MathFinance 346/Stat 391. Winter 2005. Homework 3. Due Wed 1/26.

All exercises use the notation in Schweizer's (1992) paper. Except in problem 5, you can assume that the short rate r = 0.

1. If the risk neutral measure coincides with the "minimal martingale measure" \hat{P} , find the market price of risk in the following *P*-Brownian motions: B_t , ϵ_t , ξ_t , and N_t .

2. Find the sensitivity of the hedging strategy to the initial value: $\partial \theta_t^* / \partial L$. (Give as explicit an expression as you can).

3. Assume that all the coefficients $(\mu, \sigma, m, v \text{ and } \rho)$ are nonrandom and constant. Find, as explicitly as you can, the hedging strategy for a European call on S_T with strike K.

4. Assume that all the coefficients $(\mu, \sigma, m, v \text{ and } \rho)$ are nonrandom and constant. Find, as explicitly as you can, the value L that minimizes

$$\min_{\theta \in \Theta} E(\Pi + L - G_T(\theta))^2.$$

Give L for the European call on S_T with strike K.

5. Assume that the short term interest rate is non-zero. Show how to adapt Schewizer's results to this case. Discuss what conditions need to be imposed on the interest rate.