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Exercise Set 2

Make the assumptions in Section 3.2 of the notes. Your data is X0, Xtn,1 , ..., Xtn,i
, ..., Xtn,n = XT .

For simplicity we write ti to mean tn,i.

1. (Simple subsampling.) In addition to the usual grid Gn = {0 = tn,0, tn,1, ..., tn,n = T}, also
consider
Gn,1 = {0, tn,1, tn,3, ..., tn,2i+1, ..., T} and Gn,2 = {0, tn,2, tn,2, ..., tn,2i, ..., T}, so that, in particu-
lar, Gn,1 ∪Gn,2 = Gn, while Gn,1 ∩Gn,2 = {0, T}. Consider the following estimator of volatility:

[̂X,X]t =
1

2

(
[X,X]

Gn,1

t + [X,X]
Gn,2

t

)
. (1)

In addition to t∗ from (2.27) in the notes, also define t∗∗ = max{ti ∈ G : ti+1 ≤ t}.

(a) Show that

[̂X,X]t − [X,X]Gnt = L
(n,d)
t + op(n

−1/2) (2)

(where “d” stands for discrete), where

L
(n,d)
t =

∑
ti+1≤t

∆Xti−1
∆Xti . (3)

(b) Provide a continuous interpolation Lt = L
(n)
t of L

(n,d)
t . (In analogy with the interpolation

used to create a continuous Mt on p. 136 and a continuous [X,X,X,X]Gt on p. 137. The
interpolated process should be a local martingale.)

(c) Explain why the difference between these two martingales (L
(n,d)
t and L

(n)
t ) is asymptot-

ically negligible.

(d) Provide a (data based and consistent) estimate of the quadratic variation Q̂V of Lt.

(e) Derive the asymptotic value of n[L(n), L(n)]t under the assumptions of, say, Proposition
2.21 (p. 143) in the notes.
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2. (A first stab at data. With mystery.)

(a) Retrieve the bid and offer prices for Apple (AAPL) and Google (GOOG) for Dec 3, 2012.
The data are from the TAQ database in WRDS.

(b) Use R or excel to construct signature plots for the realized volatility of the bid and
the offer, the midquote ((bid+offer)/2). Also provide a signature plot for the realized
co-volatility (covariance). [Hints: You may need substantially larger values of K to get
comparable results. For standardization, please plot

√
(250 ∗ r), where r is any of the

realized quantities. If r < 0, use sign of r ×
√

(250 ∗ |r|).] Explain as well as you can the
effects that you observe. [Hint: there is a mystery here, with a clue (see the plot below,
courtesy of CH). You are encouraged to try to solve it.]

(c) For the same data (possibly after any adjustments what you may with to make based

on the solution to the mystery), compute the statistic L
(n,d)
T from the previous problem,

as well as Q̂V. We shall later show that L
(n,d)
T /

√
Q̂V is asymptotically N(0,1) if the X

process is an Itô process. On this basis, test the null hypothesis H0 that the X process
is an Itô process.
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3. (Mathematical subsampling tricks.)

(a) Let p > 1. Define Rp(Gn) =
∑n

i=1(∆ti)
p, where ∆ti = ti − ti−1. Now form a new grid

Gn−1 by deleting one of the observation points (except t0 or tn). For example, if t1 is
deleted, then Gn−1 = {0 = t0, t2, t3..., tn = T}. Determine when Rp(Gn−1) ≥ Rp(Gn).

(b) Consult Example 2.19 (ii), and set more generally Nt = #{i : ti ∈ (0, t]}. We define that
the arrival of points follow an inhomogenlus Poisson process with intensity process (λt)
if Nt −

∫ t

0
λsds is a martingale.

Important properties are as follows: suppose that the intensity process is bounded from
above and below by constants, say

0 < λ− ≤ λt ≤ λ+ <∞. (4)

Then the points ti can be generated as follows: Generate a set of points from a Poisson
process with intensity λ+, call these ui. For each i flip a coin with probability of heads
λui

/λ+. If heads, ui is added to the grid of ti’s, otherwise it is discarded. Also note
that given the points ti generated from (λt), one can further subsample (keep ti with
probability λ−/λti) to obtain time points from a Poisson process with intensity λ−.

Question: Determine whether the conditions of Proposition 2.17 are satisfied when ob-
servation points come from a inhomogenous Poisson process with intensity process (λt),
assuming that (4) is satisfied.

4. (Picking every second Poisson arrival.) Consult Example 2.24 (ii), and note that when obser-
vations arrive according to a Poisson process, then, in probability,

n[M,M ]t → 4T

∫ t

0

σ4
sds (5)

Suppose instead that observations arrive according to a Poisson process, but for technical
reasons we can only use every second observation. What is the corresponding limit in (5)?
(Use n as the actual number of observations used.).

[Notes: given the previous problem, we take for granted that the regularity conditions of
Propositions 2.17 and 2.21 are satisfied.]

5. (Another way of generating irregular times.) Suppose that F is an increasing and continuously
differentiable function which maps [0, T ] to [0, T ]. Let G be the inverse function of F , so
that F (G(x)) = G(F (x)) = x. We suppose that for each t, F (t) is a stopping time. Set
ui = un,i = Ti/n (equidistant sampling points) and define ti = tn,i = F (ui). As before,
dXt = σtdWt. Define Yt = XF (t). Let Gn be the grid based on the ti’s, while Hn is the grid
based on the ui’s.
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(a) Show that [X,X]GnF (t) = [Y, Y ]Hn
t .

(b) Find the volatility of the process Yt.

(c) Let MX and MY be the error martingales for [X,X]Gnt − [X,X]t and [Y, Y ]Hn
t − [Y, Y ]t.

Use the limit of n[MY ,MY ]T to find the limit of n[MX ,MX ]T .

(d) Can this model for the generation of observation times be used to generate Poisson
observation times?
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