Jean Jacod Albert N. Shiryaev

Limit Theorems for Stochastic Processes

Second edition

 ${}^pH''=0$. Set also $B_t=\sum_{s\leq t}|K_s|$, which clearly belongs to \mathscr{V}^+ . Since $\Delta B\leq |\Delta A|^{1/2}$ we deduce from the property $A^{1/2}\in\mathscr{A}^+_{loc}$ that $B\in\mathscr{A}^+_{loc}$, and $\sum_{s\leq .}|{}^pK_s|\leq B^p$ (by 3.21), which also belongs to \mathscr{A}^+_{loc} . Thus $\sum_{s\leq .}|H^*_s|\in\mathscr{A}^+_{loc}$ and by (b) there is $X''\in\mathscr{M}_{loc}$ with $\Delta X''=H''$.

Since $|H'|^2 \le 2|H|^2 + 2|H''|^2$, we get $C_t := \sum_{s \le t} |H'_s|^2 \le 2A_t + 2\sum_{s \le t} |H''_s|^2$, so $C_t < \infty$ for $t \in \mathbb{R}_+$. Moreover, since ${}^pH = 0$ we have ${}^pK = -{}^p(H1_{\{|H| \le 1\}})$, so $|{}^pK| \le 1$, and $|H'| \le 2$ by construction: therefore $\Delta C_t \le 4$, and we deduce that $C \in \mathcal{A}_{loc}^+$. Then (a) yields a local martingale X' with $\Delta X' = H'$. Hence X = X' + X'' meets $\Delta X = H$.

- 3. Now we turn to *Ito's formula*. In the following, $D_i f$ and $D_{ij} f$ denote the partial derivatives $\partial f/\partial x^i$ and $\partial^2 f/\partial x^i \partial x^j$.
- **4.57 Theorem.** Let $X = (X^1, ..., X^d)$ be a d-dimensional semimartingale, and f a class C^2 function on \mathbb{R}^d . Then f(X) is a semimartingale and we have:

$$f(X_{t}) = f(X_{0}) + \sum_{i \leq d} D_{i} f(X_{-}) \cdot X^{i} + \frac{1}{2} \sum_{i,j \leq d} D_{ij} f(X_{-}) \cdot \langle X^{i,c}, X^{j,c} \rangle$$

$$+ \sum_{s \leq t} \left[f(X_{s}) - f(X_{s-}) - \sum_{i \leq d} D_{i} f(X_{s-}) \Delta X^{i}_{s} \right]$$
4.58

Of course, this formula implicitely means that all terms are well-defined. In particular the last two terms are processes with finite variation (the first one is continuous, the second one is "purely discontinuous").

Formula 4.58 is also valid when f is complex-valued: take the real and purely imaginary parts separately.

Proof. To simplify notation somewhat, with any C^2 function f on \mathbb{R}^d we associate the C^1 function \hat{f} on $\mathbb{R}^d \times \mathbb{R}^d$ defined by

$$\hat{f}(x, y) = f(x) - f(y) - \sum_{j \le d} D_j f(y) (x^j - y^j),$$

where x^{j} denotes the j^{th} component of x.

(i) We first prove the result when f is a polynomial on \mathbb{R}^d . It suffices to consider the case of monomials and, by induction on the degree and since the result is trivially true for constant functions, it suffices to prove the following: let g be a function meeting $g(X) \in \mathcal{S}$ and 4.58, then $f(x) = x^k g(x)$ also satisfies $f(X) \in \mathcal{S}$ and 4.58.

Since $g(X) \in \mathcal{G}$ and $X^k \in \mathcal{G}$, we have $f(X) \in \mathcal{G}$ by 4.47b and 4.45, and we also have $f(X) = f(X_0) + X_-^k \cdot g(X) + g(X_-) \cdot X_-^k + [X_-^k, g(X)]$. Now g satisfies 4.58, hence (using several times 4.36 and 4.37) we obtain:

(1)
$$f(X) = f(X_0) + \sum_{i \le d} (X_-^k D_i g(X_-)) \cdot X^i + \frac{1}{2} \sum_{i,j \le d} (X_-^k D_{ij} g(X_-)) \cdot \langle X^{i,c}, X^{j,c} \rangle + \sum_{s \le \cdot} X_{s-}^k \hat{g}(X_s, X_{s-}) + g(X_-) \cdot X^k + [X^k, g(X)].$$