martingale on the extension. This proves the
theorem for a subsequence ny, but since the subsequence was arbitrary, the claim of the
theorem follows (see the corollary on p. 337 in Billingsley (1995), or Billingsley (1999, The-
orem 2.6, p. 20)). Finally, the assumption of F being countably generated can be removed
using the techniques in Jacod and Shiryaev (2003, Step (5), p. 588). O



COROLLARY B.2. Assume (i) and (iii) of Theorem B.1. If Condition (ii) of that theorem
is replaced by one of the following conditions,
(i) B o |AM?P2I{|AM?| > e} — 0 for all ¢ > 0 and for all t;
(i) supj<p |AM;*| =, 0, and E sup,< [AM]'|* < oo for all n;

the conclusion of Theorem B.1 still holds.

PROOF. For (ii)": By Proposition II.1.28 (p. 72) and Theorem 1.3.17 (p. 32) in Jacod and
Shiryaev (2003), we have that

B IAMIPI{|AM| 2 <} =B [

s<t |z|>e

ol (0.8 x da) = [ faPor([0,8) x do),

|lz|=e

which proves that (ii)’=-(ii). For (ii)”: We must show that (ii)” implies (B.3). Using the
triangle inequality and the fact that v/ is a measure for all ¢
[MP = M < YD IAMT{IAMY| > 1} + || T{la] > 1} %!
s<t

< sup |AMD| ZI{\AM:\ > 1} + || I{|z] > 1} « 7.
s<t s<t

(B.4)

Since (M™, M"); is tight, M™ is P-UT, and we have that > _, I{|AM}| > 1} = O,(1)
for all £ > 0 (Jacod and Shiryaev, 2003, Theorem VI1.6.16, p. 380), so the first term on the
right in (B.4) tends to zero in probability by the Cramér—Slutsky rules. For the second term
on the right, since |x|I{|z| > 1} x v}* is the predicable compensator of the adapted pro-
cess » .o |[AMPI{|AM}| > 1} = |x[I{|x| > 1} x uf, Lenglart’s inequality (Jacod and
Shiryaev, 2003, Lemma 1.3.30(b), p. 35) gives that for all £,1 > 0,

1
P(lz|I{|z| > 1} x> ) < 2(77—|-E sup|AM:|) + P(|x|I{|x| > 1} * i > n).
s<t

As we saw above P(|z|I{|z| > 1} x u} >n) — 0. For all o > 0, by Holder’s inequality
E sup |[AM]'| <E sup [AMI{|AM}| > 0o} +0
s<t s<t

< (E sup |AM">)Y/2 P(sup |AM?| > 0)'/? + 0 — o,
s<t s<t

as n — o0. Since &,n, 0 were arbitrary, |z|I{|x| > 1} * 1}* converges in probability to zero

forall ¢ > 0. u

REMARK B.1. In the proof of Theorem B.1 we used that if M™ is a sequence of square
integrable local martingales, then (M™, M™); —, (M, M), for all t as n — oo with (M, M),
continuous, entails that M™ is P-UT. This is a useful implication that, perhaps because it is
deemed obvious, is not spelled out explicitly in Jacod and Shiryaev (2003, ch. VI.6). Using
this implication, an immediate corollary to Proposition 6 in Mykland and Zhang (2017b,
p. 12) is: If M™ converges in law to M, and (M"™, M™); —, V, with V being continuous,
then M™ converges G-stably in law, where G = (V). For several other results associated
with the P-UT property, see Mykland and Zhang (2017b, Appendix D).
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APPENDIX C: PROOF OF THE CLAIMS IN EXAMPLE 1 OF THE MAIN TEXT

Assume that " = n&, v, = /nv and that 0 < 8 < 8, — oo as n — oo. Then, for each
te[0,7],

1 1 t
(C.1) —AnsBet, and  =[0? \)r B pyvel/? / o, ds,
mn n 0
as n — 00. We now prove (C.1): The expectation of the intensity is E\,, ; = &,, and

1 2_ 1 b 1/2 B (t—s) > Up ! —28, (t—s)
E‘—(Atn—ﬁn)‘ :—QE‘Vn A fe P dBS‘ =—E Aps€ P ds
n n o n o
(C2)

2t
_Un —2B.(t=s) 4 v n 1 — ¢ 2Bnt
n2 /O §ne n2 2ﬂn ( € )

Note that E|Ain/n? = E|Ain/n — € + &2 = E|M\n/n — € + 2E [ Mn/n — €€ +
2 <E\n/n— €2 +2(EAn/n — £2) 2 + €, and from (C.2), E|A\n/n — & =
v2(2B,) 71 (1 — e72P+1), from which it follows that for each ¢, sup, E [\n/n|? < co. By
Chebyshev’s inequality we get that for each ¢ the sequence of random variables { A, /7 }m>1
are uniformly integrable (see Eq. (25.13) in Billingsley (1995, p. 338)). Moreover, from the
above we see that E |\, /n| < (v2/8 + &2)'/2 for all t and n, and the right hand side is triv-

ially integrable on [0,7']. Hence, the sequence of stochastic processes {\,, s/n}n>1 satisfies
the conditions of Andersen et al. (1993, Proposition I1.5.2, p. 85), and the first part of (C.1)

follows. For the second part we have that E |UtA:L{E/\/ﬁ’2 =Eof \t/n=E|(0c} —a+

A)|[(Ant/n—E+E=E|(07 — a)(Ant/n— &)+ E|(0f — )€+ E|(Ane/n— &)l + o,
which by three applications of Holder’s inequality and the Itd isometry is seen to be bounded

by a constant, hence sup,, E oA, 1/ X +/v/n|? < oo, and uniform integrability of the random
variables o¢\Y2/\/n follows. Smce Elo\e/yvn| < (Bloshy2/y/n|2)Y? for all s and

n, and a constant is integrable on [0, 77, so the second part of (C.1) follows by the same
argument as above.

APPENDIX D: NOTES ON THEOREM 2.1 OF THE MAIN TEXT

The proof follows with trivial adjustments from Mykland and Zhang (2017a, Theorem 3,
p. 208). Note that the convergence rates change due to Theorem 3.1 of the main text We also
recall the setup in Eq. (2.4) of the main text, that is G)( si] — Os] = MO, — MO +ef

and K(Sﬂ — Ay = Mﬁ’t — Mf;s + e;\L’t — eﬁﬂs. Mykland and Zhang (2017a, Theorem 3,
p- 208) and the convergence rates from Theorem 3.1 of the main text give

QVB,K(67 K) = QiVB,K(@7 K) + Rn,k(@7 A) + OP((KATL + n_a)Rn,k’(A)l/2)

(D.1)
+ Op((KAn + n_ﬁ)Rn,k(@)l/z)u
where R, 1(©) = R, 1(0,0) and

B-K

1 Z 0 0 A A A A
Rn Kk @ A €n tivk ti (en,ti - en,ti,K»(en,tHK —Cnt, (en,ti - en,ti,K))7
z:K
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while QV 5 (O, A) is given by

K2

st [ () (08 o saear

T _ s—t*(s) A n_*B 3/2
ran [ (1= 2 a0 (P, ))

Qe ®.B) =22 Ml + 580 (1 733 )00 + Oy @9 ()1 72)

’ _ L*(S) 0 n-o 3/2
+An/0 (1 2 A )d[A,Mn]SJrOp( (KA,)Y?).

We now consider two different sets of restrictions on the edge effect. All other cases can be
deduced from (D.1). For all ¢ on a given grid,

Case (1): ¢/ = 0,((KA,)Y?n™%), and e} =0,((KA,)Y?n7P);
Case (2): ¢/ = 0,((KA,)**n™%), and e} =o0,((KA,)¥*n™P).
Under Case (1) we have that (D.1) is

~ 2
QVpxc(0, A) = 2My, My + S (K An)*[0, Nl + 0p (K An)?) + 0p(n~ (@),
While under Case (2) we find that (D.1) is
~ o~ 2
QVip, 1 (0, A) = 2[My, My + 2 (K An)*[0, Al

+ Op (K A0)°2) + Op (K A) 20 (),

It thus appears that the more stringent conditions on the edge effects in Case (2) are needed
for the convergence rates of Theorem 3.1 to ‘enter’ Theorem 2.1 (both theorems of the main
text). Do note, however, that this may be an artefact of the Cauchy—Schwarz inequality used
in deriving (D.1).

APPENDIX E: PROOF OF THEOREM 3.1 OF THE MAIN TEXT
For a given K,and forl =1,...,2K, set
(E.l) t*,l = t*J(S) = maX{tH_K: ti—i—K < S,i = Z[QK]}

In light of the developments in the proof of Theorem 3.2 in Appendix F, in particular
Eq. (E.5), it is enough to show the result when the sequences a(™ and 3™ are local square
integrable martingales. Let

In l,n l,n l,n
Zoa(s)= > (o™ —al")(a" - gt

tiy i <s,i=I[2K]

l L, n
+ (alm — ag*f))(ﬁgl’”) _ g?)) — [attm), gl
and set Z,(s) = (2K)~! 1251 Zn,1(s). Let the stopping times (7., )n>1,m>1 be as defined
in Condition A.2. That is, there are positive constants a,, 4 and by, 4 such that, for t < 7, ,,,
d(a™,al™),/dt < a2, , and d(B™, M), /dt < b2, . In particular, [d(a(™), (M), /dt|<
G +bm 4+, by the Kunita—Watanabe inequality (see e.g., (Protter, 2004, Theorem II.25,
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p. 69)). Since the index m is immaterial for what follows (see Lemma A.1), we now sim-
ply write a,, + = a4 and by, 1 = by.. By It0’s lemma we have that

(Zntys Zns ) :/ o (agh ") — (ilf ))(O‘glz’n) - ayzm))d(ﬂ(ll’n)aﬁ(lz’n)>s
0

1

Tn,m

[0 =B = B dlal ), altm),

Tn,m

(ol —afl (a2 — i) d(pt) allm),

Tn,m

_l’_

+
S— — S—

(B = B el = affy ) dfalem, ),

tu 1y
from which
2K 2K
E(Zn, Zn)r, .. :4K2 > EZnis Zngo)r
ll—l lg—l
1 2K 2K T
’ ll, 2, l27 1 2,
B2 = 3 S B{ [ @l - el — ) (st 50,12
11:1 l2:1

+ [T @ —af et - 5 (st ol ”W]}'
) 11

Changing the order of summation and integration we have that,

2K 2K

S Y [l —afl gl e )l (s, 50,

ll—l l2—1

2K 2K
lin (lin 1, la,n lo,n . .
= / E Z Z S/\Tﬂ)m - Qe 11/)\7'" m)ggl )(ag/\q_n?m —_ O[E*Jl/)\Tn)m)g'gl n) d<B( ),B(n)>s
l1=11=1
T 2K l l )
:/0 B <Z(O‘g@,m - ag*’ﬁm,m)gg’”)) (8™, 3y,
=1

T 2K 2
1 1,
<t [ n( Sl —allth, Jal) s

=1

and similarly for the second term on the right in (E.2).
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For the third and fourth terms on the right in (E.2) we use that d(/3 (n) a(”)>s /ds <aiby
for s < 7, ;,, and Holder’s inequality,

2K 2K T
S Y [ 0l <l 5 — ) 1) .,
lh=11l=1
2K 2K
= / B0 D (alk, = ail i, B, = BT ) (), o),
li=11=1
T 2K
= e (St el ) (S, - ﬁt(f’f’;f}%m)fél%")) 45 a0,
0 lLi=1 l=1
T 2K
<o [ (Lt ol o) (S, i, s a
0 =1 l=1
T 2K
<aiby / 1> (@G =t gl IIZ (BG = B, Dl ds,
li=1 lo=1

and similarly for the fourth term. Now, since | fs | <1and | g(l " | <1 forall s, n, and [,

||Z S = ot a3
2K 2K
=B Y (ol —al el Y @l —altm o gl
=1 =1
2K 2K
=S Y Bl =l G =) gl gl
IL1=11l=1
2K 2K
= Z Z E{(( allm) qllm) SATrm (a(ll’n)aa(IQ’n)>(t 11Vt 1) AT, m)ggll n)gglz’n)}
l1=11=1
2K 2K SATm.m
Y% E / Sl pliam) 4 (o) o)y, olinm) o(iam)
L=ll=1 7t Vi) o m
2K 2K
<ad Y 0D (5= (g Vitan)).
l1=11=1
Forl=1,...,2K, define
A = > (s — tir) I {tick < s <titk},

K<i<B—K,i=I[2K]
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and notice that (s —t,;) = (s —t4;(s)) = hs . Substituting the bound on ||, (« -

SATn,m
a,(fltl/)wm) gltm |3 and the three similar terms into E (Z,,, Z,,) ., .., we get

1 T
B{Z0 Zubr S 0 3 [ (5= (s V) ds

T
(s = (tsg, Vte1))ds+--- +/ (s = (tus, \/t*’zK))dS}
0 0

T
(8 —t*Jl)dS-l- +/ (8 —t*Jl)dS}
0 0

2 T 2 tivrc
=% Z/ A™ ds = I / (s —ti—i)ds
— Jo

I=1 K<i<B-K,=l[2K] "’ ti-%

where the proportionality constant left out is max(a‘i, bi). By Condition A.2, 7, ,, —,, 1" as
m — oo for each n > 1. Let ¢ > 0 and choose m sufficiently large, so that P(7,, , #T) <
£/2, and let ¢ = max(af , b% ). Then, using Markov’s inequality

P({(Zp, Zn)7 /(AT KAR) > M) < P({(Zn, Zn)r, ../ (4T KAy) > M) + P(Tym # 1)
<M 'E[{Zn, Zy)r, . /(AT KA, + Pty m #T)
=M1t4+e/2<e,

provided M > 2/e. This shows that (Z,,, Z,,)r/(4cT K A,,) is tight, so
(Zn, Zn)T = Op(4cTKA,) = Op(KA,).

By Lenglart’s inequality (Andersen et al., 1993, p. 86), for any 6 > 0 and M >0

M
P( sup |Zn(t)] >90) < o + P((Zn, Zn)T > M).
0<t<T o

With the same § = M and the same M as above, P(supg<;<7 |Zn(t)| > d) < (3/2)e, from
which we conclude that

sup |Zy(t)| = Op((KAn)l/Z).
0<t<T

APPENDIX F: PROOF OF THEOREM 3.2 OF THE MAIN TEXT

For each n > 1, we write

t t
agn):aén)Jr/o L ds+a§”) and ﬁt("):@gn)Jr/o n{ ds+ﬂ,§”),
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where dgn) and Bt(n) are the martingale parts of agn) and ,Bt(n), respectively, and the processes

ai”),Bt("),ct(”) and nﬁ"’ satisfy Condition A.2. In particular, we we assume there are pro-
cesses, say ap,t, bn,t, and cp ¢, such that d(a™, &™), = a2, dt, d(B™, M), = b2 , dt, and

also d(a(™, 3™, = ¢, ; dt. Moreover, we assume that that a,, ¢, by ¢, Cn.s» Ct(n), and nt") are
locally bounded uniformly in n. Meaning that for all ¢t < 7, ,p,, where (7y, m)n>1,m>1 is the
localising sequence, we have a2 , < a2, b2, <2, |Ct(n)\ < (4, and |77§n)| <ni.
As already mentioned, these bounds depend on m, but we drop this dependence from the
notation. Finally, we assume that an £ b,% +» and ¢y, ; are locally continuous in mean square.
See Definition A.3 for contlnulty in mean square.

We also write oy = o fs ) o™ = at™ 4+ AL with alt™ = = /s £ aal™ and
Agl n) f f(l n)CSn) ds. Similarly, (l n) ot (ln dﬁtn) _ Bt(l n) n Bt(l,n) with B§l7n) _

0 9s—
JE g™ agt™ and B = [ gy <") ds.Forl=1,... 2K, define
In ln l,n In
Zuh)= Y (ol —al")( ;H,z— )

In In (Ln n n
+ ("™ —alt™) s — gy — [t g,

Note that since Agl’n) and Bt(lin) are continuous processes of locally finite variation,
[abm) glm)] = [albn) 4 AGn) gln) 4 glm)] = [g(bn) 5] (Jacod and Shiryaev, 2003,
Prop. 1.4.49, p. 52). Therefore,

(F.1) Zoa(t) = Z75(8) + 235(8) + 280 (8) + 22 8),

)

where,

_(l,n _(l,n >(ln A(ln —(ln) alln
+ (@™ —almyat — ghmy — [@dm, gl

1

z&m = Y @A Ay s - Bl

t +K
tig ke <t,i=I[2K]
v _(In lin
D= > @ - E "B §+,Z - B™)

tiy e <t,i=l[2K]

(F2)

_(l,n In ln l,n
+ (@ —al) (B - BI);
> (2 l,n) l,n) a(ln)
D= > (Al -l ><ﬂ§+K i)
In I,n l,n) ln)
+ (A — Al (B — B,
and we note that

mg . 1+K _(l,n) 2 bt (I,n) (I,n)
Zn,l (t) = . 0%“( O‘ti,K) dss + . (ﬁtz+x Bt ) }

t+K<t i= l2K]

_ t
+ /Mmil”) &™) g, + / (B0 — 5 da

tut

(E.3)
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Define Z,(t) = (2K)"' S22 Z,.(1), and Zpe(t) = (2K)7V S 20 (), Z38(t) =
(2K)" oM 285, 29 (1) = (2K) " S Z9) (1), for j =1,2. Then

_ 1 __ 7m ds ~(1 ~(2
(F4) Zult) = 5 > Zna(t) = Z3E(0) + 20 (1) + 20 (0) + 22 (0)

This means that Z,, () is the semimartingale of Eq. (3.3) of the main text. We now show that
Zds(¢), A (t),and Z® (t) are all 0, ((K A,,)~/2) uniformly in ¢ as K'A,, — 0, and that the
martingale (K An)_l/ 2778 satisfies condition (i), (ii), and (iii) of Theorem B.1. The claim
of the theorem then follows Lemma A.2 of Appendix A.

We start with Z3* and it suffices to look at one of the summands Zy ds . Integration by parts

tit K tivk
Zi0= Y (Al - Al as [ (B0 - B i asy
tigre <t ti—x ti—x
t
+/ (Agl,n) o Al(fl’n)) (l n) (n) ds _|_/ (B(l n) )f l”)c
tu 1 o ()

Look at one of the terms in the summand. For ¢; x < 75, .,

birx tit s
1t Al ast < [0 dullas
ti-x ti— K ti_ K

t7,+K
< C+77+/ (s —ti-x)ds= C+277+ (tivk — ti-x)*.
ti— K
This shows that E|Z3%(¢)| < R3%(¢) for all ¢ < 7,,,, where RI%(¢) is a nonnegative deter-
ministic function such that sup,< R (t) = O(KA,) as KA, — 0. Since R3*(t) is deter-
ministic, it is predictable, and so Lenglart’s inequality combined with a localisation argument
(see Lemma A.1) yield sup,<p| Z3%(t)| = op(KA,)Y?) as KA, — 0.

— Next, we turn to Z(ll)(t) and Z (t). It suffices to look at Z(Il)(t). Define Ggl’n) —

(Ln) _ m)

fg ggl;") ds, and notice that |G, |< |t — s| for all ¢ and s. Integration by parts

(™ =™ NG — @l = — (™ — ™ g™ ds + (G — Gy anl,

litx
which makes sense because G,

tz‘+K ti+K
/ (™ =™ g™ ds = / (G — Gy an(.
tifK ti*K

is deterministic, so that

We may then express the increments B&"K) - B (_l’n) appearing in / Y(le) (t) (see (F2)) as

ti— Kk 5

titkx
gm _ gl _ / ) g

tit i ti—oxk
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We now insert this expression for Bt(lﬁz — Bt(l_nlz in Z nll) (t) and write

)

Z0) () = M (t) + Ena(t),

n,l
where
W= 3 @ el [l
tiy e <t,i=l[2K] tix
Fa el [ gt as
tia
and
CEND SENC Y Gl Gl anf

tip i <t,i=l[2K]
t
™ —al?) [ (G - ety an

so that 253)( ) (2K) 7 S0 e () + (20) 0P Gt _c,‘;l () + éa(t), by which
we define ¢,'® and &,. By the Kunita—Watanabe inequality {(c'? ,c.¢ )¢ is bounded by

nl7 n,ls

mg mg\ , mg mg\ \1/2 mg mg
(<Cn,ll7cn,l1>t<cn,l2’Cn,l2>t) /2, 30 it suffices to look at (c ml,cn’l) .Fort <, . itis

tivk tivk
= Y a2 e [ g, a0,

tir ik <t,i=l[2K] ti—k ti_x

t t
+ () / g\ ds)? / (FE)2d(a™, am)y,
tul

2%}

<dini Y. (tiwx—tix)*+aini(tik —tiok)®.

This shows that for t < 7, . (¢ 7, %) = Op (K Ay)?). Thus, (¢ ,c$ ) = Op((KA,)?)

n,l’ " n,l nll’ nlz

by the Kunita—Watanabe inequality, and for ¢t < 7,
2K 2K

1 mg _m,
KAn<Cngﬂcng>t 4K2 KA ZZ nl17 nl OP(KATL)
l1 1l,=1

Lenglart’s inequality combined with a localisation argument (see Lemma A.1) then yield that

sup|e® (1) = 0, (K Ay)'/?),
t<T
as KA, — 0. We now look at ¢,. The expectation of its absolute value is

tivx
B Jo(t |< El / A aa | [ Gl - 6l an)
K ti— K

ti

+Er/ e | < G Gty g,

Consider one summand at the time. We now use that 77(") satisfies Condition A.2, and write

dnt(n) = @En) dt + dﬁfn), with ﬁgn) the martingale part of ngn), and let vy = v;, 4 and @ =
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©m,+ be such that d(7(™,7(™),/dt < v? and |<,0£n)\ < 4 for all t <7y, . By the triangle
inequality

tit K

In n n
EIf £dall| | <G§+,Z Gyl
ti+K ln !
gE\/t ||/ — G gl
+E| £ 4a <nu (Giﬁ”,} Gyl ds|,

b _
and so for t < 7,
— Gy g

b K s

ti+K ti+K
Bl el ()
ti—x

ti-x

titr tivk
g(E(/ f“)d”)?E(/ (G — Gty g2y /2

ti—K tz K

tH»K tz‘+K
—(E / (F)a2 , ds E / (G — G2 4@ ) )12

tivx I tivk
<onf® [ ds [ ik - 92 a9

trifK ti—K

ayv
<ayvi {(tiyr —tire) (biyie — i) /312 = 3JZ/2Jr (tivk —ti-i)%,

and, similarly

Bl | f ) aaon | o @) = G as
<o4B| / dalr| / G — G s
g"*m/t £ aa (b ke — tiox)? < “’*u 7 dal (i — ti )
< EE s =t )t — tii0)? = Eo (b — ti ).

This shows that ¢,(t) is L-dominated by a deterministic, hence predictable, process, say
R,(t), and that this process is such that R, (t)/(KA,)Y? = O(KA,)Y?) as KA, — 0
for each t. Again, Lenglart’s inequality combined with a localisation argument (as in

Lemma A.1) gives that sup, < |¢,(t)|= 0p((K'Ap)'/?). In conclusion, Zuél)(t) and Z{? (t)
are both 0, ((K A,)/?) uniformly in ¢ as K A,, — 0, and so the sequence in (F.4) is

(F5) Zn(t) = Z8(t) + 0p (K Ap)'/?),

uniformly in ¢ as KA, — 0. We now turn to the martingale part of (F.5), namely Z,'®,
and show that this sequence satisfies Condtions (i)—(iii) of Theorem B.1. Then we appeal to
Lemma A.2 of Appendix A.
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First we show that the predictable quadratic variation of (K An)_l/ 278 converges in
probability as K A,, — 0. The predictable quadratic variation of Zy'® is

2K 2K

<ng Z;’Zlg 4K2ZZ nl1 nl2

ll—l lz—l

Here

t
<Z7Tlgl7Z7Tlgz>t :/0 (&L(elhn) _ @gil,;?))(&gl%n) B lz,n)) <,BC ,(11,n) ,3 lz,n)>

(l2,n) ) <&(l1,n)7@(lz,n)>s

*,lg

+ [ (B — ) p - B
t
+ /O (@) —ay ) (B — B d(p, ),

t
[ e sl = B A 6,
0

m, m 1 m m 2 m m 3 m m 4
:<ZgZg>()+<ZgZg>()+<Zng>()+<Zng>§),

n,l1 ? n,lg t n ll n l2 n l] n l2 n,ll ? TL,ZQ

by which we define (Z,'? , Z,"7 )m for j = 1,2, 3,4. Start by concentrating on (Z,'? , Z "7 >£r1)’

n,ly? A1 nl

and the same results apply automatically to (25 , Z'% >( ) 1tis given by

’flll ’fllz

*,0q

T
m m _ n _(li,n _(, _12’ 2(m) B(lam
<Zn,i»Zn,i>(T”:/ @0 — @l — ey agtom, gy,
(F.6) 0

T
= [ @0 gl @) D)l A5, 50,

11 w,lg
Write
{tivat’H*K = l[2K]a K<i<B- K} = {tO,lvtl,lth,lv o '})

where the indices on the right hand side are such that ¢;; <?;,1;, and let G () be the set of
these time points, i.e., G = {toq <tiy <to; <---}. With this notation we have, e.g., that

! I, I, I I ! I,
S el - = ST () — ol - ).
K<i<B-K,i=I]2K] i1, <T
The time ¢, ; defined in (E.1) is now simply ¢, ; = min{t; € GO : ¢; < s} =min{t;; : t;; <
s}. Attach the numbert_; ; =0to G () if it is not already there, and suppose, without loss of
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generality, that ¢; ;, <t;, for all ¢, and that ¢y ;, = 0. We can then write

T
(Z8, 28 = /0 (@™ — gy @alem — afmyq(plm, glan)y

i4+1,0, n ~ (s, () ,
= X[ttt < el ),
tiv1, <T
n li,n —(l2,n _(l2,n 2, 2la,n
En = [ @ afmyaen s e, e,

it <T  Ytin

tivi,y
+/ * (&gll,n) — dg“"))(dgh’”) _ —(12, ))d<B(ll’n),B(l2’n)>s}

2l il
tiy

T
2 _ g yoalam) _ g g 30m) 3amn)
—i—/t L (T)(Ozs Oét*,,l(s))(ozs Q. 12(3))d<5 ,B s

We now want to show that (F.7) is

(Z. 2 = Y | / [t et g,

tiv1, <T

tiian, ) )
(F.8) /+ / alatm), G, q ), gy )

/ / (ll,n) (layn ] d(B (Iy,m) Blz,n)> + 0p(KA).
t 11 t \/t 12

The key is to show equahtles of the type

ti,i,

() — am)y@llm — al=m) yq(glm, glam),

tiy

tiiy _
= / ([a(ll7n),@(l2’n)]s _ [C_k(ll,n)ya(l%n)]tiﬁll) <6 ll, 5 12, > + l’legllglble,
t

iy

(F.9)

and that the negligible terms are o,((KA,,)?). Recall that t;_1 5, < t;,,, thus by It0’s formula

i [ L A

ting tio1,1

- (e —alasten s [ @l el asn

i,lq
tiig iy
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This means that the expression in (F.9) is

tiip n _
/ (@ —ai )@l —age) )y d(atm, 5lm),
t

ti—1,1,
il

2R _
:/ ([C_k(ll’n),@(b’n)]s o [&(ll7n)7a(l2, ] :, l1) <5(l1, B (l2,n) >
t

il

ity
/ / (@ —aiy ) dafem) dggtm, jlam),
t; t

t; o
/ / 5& (layn) ;2_,“) )d (Li,n) d<B(l1,n)’B(l2,n)>s.

zll

(F.10)

We now consider the two last terms on the right hand side of this expression, and look at

t'i,lg S —
/ / (@) — &™) dallam) g8, gam),
ti,ll t;

/ / &) — gty qalam) glhom g2 g
tiy i
(E11) ,
/ / allom) — afim) ggllam g(imglamg g
/7 2/ 0_4 —(ll,n))da(l’z? n) gli’”)gglj’”)(bi,s _bi,ti,zl)ds'

Consider the two terms on the rlght in (F.11) separately, starting with the first term. Define
the functions

s—

t
Ggll’lr") = / ggli’n)g(lz’n) ds, li,lo=1,...2K,
0

l2)

and note that since | ggll’n)\ < 1 for all s, the functions Ggll’ 2
that is,

are Lipschitz with constant 1,

’Gilhh) _ Ggll’lz)‘ <|t—s|, forallt,s.

Integration by parts yields

d{ (@gh”) — &§l17n)) dagz,n) (Ggh,lz) _ Ggll’l2))}

il il
tiig

= —/ (dgl’”) — dghn)) ddgz,n)g(ll,n)g(lg,n) ds

iy 5— 5—
tiy

(G = G @l — el ) daf.

ti iy il

Integrating from ¢; ;, to ¢;,,

/t 12/ (l17 - ll, ))d (l27n)g(ll, ) (ZQ,TL) dS
. :. 1,11 s— Ys—

ti,i,
:/ (Gz(tfll;l2) _ Ggl1,l2))(dgl1,n) . &gl’n))ddgl%")_

iy
tiy
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Since Ggll’lg) is deterministic it is predictable, so the right hand side of this expression is
a martingale. Then, for ¢;;, < 75, ,,, we find the following bound for the right hand side
of (F.11),

tiy
/ (Gl —alm)dalm gl mglamez ds3
t;

u s— n,ti i,
t Il

<[ G - Gl — ) aaln)

7' 1

i,lg tL 15

li,l2 1,02 ~ (1 —llvn ~2m) =(l2,n
—RE / NG - G (G — Glhm2 (gl gllam),

il

i,lg

tilg
_ biE/ (Ggl’b) _ Ggll’ZZ))2<dgll’n) _ @g,ll; )) (f(l n)>2 2 dS
ting

(F.12)

tiy

tiiy
<A E / (G = G2 (@lhm —af ™) ds

i,y

il

tiiy
S a%rb%r E / (tz lo — 5)2 E( (Lim) _ dgl‘h”))2 ds

tii,

tiig
<aib} / (tig = $)*E(@",alom) — (@l alm)y, ) ds
t;

Wl

42 [T 2 aj by 1

<aiby / (tige = 8)°(s = tig, ) ds = —o=(tig, — i)™
tiy

Since the martingale increments are uncorrelated, this gives
E( / / (ll,n) ll, ))da(ZQ n) (117 ) glj,n)bi7s d5)2
zt+1,1<7—nm tiiy iy
bira g l
<HE( Y[ - ol - ol aafe)’

i:ti+1,l1 STan

iy
=0 > E(/ (G - gl @t — e dalm)?

- t
titit11 STn,m il

a’i by 4
D > (g, —tan)"

1t 1<Tn,m

By Chebyshev’s inequality we have that for any € > 0,

ti
: (Lim —(Iy,n) (l1,n) (la,n
P{| > /t /t allom) _ tm))dag, gl gy > e}

titiyr,, <T

1 aibi
S;Q 12 Z (tis, —tis)* + P(tpm #T),

1:ti41<Ty
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which shows that the first term on the right in (F.11) is
i,lg
/ / (@l — aft ) dall=m g g me2 ds = o, (KA,
titipr,, <T tiny tiiy

as KA, — 0. We now turn to the second term on the right in (F.11). For ¢; ;, <5 < 7y,

_ _ll, o) (Lyn) (la,
I @ —afmyaal=m gl o= m @2 2,
ting
S
— _ll, 2,1 117 la,n
<[ [ @0 —amyaal=m g g gl 02— 82 )l
ting
* (l n)y 1~(l (li,n) (lan
=1/ (@™ — g™y dal=m o [g ™ g 162 o — 02, 2
‘; l (l n) l
<l (@l —ag ™)y dal> ™ o |67 s = b,
(E.13)
~\l1, ~ ll’ 2, 1/2
(B [ (@ = al PR ) R = e
S
_ _ 1/2
§a+(E/ (<a(l17n)7a(ll,n)>u_< (ll,n) alln )>t1,zl) )/ Hb nt”1”2
tiiy
s 1/2
gai(/ (1= tig,)du) 2 02, — B2, o
ting
CL2 (12
:7%(3—ti,l1)||b721,s nt1l1||2 7%(5_?52'711)25‘ ili‘gt ||b - ntll ||2
From this we get that for ¢; ;, < 7y,
bl — —llv 117 l27
H / / am — &) dalem gl g g2 2y ds)y
2 — lla N l17 l27
< / H / (@™ — Gnm) dagem glom em gz g2 s
< [ _tuds swp (B, -2, I
\f iy, ' tig, <8<ty ’ i

2
— M 2
- 23/2 (t’hlz tl,ll) tul;ggti,b ||b bn St 1 HZ,
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from which

t; o
_ l1, 2,1 ll, lzﬂ
H Z / / O[ ))da(l ) ( ) ( )(b2 _b%t . )dS”l

vttt STn,m

i,lg S
~( ’ = l ) l )
< ¥ / I @l —almydalemglmgBm @2 a2, Yds|
titiv1,1, <Tn,m ti ll
a? ) )
<gm 2. (i —tin)’ sw o =0l
titiv1, <Tnom i1y <s<ti,
az. 2 2 2
S 23/2 ( Z (t17l2 - t’L,ll) ) Sup ”bn,t - bn7s||2
T:tit1,0, STn,m O<[t—s|<KA,
By Markov’s inequality

ity
P2 / / —ag M) dal g g B 0 ) ds| > <)

iitiyr,, <T

INA
™ | =

2
a
QT—;Q( S (i —tin)?)  sup Bh, =02 2+ P(ram #T).

iitiy1,, <Tn O<[t—s|<KA,

By mean square continuity of b2 ,, we get

n,s?

tity
/ / (ll, _ tl1l7 ))dag27n)g§l_l7 ) glj’n)(bis _bit.l )dS:Op(KAn)
§ ] ‘. 1 ) sYinlg

tit1,0, <T

This completes the proof of (F.8), and, obviously, the same holds for (Z % | 7% )(2).

n,l? “nyds /T

We must now show that similar results apply to (Z" 7, Z )g? ) and (2% 78 -

n,l10 “n,ly n,l17 “n,ls

suffices to look at (Z,} , Z,; >(3). In analogy with (F.7), we can write

(I2,m) ) <B l1,n) (lg,n)>8

*,lp

_ Z {/ (5[ (li,;m) (11, ))(ﬁ l2,m) Btlz,l 12) <B(l1,n)’@(l2,n)>s

titiyr,, <T

T
@2 = [ (@l =l e )

tit1,1, _ ~ (Lo _
[ @l < afl ) 3 < B A0, 0.}
t

ilo

T
—(l1.n _(l1,n a(la,n (I2,n) Alli,n) 5 (l2,n
[ (@l = a0 = B a0 ),

tu
w1, (T) 2
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And, in analogy with (F.10) and (F.11), we write

tiz1,,

ti1
2 _(Lim _(l1,n 2(l2,m (l2,n) 1 (I2,m
/t (am) — )y (3am _ Glam) ) q(anm gl

iy

tiig _ _
_/ <[@ (Li,m) B (la,n ] _ [Ofé(ll,n)’ﬁ(b,n)]tMI) <ﬂ(ll’ lz,n)> + Tl + T2,
t

il

where the remainder terms are

tity
Tril = / / d (li,n) l1, )dﬁ (I2,n) <I8(l1, lg,n)>
t; t;
bita z ! (1
/ / O_é (Iin) _ =(li,m )dﬁ (I2,n) (1, f 27n)cn,ti,11 ds
+/ - / (6‘1(}17”) - O_‘g,lzyln)) qu(f?’n) lh f(lz’n (Cn,s —Cnytiy, ) ds;

Tn,i2 = / 2/ Blim) _ le l)z)d@gl,n)d(g(zl,n)ya(lz,n)%.
t; t

The remainder terms r,, ; 1 and 7, ; 2 can be dealt with in the same manner, so we concentrate
Ot Sl_l’n)f f2,n) ds, and note that
| ) g{) | < |t — o] for all t, 5. Then, for t; 1, < Ty s

ti,lz S
/ / (@8 —ag ) dglem g (e, ds

on ry, ;1 in the following. Define the functions Ht(ll’lz) =

tiig
:/ (Ht(ill;lZ) _ H§11712))<agll,n) _ l17 )dﬁ lz,n)
t

il

A derivation similar to that of (F.12), gives that

tit,
E( 2 / / (@ —ag gl fE e, ds)?

1ttt STnom
212
a7 by [cy|
< E (tig —t‘l)4-
= 12 Tyb2 2,01
i:ti+1,l1§7_n,m

Looking back at the derivation in (F.13), we now also see that

|| Z / / (lhn) lhn)) dB lz n ll’ )f(lj’n) (Cn,s - Cn’tivll ) d8||1

1itit10y STn,m

a+b+
< J37 (> (ti—ti)?)  sup e — cnslo-

i:ti+1,l1 STH,TVL 0§|t75‘§KAn
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By the same localisation techniques used previously, this establishes that

<ng ng >(3) + <ng ng >(4)

n,l1? “n s /T n,d1? “nls /T

T
:/o (a3, — [l M), e, )g™ 2 (B, al),

T
+ / ([, @l — (gl gm0 plm) gllem) g gy 4o (KA,).
0

Setting all of the above together, we have shown that

2K 2K
<ng ZTang 4KQZZ nl1 nlz
ll—llz—l
K& 3(m), Bm)
ll, (lg, ll, ) (lz,n) 7(n) 7(n) d<6 )5 >S
fu2 M get ™ ge2™ dla\™, el ————~2
4K2hz_:1122:1/ /tzlvmz{ | ] ds
n - d(a™ alm)y,
+glergler) (e e g, o, HEZL O
S
P ININY: 11: (ORI
+ (gl gl ) gl o), S
. ) e s d(am, gy,
(g ) ) a0, N s, (1)

T
= (KA,) /0 £ ds 4 0p(KA,,),

using that, by Condition A.2, the predictable quadratic variations (@™, &™), (8("), (™),
and (& (n) B ")>S are absolutely continuous. By assumption, there is a F-measurable pro-
cess Kg such that fg /ﬁ;gn) ds —, fot ksds for all ¢t as n tends to infinity. This shows that
(KA,)~Y2Z,(t)™ satisfies condition (i) of Theorem B.1.

We now turn to condition (ii) of Theorem B.1, that is the Lindeberg condition. To ver-
ify that this condition holds, we appeal to condition (ii)” of Corollary B.2. We must ver-
ify that the sequence (KA,)~Y/2Zy® is P-UT, that supy<,<7|AZn8(t)|= 0p,(KA,) as
n — oo, and that supg<;<p E (KA,) 1 (AZy'8(t))? < oo for all n. We have seen that
(KA,) Y Zy®, Z3'®), converges in probability, hence also in distribution, to the continuous
and increasing process fg ksds. By Jacod and Shiryaev (2003, Theorem VI1.3.37, p. 354)
this yields process convergence of (KA,)~'(Zn'®, Zy'®) to [ ksds, which means that
(KA,)HZ8, Zi'®) = O,(1) in the sense of Definition A.1. To see that (K'A,,)~ /228
is P-UT, let H™ be any predictable process with |H*|< 1, and let H" - Z;8(t) be the el-
ementary stochastic integral (see Jacod and Shiryaev (2003, p. 377) for both definitions).
Now, E(H" - Zy8(t)? =E(H™ - Zy8(t))? = E(H™)? - [Z,?g,Z,Tg]t <E(Zy'®, Zn'®), so
by Lenglart’s inequality, for any €, > 0,

P((KAR)V2IH" - Z37(t)| 2 €) < P((KA,) ™ sup [H"™ - Ze(1)[*> €%)

<n/e? + P((KAW)THZYE, Zy8)r > ),
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and that (K An)_l/ 278 is P-UT follows from the definition (Jacod and Shiryaev, 2003,
Definition VL.6.1, p. 377), because (KA,,) " Z3'®, Z'®) 7 is tight.
The jumps of Z,,®(t) are

mg mg
AZYE() = 5z Z AZy
Using (F.3) we see that

n,l

— (i — -“"U%_ AB“/ <6¥“> 63“)5?”A@?)

/ f (1,n) d (n gt— )Aﬁtn) (/ ggli”) dgﬁn)) ft(ﬁn)Adgn).

tu 1

(F.14)

For t < 7, ,,, we have that by the It6 isometry,

t t
B(/ f’—" oy’ <E/ (FEM2 @™, 6™y, < a2 (E—tay) < a2 KA,

ti

which shows that ( ftt l fS;”) da§”>)2 is locally L-dominated (Jacod and Shiryaev, 2003,
Definition 1.3.29, p. 35) by the predictable process ftt | fél,’m)2 d(a™,a™),, and that the
latter is O, ((K A,,)/?). Therefore, by Condition A.2,

Plsup| | ﬂ” a6z < P(swp | [ 78 dafd]> )+ Plram <),

t<T t<Tn,m Jt. N
which shows that SUPt<T|ft . Fbm g n)] and SuPt§T|ft:l ggl,’") dBé")| are O,((KA,)Y?)
as n — oo. But for any € > 0,

(F.15) sup|AB™|< sup|AB™ | I{|AB™|> ¢} +e < / 2] ([0, T) x da) + ¢ B e,
t<T t<T |z|>e

as n — oo by the Lindeberg condition in Eq. (3.5) of the main text, combined with Lenglart’s

inequality. But since € > 0 was arbitrary, supt<T\ABt(n) |=0,(1) as n — oo, and we conclude

that sup;<p| AZ)'F ()|= 0p (K A,)/2). For the last condition, by Jacod and Shiryaev (2003,

Theorem 1.4.47(c), p. 52), the triangle inequality, and using that [Z', Z,;'®]? is an increasing

process, we have that for any ¢,

E(AZye(t)? = EA[Z, Z3y%) < 2B (2%, 28|17 = 2B (Z1%, Z3®)r,

but from Appendix E (i.e., the proof of Theorem 3.1 of the main text), we have that
E(Zn'®, Zp'®) 7 S ATKA,,. Thus sup,«p(KA,)'E(AZ38(t))? < oo for all n, and we
conclude that Condition (ii)"” of Corollary B.2 is satisfied, and therefore the Lindeberg con-
dition of Theorem B.1 is also satisfied.

It remains to check Condition (iii) of Theorem B.1, namely that

(KA,)~V2(zme x™), B0, foreachte 0,77,

where X™ is a sequence of bounded martingales. It is enough to check this condition for a
sequence of processes X" that is either a sequence of Wiener processes, or a sequence of
Poisson processes (this is a consequence of a representation theorem in Cohen and Elliott
(2015, Theorem 14.5.7, p. 360)). This means that the sequence X" has predictable quadratic
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variation (X", X™); =t or (X", X"); = fot Asds for some deterministic and nonnegative
function A. For simplicity of the exposition we assume that X™ is a sequence of Wiener
processes. By the Kunita—Watanabe inequality (Protter, 2004, Theorem II.25, p. 69), for h >
Oand t+ h < 7y m,

B B t+h
(B, Xy, — (BEM, X, < ( / (0262, ds (X7 X agn)
t

t+h 12
S(/t by (dsh) " <byh,

writing (X", X", pip = (X", X™) 4 — (X", X™);. Thus, (807, X™),|/dt < by for all
t < Tp,m, where

(B, X7 e|= (B0, X7 + (B, X7,

with (3¢ X™)F and (3™, X™) the positive and the negative part of (3(:™) X™),, re-
spectively. For a fixed  and ;1 x <7

t‘+K _
H/ (@™ — &™) X", |, <E / (@l — a™)) dpBem, xm),|

ti—K

tit i
—(l.n _(ln
<o [ et —alpas

tit K
—(In _(Imn
<b, / 1@ — &™)y ds

ti_ K
t1+K
<ayby / (s —ti—x)ds
ti— K

. a b+
2
where for the third inequality we have used Holder’s inequality. Then, for ¢t < 75, 1,

(tirx —ti_r)?,

(28, X7,y < 1 / (@™ — &™) a(aem xmy, [y

t1+K<t i=i2K] Y-

tit i
a2(l,n 71,” —(l,n n
+ u/ (B — By agatm, xm, )

@0 = & ) agatn, xm,

ol
(2%

M —l,n —(l,n n
+Ht Bl — gty dfat™, x|y

<apby Y (tivk —tix)?Fagby(t—t.)? = O(KA,),
tip i <t,i=l[2K]
hence (Z1'®, X™); = (2K) "' S WZpT, X ) = op((K'Ap)'/?) for each t < 7, ,,, and the
third requirement of Theorem B 1 follows from Condition A.2 and a localisation argument
such as that in Lemma A.1.
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We have now shown that the martingale sequence (K An)_l/ 2728 converges stably
in law to a F-conditional Gaussian martingale with variance process fg ks ds. And since
(KAL) Y227, = (KAL) Y2208 4 0,(1) uniformly in ¢ as KA, — 0, the claim of the
theorem follows from Lemma A.2.
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