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In this paper, we introduce a general method for estimating the quadratic
covariation of one or more spot parameter processes associated with contin-
uous time semimartingales, and present a central limit theorem that has this
class of estimators as one of its applications. The class of estimators we in-
troduce, that we call Two-Scales Quadratic Covariation (TSQC) estimators,
is based on sums of increments of second differences of the observed pro-
cesses, and the intervals over which the differences are computed are rolling
and overlapping. This latter feature lets us take full advantage of the data,
and, by sufficiency considerations, ought to outperform estimators that are
based on only one partition of the observational window. Moreover, a two-
scales approach is employed to deal with asymptotic bias terms in a system-
atic manner, thus automatically giving consistent estimators without having
to work out the form of the bias term on a case-to-case basis. We highlight
the versatility of our central limit theorem by applying it to a novel leverage
effect estimator that does not belong to the class of TSQC estimators. The
principal empirical motivation for the present study is that the discrete times
at which a continuous time semimartingale is observed might depend on fea-
tures of the observable process other than its level, such as its spot-volatility
process. As an application of the TSQC estimators, we therefore show how it
may be used to estimate the quadratic covariation between the spot-volatility
process and the intensity process of the observation times, when both of these
are taken to be semimartingales. The finite sample properties of this estimator
are studied by way of a simulation experiment, and we also apply this esti-
mator in an empirical analysis of the Apple stock. Our analysis of the Apple
stock indicates a rather strong correlation between the spot volatility process
of the log-prices process and the times at which this stock is traded and hence
observed.

1. Introduction. With an increasing availability of high frequency data, the ambition
level as to what can be estimated with reasonable precision has, naturally, also been raised.
This paper concerns the estimation of the quadratic covariation of various spot parameter
processes associated with continuous time semimartingales, which are observed at discrete
times over a finite interval of time. The main result of the paper is a central limit theorem that
applies to a class of such estimators. Estimation of the quadratic covariation associated with
spot parameter processes is, for example, important for learning about the (hyper-) parameters
governing the spot parameter processes, for example, volatility of volatility; or for learning
about possible dependencies between concurrently observed semimartingale processes; or for
estimating the possible dependency between the observation times and various spot parameter
processes associated with the observable process. The motivation for the present paper is
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an example of the latter, namely the estimation of the quadratic covariation between the
volatility of a continuous semimartingale process, and the intensity processes governing the
observation times of this process.

To fix ideas, consider a typical analysis of high frequency data: Based on n discrete time
observations Xt1, . . . ,Xtn of a continuous semimartingale process Xt one seeks to estimate
an integrated parameter �,

�T =
∫ T

0
θs ds,

where θt is a spot parameter process such as volatility, leverage effect, an instantaneous re-
gression coefficient, or the like. The canonical example is the case where θt = σ 2

t is the spot-
volatility process associated with an Itô process of the form dXt = μt dt + σt dWt , where Wt

is a standard Wiener process, and the problem is to estimate the integrated volatility
∫ T

0 σ 2
s ds

over one or consecutive intervals of time. This example goes back to the research on realised
volatility by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Jacod and Prot-
ter (1998), Zhang, Mykland and Aït-Sahalia (2005), and others. The econometric interest in
investigating nonparametric estimates of this type grew out of the study of volatility clus-
tering by Engle (1982) and Bollerslev (1986). For further references, see Jacod and Protter
(2012), Mykland and Zhang (2012) and Aït-Sahalia and Jacod (2014).

The general setup and results of this paper take the following form. Let αt and βt be spot
parameter processes (potentially the same) associated with one or more semimartingale pro-
cesses observed at discrete times over a finite interval of time [0, T ]. In Mykland and Zhang
(2017a), an estimator of the quadratic covariation [α,β]T was introduced, and it was shown
that this estimator is consistent. In the present paper, we derive the convergence rate for such
estimators, and prove a general central limit theorem that, under some regularity conditions,
applies to a wide range of estimators based on the second differencing of estimators of inte-
grated spot processes. This central limit theorem is the main theoretical novelty of the paper.
As mentioned, our main example of the use of this estimator is the problem of estimating
the quadratic covariation between the spot volatility of a semimartingale process, and the in-
tensity process of its observation times. This type of endogenous time problem exists in real
applications, but is often overlooked. We also sketch how our estimation methods and the
central limit theorem can be applied to a novel estimator of the leverage effect, and how it
may be used to gain efficiency in spot volatility estimation.

The paper proceeds as follows. In Section 2, we first describe the model and state our
most important assumptions, subsequently we provide a heuristic derivation of the stochastic
quantities that are important for the theory that follows. Section 2.2 contains the consistency
results and introduces the two-scales estimator of [α,β]T . These consistency results gener-
alise the findings in Mykland and Zhang (2017a). In Section 3, we present the main theoretical
contribution of the paper, namely a central limit theorem for triangular array rolling quadratic
variations based on second differencing of estimators of integrated spot processes. The proof
of this theorem is deferred to Appendix F of the Supplementary Material (Stoltenberg, Myk-
land and Zhang (2022)). Section 3.2 also contains an important corollary to the effect that the
observed asymptotic variance (observed AVAR) developed in Mykland and Zhang (2017a)
yields consistent estimates of the variance of the limiting distribution that appears in the cen-
tral limit theorem. In Section 3.3, we provide an example of how the central limit theorem
can be applied to a leverage effect estimator. In Section 4, we specialise the theory developed
in the preceding sections to the problem of estimating the quadratic covariation between the
spot volatility process of a continuous time semimartingale, and the intensity process of its
observation times. This is the volatility-intensity problem. In Section 4.2, we investigate the
finite sample properties of our estimator by way of a simulation study, while Section 4.3 con-
tains an empirical analysis of the Apple stock observed over 21 trading days in January 2018.
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In Section 4.4, we round off by discussing how the volatility-intensity relationship can be
used to gain efficiency in the estimation of the spot volatility process. Most technical matters
and long proofs can be found in the appendices of the Supplementary Material (Stoltenberg,
Mykland and Zhang (2022)). Appendix B of the Supplementary Material also contains a sta-
ble central limit theorem for càdlàg martingales, as well as a corollary with some alternative
conditions that might be easier to check in applications.

2. The general setup and problem. In this section, we first present the setting for our
estimation procedures, define some key quantities, provide a heuristic overview of some im-
portant results, and explain what type of estimators our central limit theorem applies to.
Subsequently, in Section 2.2, we provide a more formal presentation, and state the main con-
sistency results of the paper.

2.1. Setup and basic insights. We suppose that one or more semimartingale processes Xt

are observed at high frequency over a finite interval of time [0, T ]. The semimartingales Xt

are typically contaminated by microstructure noise, so what we observe is Yti = Xti + εti , for
t1, . . . , tn time points, where εti is microstructure noise. Based on these data, we form estima-
tors �̂n and �̂n, which are consistent for �t = ∫ t

0 θs ds and �t = ∫ t
0 λs ds, respectively, where

the spot parameter processes θt and λt are also assumed to be semimartingales. Our results
continue to hold when θt and λt are replaced by sequences θ

(n)
t and λ

(n)
t of semimartingale

processes, but to ease the notation we drop the superscript n for the time being. The spot
parameter processes θt may be the spot volatility of the continuous part Xc of the process
dXt = σs dWs + dt-terms + jumps, with Wt a standard Wiener process, that is θt = σ 2

t ; it
may be the instantaneous leverage effect, θt = d[Xc,σ 2]t /dt ; or the instantaneous volatility
of volatility, θt = d[σ 2, σ 2]t /dt ; or the stochastic intensity process governing the frequency
of the observation times, etc.

As usual, [X,Y ]t denotes the continuous time quadratic covariation of two semimartin-
gales X and Y from time zero to t (Jacod and Shiryaev (2003), page 51). Semimartingales
are defined in, for example, Jacod and Shiryaev (2003), Definition I.4.21, page 43. The con-
tinuous time predictable quadratic covariation of two locally square integrable martingales
M and N from time zero to t is denoted 〈M,N〉t (Jacod and Shiryaev (2003), Theorem I.4.2,
page 38).

DEFINITION 1. We assume that all our semimartingales are càdlàg (right continuous
with left limits), and that all data generating and latent processes live on the same filtered
probability space (
,F,F,P ) with F = (Ft )0≤t≤T , and that this filtered space satisfies
the ‘usual conditions’ (Jacod and Shiryaev (2003), Definitions I.1.2–I.1.3, page 2). When
necessary, we will also invoke sequences of filtrations Fn = (Fn

t )0≤t≤T on (
,F,P ), that
is Fn

T ⊆F for all n.

For the proof of the main central limit theorem of the paper, Theorem 3.2, we will need
a few additional technical conditions on the structure of the filtered probability space. Also,
note that in most cases, parameter processes are indexed by n, and we shall assume that the
limiting processes (as n → ∞, when they exist) are continuous, cf. Remark 3 in Section 3.1.

We now turn to the construction of our estimator. Divide the time interval [0, T ] into Bn

blocks (tni−1, t
n
i ], of equal length, with tn0 = 0 and tnBn

= T . Set �n = T/Bn, and for conve-
nience, assume that tni = i�n for i = 1, . . . ,Bn. Since we shall permit rolling and overlapping
intervals, let Kn be an integer no greater than Bn/2. From now on, we drop the index n from
the tni , Bn, and Kn when it does not cause confusion. For any real functions �t and �t , define

QVB,K(�,�)T = 1

K

B−K∑
i=K

(�(ti ,ti+K ] − �(ti−K,ti ])(�(ti ,ti+K ] − �(ti−K,ti ]),(2.1)
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where �(s,t] = �t − �s , and write QVB,K(�)T = QVB,K(�,�)T . For l = 1, . . . ,2K , the
notation i ≡ l[2K] means that

i = 2Kj + l for K ≤ i ≤ B − K,

with j an increasing sequence of integers. The basic building block for all the estimators we
present is the rolling quadratic covariation

QVB,K

(
�̂n, �̂n)

T = 1

K

B−K∑
i=K

(
�̂n

(ti ,ti+K ] − �̂n
(ti−K,ti ]

)(
�̂n

(ti ,ti+K ] − �̂n
(ti−K,ti ]

)
,

where �̂n and �̂n are consistent estimators of the integrated spot processes �t = ∫ t
0 θs ds

and �t = ∫ t
0 λs ds, respectively. It is important to keep in mind that QVB,K(�,�)T and

QVB,K(�̂n, �̂n)T are defined on the discrete grid {0,�n,2�n, . . . , T }, as opposed to the
continuous time quadratic covariation [X,Y ]t .

To see how QVB,K(�̂n, �̂n)T is used to estimate [θ, λ]T , we here present a heuristic
analysis, to be made precise in the subsequent section. Under the assumption that �̂n

t can be
expressed as a sum of �t = ∫ t

0 θs ds, an error martingale, and terms associated with the edge
effects, we can write,

QVB,K

(
�̂n, �̂n)

T = QVB,K(�,�)T + estimation error,

where the ‘estimation error’ might contain terms that are not asymptotically negligible, and
that we deal with using so-called two-scale constructions (Mykland, Zhang and Chen (2019),
Zhang, Mykland and Aït-Sahalia (2005)). We return to this issue shortly. From Mykland and
Zhang ((2017a), Theorem 1, page 203) we have the ‘Integral-to-Spot Device’, that is,

QVB,K(�,�)

(K�n)2 = 2

3

(
1 − 1

K2

)
[θ, λ]T + 1

K2

∫ T

0

[(
t∗ − t

�n

)2
+

(
t − t∗
�n

)2]
d[θ, λ]t + op(1),

as K�n → 0, and t∗ = max{i�n : i�n < t} and t∗ = min{i�n : i�n ≥ t}. The key ingredient
for proving this theorem is an application of Theorem 2 in Mykland and Zhang ((2017a),
page 206), from which we obtain

QVB,K(�,�)

(K�n)2 = 1

K

B−K∑
i=K

(∫ ti+K

ti

ti+K − s

K�n

dθs +
∫ ti

ti−K

s − ti−K

K�n

dθs

)

×
(∫ ti+K

ti

ti+K − s

K�n

dλs +
∫ ti

ti−K

s − ti−K

K�n

dλs

)

= 1

K

2K∑
l=1

∑
i≡l[2K]

∫ ti+K

ti−K

f (l,n)
s dθs

∫ ti+K

ti−K

f (l,n)
s dλs,

(2.2)

where f
(l,n)
s for l = 1, . . . ,2K are the functions

(2.3) f (l,n)
s = ∑

i≡l[2K],K≤i≤B−K

(
ti+K − s

K�n

I {ti ≤ s < ti+K} + s − ti−K

K�n

I {ti−K ≤ s < ti}
)
.

The central limit theorem we present in Section 3 concerns quantities of the type

1

2K

2K∑
l=1

{ ∑
i≡l[2K]

∫ ti+K

ti−K

f
(l,n)
s− dα(n)

s

∫ ti+K

ti−K

g
(l,n)
s− dβ(n)

s −
∫ T

0
f

(l,n)
s− g

(l,n)
s− d

[
α(n), β(n)]

s

}
,

when K�n → 0 and K → ∞ as n → ∞. The functions f
(l,n)
s and g

(l,n)
s are bounded and

deterministic, while α(n) and β(n) are sequences of semimartingale processes. We see that the
right-hand side of (2.2) is a special case of this type of quantity, and so are the nonnegligible
terms contained in the ‘estimation error’ referred to above.
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2.2. Consistency. Suppose that �
(n)
t = ∫ t

0 θ
(n)
s ds and �

(n)
t = ∫ t

0 λ
(n)
s ds are two integrated

spot-processes, and that θ
(n)
t and λ

(n)
t are sequences of semimartingales adapted to Fn (or

F in the case that θ
(n)
t = θt or λ

(n)
t = λ for all n), and that both sequences are tight with

respect to convergence in law relative to the Skorokhod topology on the space D[0, T ] of
càdlàg functions on [0, T ]. If θ

(n)
t and λ

(n)
t depend on n, we assume that the pair converges in

probability to limiting semimartingales θt and λt , respectively, and that [θ(n), λ(n)] converges
in probability to [θ, λ].

The two spot-processes might be associated with the same underlying semimartingale (in
which case we can have θ(n) = λ(n) for all n), or with two different semimartingales con-
currently observed. In the latter case, the sampling times can be asynchronous, and the total
number of observations may differ. To not overburden the notation, however, we assume that
the number of observations are the same for both processes, and equals n. We are given the
estimators �̂n

t and �̂n
t of �

(n)
t and �

(n)
t , respectively. Both �̂n

t and �̂n
t are consistent and

admit representations of the type �̂n
t = �t +Mθ

n,t + eθ
n,t − ẽθ

n,0, in terms of a semimartingale
Mθ

n,t and edge effects eθ
n,t and ẽθ

n,0 associated with phasing in and phasing out the estimator,
respectively. For s < t , we write �̂n

(s,t] = �̂n
t − �̂n

s . This means that for s < t the estimators
can be represented as

�̂n
(s,t] − �(s,t] = Mθ

n,t − Mθ
n,s + eθ

n,t − eθ
n,s,

�̂n
(s,t] − �(s,t] = Mλ

n,t − Mλ
n,s + eλ

n,t − eλ
n,s .

(2.4)

The assumption, implicit in (2.4), that the edge effect of phasing in an estimator at s < t is
the same as the edge effect associated with phasing out an estimator at t . This is exact in the
(usual) case of additive estimators (Mykland and Zhang (2017a), Section 5.1, page 215). The
results that follow extend with little effort to situations where the edge effects in the two ends
of the interval behave differently.

DEFINITION 2 (Stable convergence). We say that a sequence Zn = (Zn,t )0≤t≤T of
martingales converges stably in law to Z = (Zt )0≤t≤T with respect to G ⊆ F if (i) Z is
measurable with respect to G̃ belonging to an extension (
̃, G̃, P̃ ) of (
,G,P ); and (ii)
EYf (Zn) → ẼYf (Z) for every bounded and continuous f and all G-measurable bounded
random variables Y . We then write Zn ⇒ Z stably.

The notion of an adapted càdlàg sequence being predictably uniformly tight, P-UT in the
following, is defined in Jacod and Shiryaev (2003), Definition VI.6.1, page 377.

CONDITION 1. Assume that (2.4) holds, and that there are α > 0 and β > 0 such that, as
n → ∞,

nαMθ
n ⇒ Lθ stably and nβMλ

n ⇒ Lλ stably,

with respect to a σ -algebra G ⊆ F . Both nαMθ
n,t and nβMλ

n,t are P-UT, and the quadratic
variations [Lθ,Lθ ]T and [Lλ,Lλ]T are measurable with respect to G.

REMARK 1. The requirements of Condition 1 are likely to be satisfied in applications,
but they are stronger than what we need for the present purposes. For the consistency results
of this section, we only need the weaker Condition 5 of Mykland and Zhang (2017b), page 7.
A sequence of semimartingales fulfils this condition if it is tight and P-UT.



A CLT FOR SECOND DIFFERENCE ESTIMATORS 2077

THEOREM 2.1 (Consistency of the covariance estimator). Assume that �̂n
t and �̂n

t sat-
isfy (2.4) and Condition 1. Let K = Kn be positive integers, assume that K�n → 0, and
that the edge effects eθ

n,t and eλ
n,t are op((K�n)

1/2n−α) and op((K�n)
1/2n−β), respectively.

Then

QVB,K(�̂n, �̂n)T = 2
[
Mθ

n,Mλ
n

]
T + 2

3
(K�n)

2[
θ(n), λ(n)]

T + op

(
(K�n)

2) + op

(
n−(α+β)),

as n → ∞.

PROOF. The proof follows with trivial adjustments from Mykland and Zhang (2017a),
Theorem 3, page 208. A brief sketch of the proof along with some remarks on the edge effects
are given in Appendix D of the Supplementary Material. �

In Appendix D of the Supplementary Material, we also provide conclusions to the above
theorem with slightly more stringent restrictions on the edge effects. Corresponding results
for all combinations of assumptions on the edge effects can be deduced from these results.

We now turn to estimation of the quadratic covariation [θ, λ]. As will become clear, how
one ought to estimate [θ, λ] depends on the convergence rates of the error martingales Mθ

n

and Mλ
n , that is the α and β required for nαMθ

n and nβMλ
n to satisfy Condition 1. From the

conclusion of Theorem 2.1 we see that, provided K�n is of order n−α∧β , then

QVB,K(�̂n, �̂n)T

(K�n)2 = 2[Mθ
n,Mλ

n ]T
(K�n)2 + 2

3

[
θ(n), λ(n)]

T + op(1).

By Condition 1 the quadratic covariation of the error martingales [Mθ
n,Mλ

n ] is Op(n−(α+β)),
consequently,

(K�n)
−2[

Mθ
n,Mλ

n

] = Op

(
(K�n)

−1n−α∨β)),
which tends to zero in probability as n → ∞ provided α �= β . We summarise this in a lemma.

LEMMA 2.2. Assume that Condition 1 holds. Suppose that α �= β , that K → ∞ and
�n → 0 such that K�n is of order n−α∧β as n → ∞, then

3

2

QVB,K(�̂n, �̂n)T

(K�n)2 = [θ, λ]T + op(1).(2.5)

PROOF. By Condition 1 this is direct from the two displays above. �

Notice that the conclusion of Lemma 2.2 continues to hold when α = β provided
(K�n)

−1Mθ
n and (K�n)

−1Mλ
n are asymptotically orthogonal (see Jacod and Shiryaev

(2003), Proposition I.4.15, page 41, for the notion of local martingales being orthogonal).
Also note that when α = β one might choose K�n such that K�nn

α → ∞, at the cost of a
slower rate of convergence.

The estimation problem is harder when (K�n)
−2[Mθ

n,Mλ
n ]T is not asymptotically negli-

gible. This occurs, for example, when one seeks to estimate [θ, θ ]T , such that the convergence
rates α and β of Condition 1 are equal. As an estimator of the quadratic covariation [θ, λ]T
in such situations we propose the Two-Scales Quadratic Covariation (TSQC) estimator. It is
given by

TSQCB,K1,K2

(
�̂n, �̂n)

T = 3

2

QVB,K2
(�̂n, �̂n) − QVB,K1

(�̂n, �̂n)

(K2
2 − K2

1 )�2
n

,(2.6)
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where K2 > K1 are user specified sequences of integers (tuning parameters) tending to infin-
ity as n tends to infinity. Since K2 and K1 must be of the same order (they are both sequences
in n), a natural choice is K2 = γK1 for some integer γ ≥ 2, with γ fixed and independent
of n. We first present a consistency result, and then return to the central limit theory for this
estimator at the end of Section 3.

COROLLARY 2.3 (Consistency of the TSQC estimator). Assume that the conditions of
Theorem 2.1 are in force, and that α = β . Let K2 = γK1, for some fixed integer γ ≥ 2, be
positive integers tending to infinity such that K1�n = O(n−α). Then,

TSQCB,K1,K2

(
�̂n, �̂n)

T = [θ, λ]T + op(1),

as n → ∞.

PROOF. From Theorem 2.1, we have that for j = 1,2

QVB,Kj
(Mθ

n ,Mλ
n)T

(γ 2 − 1)K2
1�2

n

= 2
[
nαMθ

n ,nαMλ
n

]
T + Op(Kn,j�n),

so when K2 = γK1 for some γ ≥ 2, then

QVB,K2
(Mθ

n ,Mλ
n)T − QVB,K1

(Mθ
n ,Mλ

n)T

(γ 2 − 1)K2
1�2

n

= op(1).

On the other hand,

QVB,K2
(�,�)T

(γ 2 − 1)K2
1�2

n

= γ 2

(γ 2 − 1)K2

2K2∑
l=1

∑
i≡l[2K2]

∫ ti+K2

ti−K2

f (l,n)
s dθs

∫ ti+K2

ti−K2

f (l,n)
s dλs,

so that by Mykland and Zhang ((2017b), Theorem 7, page 1),

QVB,K2
(�,�)T − QVB,K1

(�,�)T

(γ 2 − 1)K2
1�2

n

= γ 2

(γ 2 − 1)K2

2K2∑
l=1

∫ T

0

(
f (l,n)

s

)2 d[θ, λ]s

− 1

(γ 2 − 1)K1

2K1∑
l=1

∫ T

0

(
f (l,n)

s

)2 d[θ, λ]s + Op

(
(K1�n)

1/2)
,

where the f
(l,n)
s are as in (2.3) with K2 and K1 in place of K . Thus,

TSQCB,K1,K2
(�̂n, �̂n)T = [θ(n), λ(n)]T + ((γ 2 − 1)K2

1�2
n)

−1op(n−2α) + op(1),

as K1�n → 0 with K1 → ∞, and the result follows because K1�n is of order n−α . �

REMARK 2. The conclusion of Corollary 2.3 is still valid when α �= β provided K1�n =
O(n−α∧β). But if the convergence rates are known and different one would, as already
mentioned, rather use the estimator in (2.5). There might be situations, however, where the
convergence rates α and β are not known exactly, but known to lie in some interval, say
α,β ∈ [r1, r2]. In that case, one sets K1�n = O(n−r1), and the conclusion of Corollary 2.3
holds.
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3. Central limit theory. The consistency results of the previous section are extensions
of theory developed in Mykland and Zhang (2017a). That paper, however, did not establish
limiting normality for the estimators presented, and it is to this topic we now turn.

In a first part, we present a theorem on the convergence rate of triangular array rolling
quadratic covariations as approximations to quadratic covariations of spot processes. We then
present the central limit theorem for such approximations. Both these results supplement the
consistency result of Mykland and Zhang (2017b), Theorem 7, page 1. The proofs of these
two theorems are provided in the Supplementary Material. As an example of the use of this
theorem, and to show its versatility, we show how it can be applied to a novel estimator of the
leverage effect. In Section 3.2, we present theory for the TSQC estimator. In particular, we
show that the observed asymptotic variance of Mykland and Zhang (2017a) can be applied
to estimate the asymptotic variance of this estimator. This is important because analytical
expressions for the limiting variance of the TSQC may be hard to derive. This point is further
discussed in Section 3.2 (see also Mykland and Zhang (2017a), pages 198–200).

3.1. Convergence rate and CLT for rolling quadratic variations. Introduce the processes

α
(l,n)
t =

∫ t

0
f

(l,n)
s− dα(n)

s and β
(l,n)
t =

∫ t

0
g

(l,n)
s− dβ(n)

s for l = 1, . . . ,2K,(3.1)

where α
(n)
t and β

(n)
t are sequences of semimartingales, and f

(l,n)
t and g

(l,n)
t are determin-

istic càdlàg functions bounded by 1 (there is nothing special about 1 here, and it suf-
fices that they are bounded by a constant). We denote F and G countable collections
f

(l,n)· , l = 1, . . . ,2K,n = 1,2, . . . and g
(l,n)· , l = 1, . . . ,2K,n = 1,2, . . ., of such functions

(see Appendix A in the Supplementary Material). The f
(l,n)· in (2.3) constitute one example

of such a class of functions. In Mykland and Zhang ((2017b), Theorem 7, page 1), it was
shown that, with K�n → 0 as n → ∞,

(3.2)
1

2K

2K∑
l=1

∑
i≡l[2K]

(
α

(l,n)
ti+K

− α
(l,n)
ti−K

)(
β

(l,n)
ti+K

− β
(l,n)
ti−K

) = 1

2K

2K∑
l=1

[
α(l,n), β(l,n)]

T + op(1).

In this section, we study the rate of convergence and present a central limit theorem for the
approximation in (3.2). Such statements will help with the assessment of the accuracy and
with optimal calibration of the TSQC estimators, as well as other rolling intervals estimators
that depend on approximations such as the one in (3.2).

Conditions A.1 and A.2 of the Supplementary Material, that are invoked in the next theo-
rem, say that α

(n)
t and β

(n)
t are sequences (in n) of Itô semimartingales that are Op(1) with

respect to convergence in law relative to the Skorokhod topology on D[0, T ]. Note that, in
this section, n is an index that need not be the sample size.

THEOREM 3.1 (Rate of convergence). Suppose that α(n)
t and β

(n)
t satisfy Conditions A.1

and A.2 of the Supplementary Material, that f
(l,n)· ∈ F and g

(l,n)· ∈ G , and that α
(l,n)
t and

β
(l,n)
t are as defined in (3.1). Then, with K�n → 0 as n → ∞,

1

2K

2K∑
l=1

{ ∑
i≡l[2K]

(
α

(l,n)
ti+K

− α
(l,n)
ti−K

)(
β

(l,n)
ti+K

− β
(l,n)
ti−K

) − [
α(l,n), β(l,n)]

T

}
= Op

(
(K�n)

1/2)
.

PROOF. See Appendix E of the Supplementary Material. �
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Let the error term in the approximation in (3.2) be

Zn(t) = 1

2K

2K∑
l=1

{ ∑
ti+K≤t,i≡l[2K]

(
α

(l,n)
ti+K

− α
(l,n)
ti−K

)(
β

(l,n)
ti+K

− β
(l,n)
ti−K

)

+ (
α

(l,n)
t − α

(l,n)
t∗,l

)(
β

(l,n)
t − β

(l,n)
t∗,l

) − [
α(l,n), β(l,n)]

t

}
,

(3.3)

where

t∗,l = t∗,l(t) = max
{
ti+K : ti+K ≤ t, i ≡ l[2K]} for l = 1, . . . ,2K.(3.4)

Notice that Zn(t) is interpolated into a continuous time semimartingale. The errors are only
defined at discrete times, but the interpolation error is asymptotically negligible, and conse-
quently we only need to prove the central limit theorem for the interpolated process, which is
done by applying Theorem B.1 of the Supplementary Material.

For the notion of an F -conditional Gaussian martingale, see Jacod and Shiryaev (2003),
Definition II.7.4, page 129, or Jacod (1997), page 233. We write νn

α for the compensator of
the jump process μn

α associated with a sequence (in n) of semimartingale process α(n) (see
Jacod and Shiryaev (2003), Chapter II.1). We can now state the main result of the paper.

THEOREM 3.2 (CLT for triangular array rolling quadratic variations). Let α(n) and β(n)

be sequences of semimartingales, and write α
(n)
t = α

(n)
0 + ∫ t

0 ζ
(n)
s ds + ᾱ

(n)
t and β

(n)
t =

β
(n)
0 + ∫ t

0 η
(n)
s ds + β̄

(n)
t , where ᾱ

(n)
t and β̄

(n)
t are the martingale parts of the two decompo-

sitions. Let Zn be as defined in (3.3). Suppose that Conditions A.1–A.4 in Appendix A of the
Supplementary Material hold; that d〈ᾱ(n), ᾱ(n)〉t /dt , d〈β̄(n), β̄(n)〉t /dt , and d〈ᾱ(n), β̄(n)〉t /dt

are locally continuous in mean square; and that for all ε > 0, the Lindeberg conditions∫
|x|>ε

x2νn
α

([0, T ] × dx
) p→ 0 and

∫
|x|>ε

x2νn
β

([0, T ] × dx
) p→ 0,(3.5)

as n → ∞ are satisfied for both processes. Set

κ(n)
s = 1

4K3�n

2K∑
l1=1

2K∑
l2=1

∫ s

t∗,l1∨t∗,l2

{
f

(l1,n)
u− f

(l2,n)
u− g

(l1,n)
s− g

(l2,n)
s− d

[
ᾱ(n), ᾱ(n)]

u

d〈β̄(n), β̄(n)〉s
ds

[2]

+ f
(l1,n)
u− g

(l2,n)
u− g

(l1,n)
s− f

(l2,n)
s− d

[
ᾱ(n), β̄(n)]

u

d〈β̄(n), ᾱ(n)〉s
ds

[2]
}
,

where the f (l,n) and g(l,n) belong to F and G , respectively, as described in Definition A.2 in
Appendix A of the Supplementary Material. Assume that there is an F -measurable process
κs such that when K�n → 0 and K → ∞ as n → ∞,∫ t

0
κ(n)
s ds

p→
∫ t

0
κs ds for each t ∈ [0, T ].

Then (K�n)
−1/2Zn converges stably in law to an F -conditional Gaussian martingale Z

with quadratic variation 〈Z ,Z 〉t = ∫ t
0 κs ds, when K�n → 0 and K → ∞ as n → ∞.

PROOF. The full proof is given in Appendix F of the Supplementary Material. �

The notation “[2]” means that we sum over two terms, the one given and the corresponding
one where, in κ(n), f and g and α(n) and β(n) have changed place. As an example, a1b2 +
a2b1 = a1b2[2]. A full expression for κ

(n)
s is given on page 23 of the Supplementary Material.

The notion of a process being locally continuous in mean square is defined in Definition A.3
of the Supplementary Material.
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REMARK 3. It is important to note that condition (3.5) ensures that the limiting pro-
cesses α, β (if they exist) and Z are continuous. The pre-limiting processes need not be
continuous, and may have jumps. Condition (3.5) thus also rules out situations where the
limiting processes α and β have co-jumps (in the limit) with their volatility. It is known that
the realised volatility estimator does not have a limiting conditionally Gaussian distribution
if the price process co-jumps with its volatility (see Jacod and Protter (2012), Theorem 5.4.2,
page 162), but rather a doubly mixed normal distribution (for further references see the end
of Section 3.3). How Theorem 3.2 generalises if condition (3.5) is relaxed and one or both
processes α and β are allowed to co-jump with their volatility, is a topic for further research.

REMARK 4. Theorem 3.2 is formulated in terms of general functions f (l,n) and g(l,n)

belonging to classes F and G as defined in Definition A.2 of the Supplementary Material.
Basically, these functions need to be deterministic and bounded (for convenience we require
them to be bounded by 1). In our main application of the theorem, however, the functions
f (l,n) and g(l,n) are as defined in (2.3). An example where the f (l,n) functions and the g(l,n)

functions differ is given in Section 3.3.

The above theorem is stated in terms of a univariate process Zn. A multivariate version
of Theorem 3.2 only requires notational modifications to the proof of said theorem. Let
α(j,n), β(j,n) be sequences (in n) of semimartingales for j = 1, . . . , p. Analogously to (3.1),
set α

(l,j,n)
t = ∫ t

0 f
(l,j,n)
s− dα

(j,n)
s and β

(l,j,n)
t = ∫ t

0 g
(l,j,n)
s− dβ

(j,n)
s , where f

(l,j,n)· ∈ F and

g
(l,j,n)· ∈ G , with F and G as defined in Definition A.2 of the Supplementary Material. Let

t∗,l be as in (3.4), and form the processes Z
(j)
n,l (t) = (2K)−1 ∑2K

l=1
∑

ti+K≤ti :i≡l[2K](α
(l,j,n)
ti+K

−
α

(l,j,n)
ti−K

)(β
(l,j,n)
ti+K

− β
(l,j,n)
ti−K

) + (α
(l,j,n)
t − α

(l,j,n)
t∗,l

)(β
(l,j,n)
t − β

(l,j,n)
t∗,l

) − [α(l,j,n), β(l,j,n)]t for
j = 1, . . . , p, and set

Zn(t) = (K�n)
−1/2

2K∑
l=1

⎛
⎜⎜⎝

Z
(1)
n,l (t)
...

Z
(p)
n,l (t)

⎞
⎟⎟⎠ .(3.6)

The quadratic variation of Zn(t) is 〈Zn,Zn〉t = ∫ t
0 k

(n)
s ds say, where k

(n)
s is a p × p matrix

with elements (K�n)
−1 ∑2K

l1=1
∑2K

l2=1〈Z(i)
n,l1

,Z
(j)
n,l2

〉s for i, j = 1, . . . , p. It follows directly

from the proof of Theorem 3.2 that each of these elements of the matrix k
(n)
s are of the same

form as the κ
(n)
s defined in Theorem 3.2.

COROLLARY 3.3. Let Zn be as defined in (3.6), and let k(n)
t be defined via 〈Zn,Zn〉t =∫ t

0 k
(n)
s ds. Suppose that α(j,n) and β(j,n), as well as f

(l,j,n)· , and g
(l,j,n)· for j = 1, . . . , p

satisfy the conditions of Theorem 3.2, and suppose that there is a p × p matrix process kt

such that
∫ t

0 k
(n)
s ds →p

∫ t
0 ks ds for all t ∈ [0, T ]. Then Zn converges stably in law to a p-

dimensional F -conditional Gaussian martingale with quadratic variation
∫ t

0 ks ds.

PROOF. This is direct from the proof of Theorem 3.2. �

A consequence of this corollary is that the sequence (K�n)
−1/2Un,K(t), where

Un,K(t) = QVB,K(�̂n, �̂n)t

(K�n)2 − 2[Mθ
n,Mλ

n ]t
(K�n)2 − 2

3
[θ, λ]t ,(3.7)

converges stably in law to a mean zero Gaussian martingale, provided θ(n), λ(n), nαMθ
n ,

and nβMλ
n satisfy the conditions imposed in Corollary 3.3. To see this, for l = 1, . . . ,2K ,
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K ≤ B/2, with t∗,l as in (3.4), and general semimartingales θ and λ, define the interpolated
processes

Z
(l)
K (f, θ, g,λ)t = ∑

i≡l[2K]

∫ ti+K

ti−K

f
(l,n)
s− dθs

∫ ti+K

ti−K

g
(l,n)
s− dλs

+
∫ t

t∗,l

f
(l,n)
s− dθs

∫ t

t∗,l

g
(l,n)
s− dλs −

∫ t

0
f

(l,n)
s− g

(l,n)
s− d[θ, λ]s,

and families of functions f = (f
(l,n)· )1≤l≤2K,n≥1 and g = (g

(l,n)· )1≤l≤2K,n≥1 belonging to the
classes F and G , respectively. Set

ZK(f, θ, g,λ)t = 1

2K

2K∑
l=1

Z
(l)
K (f, θ, g,λ)t ,

and let the functions f
(l,n)
s be as defined in (2.3), and introduce

g(l,n)
s = ∑

K≤i≤B−K,i≡l[2K]

(
I {ti ≤ s < ti+K} − I {ti−K ≤ s < ti}),(3.8)

for l = 1, . . . ,2K . Then (3.7) can be written Un,K(t) = Ūn,K(t) + op((K�n)
1/2), where

Ūn,K(t) = ZK(f, θ, f,λ)t + n−β

K�n

ZK

(
f, θ, g,nβMλ

n

)
t

+ n−α

K�n

ZK

(
g,nαMθ

n , f,λ
)
t + n−(α+β)

(K�n)2ZK

(
g,nαMθ

n , g,nβMλ
n

)
t .

(3.9)

From this representation, we see that when K�n = O(n−α∧β), Corollary 3.3 combined with
the Cramér–Wold device (Billingsley (1995), page 382), and the fact that sums of C-tight
sequences are C-tight (Jacod and Shiryaev (2003), Corollary VI.3.33, page 353) entail that
the sequence (K�n)

−1/2Un,K defined via (3.7), converges stably in law. From the expression
in (3.9), we also see that when α = β and K�n is of order n−α , then all four terms in the
sum will contribute to the asymptotic variance, while only two of the terms contribute to the
asymptotic variance when the convergence rates differ.

3.2. Uncertainty of the TSQC. To compute the uncertainty associated with TSQC esti-
mators, we use the observed asymptotic variance of Mykland and Zhang (2017a). It should
be noted that using the observed asymptotic variance, instead of some other approach, is
just a question of how we estimate the asymptotic variance. The observed asymptotic vari-
ance is an extremely useful approach to variance estimation as it allows us to circumvent the
derivation of an explicit expression for the asymptotic variance of the TSQC estimators. Us-
ing the observed asymptotic variance is akin to, in likelihood estimation, using the observed
information or, for many types of data, bootstrapping the variance.

For the observed asymptotic variance to be consistent, it is sufficient that the sequence of
error martingales associated with the estimator whose uncertainty one wants to compute is
tight and P-UT (see Condition 5 in Mykland and Zhang (2017b), page 7). When constructing
confidence intervals and conducting tests, however, we cannot do with merely consistency,
but need a central limit theorem. The sequence for which we are going to use the observed
asymptotic variance to compute its uncertainty, is

(K1�n)
−1/2(

TSQCB,K1,K2

(
�̂n, �̂n)

t − [θ, λ]t ).(3.10)

Under an assumption on the convergence in probability of the quadratic covariations of
QVB,K1

and QVB,K2
(properly normalised) for K2 = γK1, stable asymptotic normality en-

sues from our previous results.
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COROLLARY 3.4 (Uncertainty of the TSQC). Assume that θ(n) and λ(n), as well as the
error martingales nαMθ

n and nβMλ
n satisfy the conditions imposed on α(n) and β(n) in Theo-

rem 3.2; that the conditions of Lemma 2.3 are in force, and that 〈Un,K1,Un,K2〉t converges in
probability to a continuous process for each t ∈ [0, T ]. Then the sequence in (3.10) is C-tight
and P-UT, and converges stably in law to an F -conditional Gaussian martingale.

PROOF. Since K1�n is of the same order as n−α∧β (so that the factors n−α/(K1�n),
n−β/(K1�n), and n−(α∧β)/(K1�n)

2 either tend to zero or to one) it follows from Theo-
rem 3.2 that all the error martingales on the right-hand side of (3.9) are C-tight and P-UT.
Since sums of C-tight sequences are C-tight (Jacod and Shiryaev (2003), Corollary VI.3.33,
page 353), and sums of sequences that are P-UT are P-UT (Jacod and Shiryaev (2003), VI.6.4,
page 377), Un,Kj

, j = 1,2 are C-tight and P-UT, and so is the sequence in (3.10). Combining
this with the assumption about the quadratic covariation 〈Un,K1,Un,K2〉t , Theorem B.1 of the
Supplementary Material gives the result. �

Before we proceed to Section 4 and the problem that motivated the present study, we
showcase the applicability of Theorem 3.2 by considering a novel estimator of the leverage
effect, that does not belong to the class of estimators introduced in (2.1).

3.3. Leverage effect estimation. In this section, we introduce a rolling intervals estimator
of the leverage effect, and sketch how Theorem 3.2 can be used to derive the limiting distri-
bution of this estimator. Since the goal of this section is not leverage effect estimation per se,
but rather to show an application of Theorem 3.2, we limit ourselves to a continuous process
model, without microstructure noise.

Assume that the process Xt = X0 + ∫ t
0 σs dWs is observed at the discrete and equidis-

tant times 0 = t0,n < t1,n < · · · < tn−1,n < tn,n = T , meaning that there is no microstruc-
ture noise; Wt is a one dimensional Wiener process, and σ 2 is a locally bounded Itô pro-
cess which may or may not be correlated with Wt . Write θ = σ 2. The leverage effect
is the spot process d[θ,X]t /dt . A natural estimator of [X,X]T is the realised volatility
�̂n

T = ∑
ti+1,n≤T (Xti+1,n

− Xti,n)
2 (see the references in the Introduction). Define Mn,t via

�̂ = [X,X]t + Mn,t . It can then be shown that n1/2Mn converges stably in law to a normal
distribution with (random) variance 2T

∫ T
0 σ 4

s ds (Mykland and Zhang (2012), Corollary 2.30,
page 154), hence n1/2Mn satisfies Condition 1. In analogy with (2.1), consider

[̂θ,X]n,K

T = 1

K

n−K∑
i=K

(
�̂n

(ti,n,ti+K,n] − �̂n
(ti−K,n,ti,n]

)
(Xti+K,n

− Xti−K,n
),(3.11)

where, due to the equidistant sampling times, we take B = n. Notice that this estimator is
different from the QV of (2.1), as it is only the first differences of the X process that enter
in (3.11). Similarly to Lemma 2.2, we have that

(K�n)
−1[̂θ,X]n,K

T = [θ,X]T + op(1).

Let f
(l,n)
s be as defined in (2.3), and let g

(l,n)
s be as defined in (3.8), for l = 1, . . . ,2K . Let

M
(l,n)
t = ∫ t

0 g
(l,n)
s dMn,s , and define the two continuous time martingales

Un,l(t) = ∑
ti+K≤t :i≡l[2K]

(
θ

(l,n)
ti+K

− θ
(l,n)
ti−K

)
(Xti+K

− Xti−K
)

+ (
θ

(l,n)
t − θ

(l,n)
t∗,l

)
(Xt − Xt∗,l

) − [
θ(l,n),X

]
t ,
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and

Vn,l(t) = ∑
ti+K≤t :i≡l[2K]

(
M

(l,n)
ti+K

− M
(l,n)
ti−K

)
(Xti+K

− Xti−K
)

+ (
M

(l,n)
t − M

(l,n)
t∗,l

)
(Xt − Xt∗,l

) − [
M(l,n),X

]
t ,

where t∗,l is as in (3.4). Then (K�n)
−1[̂θ,X]n,K

T − K−1 ∑2K
l=1[θ(l,n),X]T is asymptotically

equivalent to Zn = K−1 ∑2K
l=1{Un,l(T ) + Vn,l(T )}. Its predictable quadratic variation is

〈Zn,Zn〉T = 1

K2

2K∑
l1=1

2K∑
l2=1

{〈Un,l1,Un,l2〉T + 〈Vn,l1,Vn,l2〉T + 2〈Un,l1,Vn,l2〉T
}
.

Provided that the processes involved satisfy the assumptions of Theorem 3.2, we see how the
development so far leads to a central limit theorem for the leverage effect estimator of (3.11).
In particular, (K�n)

−1/2Zn converges stably in law to a Gaussian martingale with (random)
asymptotic variance of the form

∫ T
0 (as + bs + 2cs)ds.

Estimators of the leverage effect have been studied previously by Wang and Mykland
(2014), Kalnina and Xiu (2017), Aït-Sahalia et al. (2017), to mention some. The latter paper
considers situations where the price and the volatility may jump together, so-called co-jumps
(for more on co-jumps, see Li, Todorov and Tauchen (2017a), Li, Todorov and Tauchen
(2017b) and Jacod and Todorov (2010)). In such cases, the leverage effect consists of two
parts: (i) the correlation between the continuous parts of the price and the volatility pro-
cesses, and (ii) the inclination of the two processes of jumping at the same time. How the
leverage effect estimator of (3.11) generalises to more complicated data structures, for exam-
ple involving co-jumps, microstructure noise, and nonequidistant sampling times, are topics
we are currently exploring.

4. Volatility and intensity. In this section, we turn to the application that motivated
the current paper, namely the estimation of the quadratic covariation between the volatility
process of a continuous time semimartingale, and the intensity process of the observation
times.

When estimating parameters associated with a continuous time process that is only ob-
served at discrete times, simplifying assumptions are often imposed on the relation between
the observation times and the underlying process. The observation times are typically either
taken as fixed and equidistant, or they are governed by a stochastic process postulated to be
independent of the observable process (see, e.g., Aït-Sahalia and Jacod (2014), Chapter 9, for
a discussion). We refer to both cases as ‘exogenous times’. In many settings the assumption
of exogenous times is violated, the case of high frequency financial data being, at least in
some cases, a pertinent example. Decisions to buy or sell a given security may, in part, be de-
termined by features of that security, and since it is only at the times at which transactions are
conducted that we get a glimpse of the continuous processes ticking in the background (mod-
ulo microstructure noise), one would expect that the observation times may be correlated with
transaction-igniting features of the underlying process.

In recent years, much progress has been made when the assumption of exogenous times is
relaxed. In Li, Zhang and Zheng (2013) and Li et al. (2014), the realised volatility estimator
is studied in the presence of endogenous observation times, and it is shown that a ‘bias’ term
appears in the limiting distribution of this estimator. This ‘bias’ term is of the same order
as the process tending (stably) to a normal limit, and is thus not a bias term in the tradi-
tional sense. The reasons for caring about it have to do with efficiency considerations, and
not with the estimation being off-the-target in an expected value sense. Jacod, Li and Zheng
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(2019) construct an estimator of the integrated volatility in the presence of microstructure
noise, jumps, and endogenous times. Other papers have dealt with consistency and central
limit theorems under irregular and random times (see Renault and Werker (2011), Hayashi,
Jacod and Yoshida (2011), Fukasawa and Rosenbaum (2012), Potiron and Mykland (2017)).
Common for all the above papers is that the endogeneity of the observation times comes
about because the times depend on the efficient price process itself, as opposed to latent spot
parameter processes governing the evolution of the efficient price process. The tools devel-
oped in Sections 2 and 3 allow us to statistically study situations where the observation times
might depend on underlying nonobservable features of the efficient price process, such as its
spot-volatility process, the associated volatility of volatility, the leverage effect, and so on.
To assess the direction and magnitude of such correlations, we can use the TSQC estimator
of (2.6), and also a correlation estimator based on the TSQC. In this section, we first present
some theory specific to the volatility-intensity covariance estimation, then, in Section 4.2 we
perform a simulation study to assess the finite sample behaviour of our estimators, while
Section 4.3 contains an empirical study of the Apple stock over 21 trading days in January
2018.

4.1. A model for volatility-intensity covariance estimation. For a given frequency of ob-
servations, indexed by n ≥ 1, the succesive observations occur at times 0 = Tn,0 < Tn,1 <

· · · ≤ T , where (Tn,i)n≥1 is a sequence of finite stopping times. Define the sequence of count-
ing processes Nn,t = ∑

i≥1 I {Tn,i ≤ t}. We are going to assume (in Condition 2) that, for
observation frequency n, the inter-observational lags Tn,i − Tn,i−1 are of the same order as
1/n, and moreover, that n−1Nn,t has a possibly random probability limit when n goes to in-
finity (see Li et al. (2014), Jacod, Li and Zheng (2017), and Jacod, Li and Zheng (2019) for
similar constructions). Based on the Nn,T observations of Xt , we form an estimator �̂n

t of
�t = ∫ t

0 θs ds, where the spot parameter process θs is itself assumed to be a semimartingale,
and assume that �̂n

t is consistent for �t . In the following, we think of θt as the spot-volatility
process σ 2, and �t as the integrated volatility

∫ t
0 σ 2

s ds. The counting process Nn,t can be
decomposed as Nn,t = Mn,t + �n,t , in terms of a martingale Mn,t and an increasing and
predictable process �n,t . We assume that the latter process is absolutely continuous, so that
�n,t = ∫ t

0 λn,s ds, and that λn,t , called the intensity process, is itself a semimartingale. The
process we seek to estimate is then [θ, λ]t over one or consecutive observation windows.

Since X is followed over the finite interval [0, T ], where T is fixed, our arguments
are based on asymptotics as the observation frequency gets higher, that is maxi≥1|Tn,i −
Tn,i−1|→ 0, so-called infill asymptotics. To let the number of observations Nn,T tend to in-
finity, and at the same time get a finite limit for the intensities of the observation times, we
impose the following condition.

CONDITION 2. There is a nonnegative semimartingale λt such that n−1�n,t
p→ �t :=∫ t

0 λs ds, for all t ∈ [0, T ].

One may think of 1/n as proportional to the expected distance between two observation
times, or n as being proportional to the expected number of observations per period. The point
is that Condition 2 allows us to develop asymptotic theory in terms of Nn,T for the estimators
we construct. This construction is similar to that previously employed by Li, Zhang and
Zheng (2013); and by Jacod, Li and Zheng (2019), Assumption (O-ρ, ρ′), page 82.

Suppose that the estimator �̂n
t satisfies the decomposition in (2.4), and that its error process

martingale Mθ
n,t obeys Condition 1. We return to the assumptions on the edge effects in

due time. Define �̃n
t = n−1Nn,t . The counting process Nn,t simply counts the transactions

and is hence observable, whereas n is a nonobservable abstraction introduced so that the
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asymptotic theory developed in the two preceding sections generalises to volatility-intensity
estimation. This means that �̃n

t is a rescaling of an estimator. For the (finite sample) empirical
applications of our estimator, the index n will turn out to be immaterial.

REMARK 5. We emphasize that n does not need to be observed for the developments in
this section to be valid. We need n to exist in the sense of Condition 2, but otherwise n is
a notational convenience that permits us to state results more simply, and n is in this sense

always only a scaling. For example, �̃n
t

p→ �t can be restated as �̂n,t = �n,t (1 + op(1)),
where �̂n,t = Nn,t .

Notice that there are no edge effects associated with �̃n
t , so (2.4) becomes �̃n

t = n−1�t,n+
Mλ

n,t , where Mλ
n,t = n−1(Nn,t − �t,n) is a martingale sequence. Moreover, as n → ∞,

n
[
Mλ

n,Mλ
n

]
t = n−1Nn,t

p→ �t,(4.1)

by Condition 2. The convergence in (4.1) combined with the fact that �t is increasing and
continuous, yield

n1/2Mλ
n,t ⇒

∫ t

0
λ1/2

s dW ′
s stably,

where W ′
s is a Wiener process defined on an extension of the original probability space (see

Theorem B.1 in the Supplementary Material). Set Lλ
t = ∫ t

0 λ
1/2
s dW ′

s , and we have the first
part of Condition 1. For Theorem 2.1 to be applicable, the sequence of martingales n1/2Mλ

n,t

must also be P-UT.

LEMMA 4.1. Assume Condition 2. Then n1/2Mλ
n,t is P-UT.

PROOF. That n〈Mλ
n,Mλ

n 〉t = n−1 ∫ t
0 λn,s ds ensures that n〈Mλ

n,Mλ
n 〉t is tight (Jacod and

Shiryaev (2003), Proposition VI.3.26, page 351). Being a counting process martingale, the
jumps n1/2|�Mλ

n,t |≤ 1, and Jacod and Shiryaev (2003), Proposition VI.6.13, page 379, gives
the result. �

In the absence of edge effects on the part of �̃n
t , QV(�̂n, �̃n) can be decomposed as

(cf. the decomposition in equation (D.1) of Appendix D in the Supplementary Material),

QV
(
�̂n, �̃n) = QV

(
�̂n, �̃n) + Op

(
QV

(
�̃n)1/2

Rn,k(�)1/2)
,(4.2)

by the Cauchy–Schwarz inequality, where

QV
(
�̂n, �̃n) = QV(�,�n/n) + QV

(
Mθ,�n/n

) + QV
(
�,Mλ

n

) + QV
(
Mθ,Mλ

n

)
,

and Rn,K(�) = K−1 ∑B−K
i=K (eθ

n,ti+K
− eθ

n,ti
− (eθ

n,ti
− eθ

n,ti−K
))2.

COROLLARY 4.2. Suppose that �̂n
t satisfies Condition 1 in Section 2.2, that (λn,t /n)n≥1

is tight and P-UT, and that eθ
n,t are op((K�n)

1/2n−α). Then, as K�n → 0

QV
(
�̂n, �̃n)

T = 2
[
Mθ

n,Mλ
n

]
T + 2

3
(K�n)

2[θ, λn/n]T + op

(
(K�n)

2) + op

(
n−αn−1/2)

.

PROOF. By Lemma 4.1, the sequence �̃n
t = n−1�n,t + Mλ

n,t satisfies Condition 1, and
the conditions on (λn,t /n)n≥1 ensure that Theorem 7 in Mykland and Zhang (2017b) is ap-
plicable. The second part of Theorem 2.1 then gives the result. �
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We have that QV(�̃n) = Op(K�n + n−1/2), which via (4.2) shows how differing re-
strictions on the edge effects associated with the integrated volatility estimator give differing
conclusions about QV(�̂n, �̃n) (see the discussion in Appendix D of the Supplementary Ma-
terial). If we assume that the edge effects associated with �̂n

t are op((K�n)
3/4n−α), which

is not unrealistic when working with two-scales estimators and pre-averaged observations
(see Zhang, Mykland and Aït-Sahalia (2005) and Mykland, Zhang and Chen (2019)), then
the conclusion of Corollary 4.2 is

QV
(
�̂n, �̃n)

T = 2
[
Mθ

n,Mλ
n

]
T + 2

3
(K�n)

2[θ, λn/n]T
+ Op

(
(K�n)

5/2) + Op

(
(K�n)

1/2n−αn−1/2)
.

Since [θ, λn/n]T →p [θ, λ]T , Corollary 2.3 entails that TSQCB,K1,K2
(�̂n, �̃n) is consistent.

With the definitions in Remark 5, TSQCB,K1,K2
(�̂n, �̂n) is also consistent. Also, consider

the process ρt (·, ·), given by

ρ(θ, λ)t = [θ, λ]t
([θ, θ ]t [λ,λ]t )1/2 .

Notice that 0 ≤ ρ(θ, λ)t ≤ 1 for all t due to the Kunita–Watanabe inequality (Protter (2004),

Theorem II.25, page 69). For each t we see that ρ(θ, λn)t = ρ(θ, λn/n)t
p→ ρ(θ, λ)t by the

continuous mapping theorem, which means that the coefficient ρ(θ, λ)t can be consistently
estimated using the estimators �̂n

t and �̂n
t , the latter simply defined as �̂n

t = Nn,t . In partic-
ular, define

ρTSQC
(
�̂n, �̂n)

T = TSQC(�̂n, �̂n)T

(TSQC(�̂n)T TSQC(�̂n)T )1/2
,

and note that ρTSQC(�̂n, �̂n)T = ρTSQC(�̂n, �̃n)T , from which consistency of this estima-
tor follows. When �̂n and �̃n have different convergence rates, as in Lemma 2.2, another
consistent estimator for ρ(θ, λ)t is QVB,K2

(�̂n, �̃n)/(TSQC(�̂n)T TSQC(�̂n)T )1/2. Since
the speed at which QVB,K converges is governed by the inferior convergence rate, there is,
however, not that much to be gained in using this latter estimator, potentially apart from some
less fine tuning of the K1 and K2 parameters. These two estimators of ρ(θ, λ)t have a simi-
lar flavour to them, but are different from, the first-order correlation estimator introduced in
Barndorff-Nielsen and Shephard (2004), Sections 3.1-3.2, pages 899–903.

In Section 4.2, we study the performance of various TSQC-estimators on simulated data.
Before proceeding to the simulations and the empirical application, we provide an example
of a simple model satisfying the above assumptions.

EXAMPLE 1 (A volatility-intensity model). Suppose that we observe samples from the
process Xt = X0 + ∫ t

0 σs dWs , where the spot volatility and the intensity both follow CIR-
processes (Cox, Ingersoll and Ross (1985)) given by,

dσ 2
t = κ

(
α − σ 2

t

)
dt + γ σt dZt, σ 2

0 = α,

dλn,t = βn(ξn − λn,t )dt + νnλ
1/2
n,t dBt, λn,0 = ξn,

(4.3)

where Zt and Bt are Wiener processes such that corr(Zt ,Bt ) = ρ, and Wt is a Wiener process
that may or may not be correlated with Zt . The parameters κ,α and γ as well as βn, ξn and
νn are positive and we assume that the Feller condition (Feller (1951)) holds for both the
volatility and the intensity, that is 2κα ≥ γ 2, and 2βnξn ≥ ν2

n for all n ≥ 1. In this model, the
dependency between σ 2

t and λn,t is introduced by the correlation between Zt and Bt . Suppose
that ξn = nξ , νn = √

nν and that 0 < β ≤ βn → ∞ as n → ∞. Then, for each t ∈ [0, T ], we
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have that n−1�n,t
p→ ξ t , and that n−1[σ 2, λn]t →p [σ 2, λ]t = ργ νξ1/2 ∫ t

0 σs ds as n → ∞.
The expression on the right is an estimand for the TSQC estimator. See Appendix C in the
Supplementary Material for details related to this example. In the next section the model of
Example 1 is used as the basis for a simulation study.

4.2. Simulations. To investigate the finite sample properties of the TSQC estimators we
simulated 1000 datasets from the model of Example 1. The initial observations (i.e., at
time zero) for the volatility and intensity processes were sampled from a Gamma dis-
tribution with parameters (2κα/γ 2,2κ/γ 2) and a Gamma distribution with parameters
(2βnξn/ν

2
n,2βn/ν

2
n), respectively. The parameter values were α = 2.172, κ = 2.345, γ =

1.000 (volatility model), ξn = n6.912, βn = n1/40.305, ν = √
n1.000, with n = 3500. The

microstructure noise was taken as additive on the efficient price and independent of the three
underlying Wiener processes, that is, we observe

Yti = Xti + εti ,

where the εti were independent mean zero normals with standard deviation 0.001, indepen-
dent of W,Z and B . These three process were all Wiener processes, W was independent
of Z and B , while Z and B were dependent with correlation ρ = 0.765. All the processes
were simulated over the unit interval, and the average sample size over the 1000 simulations
were 24114. This corresponds roughly to one observation per second over one trading day.
In other words, our simulation study is not of the ultra high frequency type (for example, in
the empirical application of Section 4.3 the daily sample size is about ten times as big as in
these simulations).

For each simulated dataset we estimated the quadratic covariation between the volatility
and the intensity [σ 2, λ], the volatility of volatility [σ 2, σ 2], and the volatility of the inten-
sity [λ,λ]. The first two of these estimands were estimated both using the observations Yti

(i.e., the efficient price contaminated by microstructure noise), and also assuming that the ef-
ficient price Xti is observed directly (to estimate [λ,λ] only the observations times are used,
and these are not affected by microstucture noise). In the latter case, the integrated volatility
was simply estimated using the realised volatility �̂ = ∑

ti+1≤1(Xti+1 − Xti )
2, while for the

noisy observations Yti we estimated the integrated volatility using the Two-Scales Realised
Volatility (TSRV) of Zhang, Mykland and Aït-Sahalia (2005). The TSRV we employed is
given by

�̂ =
{(

1 − K − J + 1/3

N

)
(K − J )

}−1{
K[Ȳ , Ȳ ](K) − J [Ȳ , Ȳ ](J )},(4.4)

where Ȳ are pre-averaged observations, and [Ȳ , Ȳ ](K) = K−1 ∑N−K
i=1 (Ȳi+K − Ȳi)

2, where
N are the number of ‘observations’ of Ȳ , and K is a tuning parameter chosen by the user
(Mykland, Zhang and Chen (2019), equation (17), page 106, for this construction). For the
pre-averaging, we used a rolling average of five adjacent observations, and set the tuning
parameters in the TSRV to K = 10 and J = 5. All three estimands were estimated using
the TSQCB,K1,K2

estimator of (2.6), with B = 105, and tuning parameters K2 = 2K1 with
K1 = 400. The uncertainty of our TSQC estimates were in all cases computed using the
two-scales observed AVAR introduced in Mykland and Zhang ((2017a) Definition 4, equa-
tion (26)), page 209, (with K1 = 2K2 and K2 = 500, using the notation of the cited paper).
The applicability of the two-scales observed AVAR to the TSQC estimators is discussed in
Section 3.2. Figure 1 contains histograms of the approximate pivots

TSQC(·, ·) − estimand√
TSAVAR

,
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FIG. 1. 1000 simulated datasets with an average of 24114 observations per dataset. The parameter values are
as described in Section 4.2. The green curves indicate the density of the standard normal distribution.
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TABLE 1
Estimates based on 1000 Monte Carlo replications. The average sample size over these replications were 24114.
The bias and the root mean squared error (rmse) are the average of the 1000 replicates of the nonnormalised

deviances TSQC(·, ·) − estimand

Estimand Truth Bias Rmse 90% Cov. prob. 95% Cov. prob.

[σ 2, λ] (no noise) 2.917 −0.153 28.357 0.874 0.933
[σ 2, λ] (with noise) −0.961 178.088 0.889 0.943
[σ 2, σ 2] (no noise) 2.146 −0.731 24.802 0.895 0.951
[σ 2, σ 2] (with noise) 2.448 1211.322 0.876 0.939
[λ,λ] 6.889 −1.343 129.210 0.877 0.930

with the density of the standard normal distribution indicated by green curves. Summary
statistics from the simulations are given in Table 1. The bias and the root mean squared error
of our estimators are computed based on the nonnormalised deviances TSQC − estimand.
The take-away from the histograms in Figure 1 and the summary statistics reported in Table 1
is that for the quantities here estimated the normal approximation to the normalised TSQC
estimator works well even in what are, in a high frequency econometrics context, rather small
samples.

4.3. An empirical application. In the empirical study, we analyse features of the Apple
stock as traded over a period of 21 trading days in January 2018. All transactions registered
in the U.S. National Market System conducted between 9:45 am–3:45 pm Eastern Standard
Time are included. The reason for choosing this window is to avoid abnormal trading activity
during the opening and closing of the New York Stock Exchange, and to avoid those pre- and
post-market hours during which the trading frequency is low (Wang and Mykland (2014),
page 205). The Apple stock data is recorded down to the nanosecond (10−9 seconds), and
for the period under study the mean number of transactions over a trading day during the
time window we use was 203924, which is about nine transactions per second. After some
data cleaning, the data was pre-averaged and the TSRV estimator of Zhang, Mykland and
Aït-Sahalia (2005) was used to estimate the integrated volatility. As documented by Jacod,
Li and Zheng (2017), a positive serial correlation of the microstructure noise can be an issue
when the data are sampled at ultra high frequencies (as here). In this application, the serial
correlation should, however, for the most part be taken care of by our choice of tuning pa-
rameters in the TSRV estimator combined with the rather wide windows over which the data
are pre-averaged. Specifically, we used J = 20 and K = 40 (see equation (4.4)), choices that
filters out most dependence in the noise (see, e.g., Aït-Sahalia, Mykland and Zhang (2011),
Section 4, pages 165–167), and a pre-averaging window of, on average, 12 observations (see
Mykland, Zhang and Chen (2019), page 106).

The cumulative intensity of the observation times was estimated by 10−6Nt , where Nt

counts the number of transactions conducted from 9:45 am to 9:45 am plus t . Besides mak-
ing the plots more aesthetically pleasing, the number 10−6 plays no role. We used the TSQC
estimator for daily estimation of the volatility-intensity covariance matrix and the two trans-
formations thereof, ρ(σ 2, λ)t and βt . The estimates of ρ(σ 2, λ)t are time-varying and lie
between 0.5 and 0.8 for most of the days under study, indicating that the two processes are
indeed correlated. To estimate the (pointwise) confidence bands of our TSQC estimators we
employed the observed asymptotic variance. As discussed in Section 3.2, the applicability
of the observed asymptotic variance is ensured by Corollary 3.4. Figure 2 summarises the
results of this empirical application.
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FIG. 2. The Apple stock January 2.-31., 2018. Daily estimates of [σ 2, σ 2]T , [σ 2, λ]T and [λ,λ]T , as well as
the parameters βT and ρT . The TSRV was used as the estimator of the integrated volatility. The purple lines are
pointwise 95 percent confidence bands computed using the observed asymptotic variance of Mykland and Zhang
(2017a), along with the delta method. In the plot with the daily estimates of ρT , the value 1 is indicated by the
dashed grey line.

4.4. Using the volatility-intensity relationship to gain efficiency. We have seen above
that dθt = βt dλt + dZt and dθn,t = βn,t dλn,t + dZn,t , where, in the latter equation, there
is no normalisation by n, hence the two equations are equivalent, and, once again, one can
calculate as if n were known. This is an ANOVA decomposition along the lines of Mykland
and Zhang (2006), but in this case, θ and λ are unobserved. The process β is estimated as
above in this paper. The quantities θ and λ can be estimated as spot (instantaneous) quantities,
as in Mykland and Zhang (2008).

When microstructure is present in prices, but not in the observation times (as is the usual
understanding), then �̂n,t has a faster rate of convergence than �̂n,t , and hence this is also
true for λ̂n,t and θ̂n,t . The construction in Mykland and Zhang (2008) uses θ̂n,t = (�̂n,t −
�̂n,t−hn,θ )/hn,θ , and similarly for λ̂n,t , where hn,θ and hn,λ are chosen to be (at least rate-)
optimal, by the use of a variance-variance tradeoff. This leads to the rates for θ̂n,t and λ̂n,t

to be n−1/8 and n−1/4, respectively (when a rate optimal estimator of volatility is used, such
as the S-TSRV which is used in this paper, or the multiscale estimator of Zhang (2006); see
also Bibinger and Mykland (2016) for the multivariate case and the connection to realised
kernels, as well as the references therein). Finally, Lemma 2.2 and Theorem 3.1 provide for
β̂n,t to have a rate of convergence of n−1/4, thus∫ t

0
β̂n,s d̂λn,s −

∫ t

0
βn,s dλn,s = Op

(
n−1/4)

.

If, as in our data, the residual Zt (or Ẑn,t ) is small, the question naturally occurs whether
to prefer θ̂n,t , with a low rate of convergence, or

∫ t
0 β̂n,s d̂λn,s with a much better rate of

convergence, but with a bias of Zt (or Zn,t ). The conventional asymptotics-based answer to
this question is that a slow convergence rate of Op(n−1/8) is preferable to a much better
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convergence rate Op(n−1/4) to a limit with an Op(1) bias. In other words, pick θ̂n,t , even if
Zt is small.

This answer is uncomfortable, and has already caused some degree of argument in connec-
tion with volatility estimation, where there is an argument over whether intra-day estimators
are always preferable, or whether to draw on longer time periods. Assumptions of stationar-
ity will not help, and longer time periods are usually introduced by drawing on more highly
specified models, such as ARCH and GARCH type models, going back to the seminal pa-
pers of Engle (1982) and Bollerslev (1986). There is a huge literature in this area; see, for
example, the survey by Engle (1995).

Another path is to express “Zn,t is small” by a triangular array asymptotic regime whereby
Zn,t = op(1) as n → ∞. Triangular array asymptotic regimes are often used close to a singu-
larity; see, for example, Chan and Wei (1987) and Phillips (1987) in the context of time series
close to the unit root. In this context, it is often referred to as ‘local to unity asymptotics’. Un-
der this regime, one can augment the estimate of dθ by adding an estimate of βt dλt , giving
rise to an estimate of the form

θ̆n,t = cnθ̂n,t + (1 − cn)

∫ t

0
β̂n,t d̂λn,t .(4.5)

The tuning parameter cn should then be chosen to minimise the (random) mean squared error
in θ̆ , and in any case, cn → 0, thus improving the rate of convergence. A proper analysis of
(4.5) would require an assessment of the mean squared error of θ̆n,t , which would presumably
involve the estimation of [Zn,Zn]t , which brings us back to the ANOVA problem of Mykland
and Zhang (2006), but now with latent variables everywhere. This is beyond the scope of the
present paper.

If a reasonable solution can be found, similar methods may apply to a number of estima-
tors that involve the estimation of spot volatility, such as leverage effect (see Section 3.3),
volatility of volatility (in this paper, and also Vetter (2015) and Mykland and Zhang (2017a)),
as well as regression, and ANOVA (Mykland and Zhang (2009), Section 4.2, pages 1424–
1426, Zhang (2012), Section 4, pages 268–273, Reiß, Todorov and Tauchen (2015), and the
references therein).

5. Conclusion. This paper introduces a consistent estimator of the quadratic covariation
between two nonobservable spot-process semimartingales, derives the convergence rates of
this estimator, and presents a central limit theorem for such estimators. The main theoretical
contribution of the paper is this central limit theorem, a theorem that is applicable to a wide
range of estimators based on triangular arrays of rolling quadratic covariations and second
differencing of estimators of integrated spot processes.

As recognised in much recent literature on estimation in high frequency data, the assump-
tion of exogenous observation times is often untenable, and one typically allows for depen-
dency between the observation times and the price process. In this paper, we have considered
possible dependencies between the observation times and nonobservable spot-processes as-
sociated with the price process, of which the spot volatility is a prime example. A simulation
study shows that the estimators perform well with decent amounts of data. The empirical
study of the Apple stock indicates that the observation times and the volatility process of this
stock are positively correlated.
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SUPPLEMENTARY MATERIAL

A CLT for second difference estimators with an application to volatility and intensity
(DOI: 10.1214/22-AOS2176SUPP; .pdf). Appendix A of the supplement contains definitions
and conditions that are used throughout the article. Appendix B presents a stable central limit
theorem for càdlàg martingales, as well as a corollary giving conditions that may replace the
Lindeberg condition of the theorem. Appendix C gives details on Example 1. Appendix D
provides some background for Theorem 2.1 of the main text, while Appendix E contains the
full proof of Theorem 3.1 of the main text. Appendix F contains the full proof of the central
limit theorem, Theorem 3.2, of the main text.
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