CONTINUOUS TIME PRICING AND TRADING:

A REVIEW, WITH SOME EXTRA PIECES

THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY

- SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE

- COMPLETENESS, RISK NEUTRAL PRICING
 including quantile hedging (in the lect 7 case)

- SUPERREPLICATION
 American options
 unknown probability measure
 known probability measure, incomplete market

- MEAN-VARIANCE, UTILITY BASED PRICING
 such as the paper by Schweizer
 unknown probability measure
 known probability measure, incomplete market
THE SIMPLEST CASE

Problem: A contract pays the owner 1 share of stock S at the first time $t, 0 \leq t \leq T$ that the share price S_t exceeds X. If the share price does not exceed X at any time $t = 0, ..., T$, the contract pays one share of stock S at time T. Find the price of this contract.

Solution: To satisfy this contract, you need to buy one share of stock at time zero.

THIS IS A TRADING STRATEGY, BUT DOES NOT REQUIRE STOCHASTIC CALCULUS

IF SUCH A STRATEGY IS AVAILABLE, USE IT!

OTHER EXAMPLES

• prices of forward contracts
• put call parity for European options
IN MOST CASES:

REDUCE PROBLEM BY NUMERAIRE INVARIANCE

\[\tilde{S}_t = \text{discounted price} \quad \tilde{\eta} = \text{discounted payoff at } T \]

\(\tilde{\eta} \) can be exactly financed if and only if

\[\tilde{\eta} = \tilde{c} + \int_0^T \theta_t d\tilde{S}_t \] (*)

(Lect 9 last quarter, p. 9-10)

\(\tilde{c} \) is initial (discounted) price

\(\theta_t \) is the “delta” (independent of numeraire)

• This is a “self financing strategy” (SFS)

• Same principle for multiple securities

• This does not depend on “risk free” or “actual” measure

IF YOU FIND SUCH A STRATEGY W/OUT GOING THROUGH THE USUAL MACHINERY:
USE IT!
CLASSICAL EXAMPLE: THE VOLATILITY SWAP

\[d\tilde{S}_t = \tilde{S}_t \mu_t dt + \tilde{S}_t \sigma_t dW_t \]

Ito’s formula: \(\log \tilde{S}_T = \log \tilde{S}_0 + \int_0^T \frac{1}{\tilde{S}_t} d\tilde{S}_t - \frac{1}{2} \int_0^T \sigma_t^2 dt \)

Or: \(\int_0^T \sigma_t^2 dt = 2 \left(-\log \tilde{S}_T + \log \tilde{S}_0 + \int_0^T \frac{1}{\tilde{S}_t} d\tilde{S}_t \right) \)

Read directly from this that discounted payoff \(\int_0^T \sigma_t^2 dt \) can be replicated by:

- initial capital: \(2 \log \tilde{S}_0 \)
- + by owning an option with payoff \(-2 \log \tilde{S}_T \)
- Dynamic hedge: \(\theta_t = \frac{2}{\tilde{S}_t} \)

Note: we have not told you which probability distribution, \(P \) or \(P^* \), we are using
VOLATILITY SWAP, CONTINUED

If you wish to replicate actual (not discounted payoff) \(\int_0^T \sigma_t^2 dt \):

Suppose discounting by zero coupon bond \(\Lambda_t, \Lambda_T = 1 \)
- The discounted payoff is \(\frac{1}{\Lambda_0} \int_0^T \sigma_t^2 dt \)
- Therefore: same strategy as on previous page, multiplied by \(\frac{1}{\Lambda_0} \)

WHICH MEANS REPLICATION BY:
- initial capital: \(\frac{2}{\Lambda_0} \log S_0 \)
- + by owning an option with payoff \(- \frac{2}{\Lambda_0} \log \tilde{S}_T \)
- Dynamic hedge: \(\theta_t = \frac{2}{\Lambda_0 S_t} \)

IMPORTANT:

THIS IS A HEDGE FOR THE CUMULATIVE VOLATILITY OF THE DISCOUNTED SECURITY

(This is the same as the cum. vol. for the original security if \(r \) is constant)
THE "USUAL MACHINERY"

IN MORE COMPLEX CASES, CANNOT READ HEDGE DIRECTLY

SIMPLEST APPROACH: COMPLETENESS FROM GEOMETRIC BROWNIAN MOTION

system: \(dS_t = \mu_t S_t dt + \sigma S_t dW_t\) and \(r = \) constant
payoff: \(\eta = \) function of the path of \(S\)

IN THIS CASE, THE ALGORITHM IS...

- Define \(P^*\) to be such that \(dS_t = rS_t dt + \sigma S_t dW_t\)
- Compute \(\tilde{C}_t = E^*(\tilde{\eta} \mid \mathcal{F}_t)\)
- The delta is \(\theta_t = \frac{d[\tilde{C}, \tilde{S}]_t}{d[S, S]_t}\)

This works (gives SFS) because of the martingale representation theorem (p. 11-12 in Lect 9 of last quarter)

YOU NEED TO KNOW HOW TO DO THIS

FOR MORE EXERCISE, COMPUTE THE ANALYTIC EXPRESSIONS GIVEN IN HULL’S BOOK
A MORE COMPLEX COMPLETE (?) CASE:

THE HESTON MODEL

\[
dS_t = \mu_t S_t dt + v_t^{1/2} S_t dW_t
\]

\[
dv_t = a(b - v_t) dt + cv_t^{1/2} dB_t
\]

with \(d[W, B]_t = \rho dt\) and constant interest rate \(r\)

System is generated by two Brownian motions. Two possibilities:

- if only \(S\) is traded: market is incomplete, need to use methods to this case
- if one derivative is traded, may be able to complete market with this derivative (need as many securities as you have Brownian motions)

But a problem is as follows: under the risk neutral measure

\[
dS_t = rS_t dt + v_t^{1/2} S_t dW^*_t
\]

\[
dv_t = ??? dt + cv_t^{1/2} dB^*_t
\]

The market may not be complete under \(P^*\)
BACK TO THE DRAWING BOARD...

Suppose the model is valid under P^*

$$dS_t = rS_t dt + v_t^{1/2} S_t dW^*_t$$
$$dv_t = a(b - v_t)dt + cv_t^{1/2} dB_t$$

Suppose for simplicity that $\rho = 0$ (otherwise numerical solution only). European call payoff $\eta^K = (S_T - K)^+$. If $\tilde{B}(\tilde{S}_t, \sigma^2(T - t))$ is Black-Scholes price (for constant σ^2), then, since $\rho = 0$:

$$E^*(\tilde{\eta}^K | (v_u)_{0 \leq u \leq T}, (S_u)_{0 \leq u \leq t}) = B(\tilde{S}_t, \int_t^T v_u du)$$

and so the discounted price for payoff η^K is

$$\tilde{C}_t^K = E^*(\tilde{\eta}^K | \mathcal{F}_t) = E^*(B(\tilde{S}_t, \int_t^T v_u du) | \mathcal{F}_t)$$
$$= f^K(\tilde{S}_t, v_t, T - t)$$

which can be calculated if one knows a, b, c
HOW TO HEDGE IN THIS MODEL

Since the system is generated by two Brownian motions under the risk neutral measure: need two securities to hedge, say S_t, and C^X_t for one strike price X

If f^K_v means $f^K_v(\tilde{S}_t, v_t, T - t)$, etc, and since $d[\tilde{S}, v]_t = 0$

\[
\begin{align*}
d\tilde{C}^K_t &= f^K_S d\tilde{S}_t + \frac{1}{2} f^K_{SS} d[\tilde{S}, \tilde{S}]_t + f^K_v dv_t + \frac{1}{2} f^K_{vv} d[v, v]_t - f^K_t dt
\end{align*}
\]

and the same for C^X, so that

\[
\begin{align*}
d\tilde{C}^K_t &= f^K_S d\tilde{S}_t + f^K_v dv_t + dt\text{-terms} \\
d\tilde{C}^X_t &= f^X_S d\tilde{S}_t + f^X_v dv_t + dt\text{-terms}
\end{align*}
\]

Express the dv_t-term by

\[
\begin{align*}
dv_t &= \frac{1}{f^X_v} d\tilde{C}^X_t - \frac{f^X_S}{f^X_v} d\tilde{S}_t + dt\text{-terms}
\end{align*}
\]

and get

\[
\begin{align*}
d\tilde{C}^K_t &= f^K_S d\tilde{S}_t + f^K_v \left(\frac{1}{f^X_v} d\tilde{C}^X_t - \frac{f^X_S}{f^X_v} d\tilde{S}_t \right) + dt\text{-terms}
\end{align*}
\]
Rearrange:

\[d\tilde{C}_t^K = \left(f^K_S - \frac{f^K_v f^K_X}{f^K_v} \right) d\tilde{S}_t + \frac{f^K_v}{f^K_X} d\tilde{C}_t^X + dt\text{-terms} \]

However, \(\tilde{C}_t^K, \tilde{S}_t \) and \(\tilde{C}_t^X \) are all (local) martingales, so

\[dt\text{-terms} = 0 \]

Final self financing strategy:

\[d\tilde{C}_t^K = \left(f^K_S - \frac{f^K_v f^K_X}{f^K_v} \right) d\tilde{S}_t + \frac{f^K_v}{f^K_X} d\tilde{C}_t^X \]

in other words: to hedge payoff \(\eta^K \), hold

- \(f^K_S - \frac{f^K_v f^K_X}{f^K_v} \) units of stock \(S_t \)
- \(\frac{f^K_v}{f^K_X} \) units of the option with payoff \(\eta^X \)

Initial starting capital: \(f(\tilde{S}_0, v_0, T) \) dollars

THE ONLY THING THAT REMAINS IS TO CALCULATE THE FUNCTION \(f \)
ANOTHER CASE OF HEDGING
IN ADDITIONAL SECURITIES

The superreplication in HW 6

THE THREE INVARIANCES

SELF FINANCING STRATEGIES ARE INVARIANT UNDER:

- Change of numeraire
- Change of measure (so long as absolutely continuous)
- Change of time
CHANGE OF TIME

Function \(f : [0, T] \rightarrow [0, T'] \) is a time change if

- \(f \) is increasing
- \(f(0) = 0 \) and \(f(T') = T' \)
- \(f^{-1}(t) \) is a stopping time, for each \(t \)

Securities on original time scale \(\tilde{S}_t, \tilde{C}_t \) are connected by

\[
\tilde{C}_t = \tilde{C}_0 + \int_0^t \theta_u d\tilde{S}_u
\]

Securities on new time scale

\[
\tilde{S}_t^{\text{new}} = \tilde{S}_{f(t)} \quad \text{and} \quad \tilde{C}_t^{\text{new}} = \tilde{C}_{f(t)}
\]

satisfy

\[
\tilde{C}_t^{\text{new}} = \tilde{C}_0 + \int_0^t \theta_u^{\text{new}} d\tilde{S}_u^{\text{new}}
\]

where

\[
\theta_t^{\text{new}} = \theta_{f(t)}
\]
This is because the stochastic integral is a limit of sums:

Set $u_i = f(v_i)$:

\[
\tilde{C}_{t_{\text{new}}} - \tilde{C}_0 = \int_0^{f(t)} \theta_u d\tilde{S}_u \\
\approx \sum_{u_i < f(t)} \theta_{u_i} (\tilde{S}_{u_{i+1}} - \tilde{S}_{u_i}) \\
= \sum_{v_i < t} \theta_{f(v_i)} (\tilde{S}_{f(v_{i+1})} - \tilde{S}_{f(v_i)}) \\
= \sum_{v_i < t} \theta_{v_i}^{\text{new}} (\tilde{S}_{v_{i+1}}^{\text{new}} - S_{v_i}^{\text{new}}) \\
\approx \int_0^t \theta_u^{\text{new}} d\tilde{S}_u
\]
IMPORTANT CONSEQUENCE OF INVARIANCE TO TIME CHANGE

Suppose that the discounted payoff $\tilde{\eta}$ satisfies:

$$\tilde{\eta} = g(\tilde{S})$$

where g is invariant to time:

if $s^{\text{new}}_t = s_{f(t)}$ for any deterministic time change, then $g(s^{\text{new}}) = g(s)$

Example: European payoffs, barrier and lookback payoffs written on the discounted process, or future

THEN: if you know that $\int_0^T \sigma_t^2 dt = \Xi$, you can price option as if $\sigma^2_t = \Xi/T = \text{constant}$

Technically: time change on the form:

$$f^{(-1)}(t) = \int_0^t \sigma_u^2 du$$

The time changed security is

$$d\tilde{S}^{\text{new}}_t = \sqrt{\frac{\Xi}{T}} \tilde{S}^{\text{new}}_t dW^{\text{new}}$$

(see p. 4-6 in Lect 5 (part 2))
CONVEXITY AND OPTIMAL STOPPING

JENSEN’S INEQUALITY

g is a convex function, M_t is a martingale, τ_1, τ_2 are stopping times, with $0 \leq \tau_1 \leq \tau_2 \leq T$

$$E(g(M_{\tau_2}) \mid \mathcal{F}_{\tau_1}) \geq g(M_{\tau_1})$$

SEVERAL CONSEQUENCES, SUCH AS

APPLICATION 1: If the interest rate is zero, it is never optimal to exercise any convex payoff early. Application to superhedging in Lecture 5.

APPLICATION 2: The American option inequality (Lect 5 in Fall (p. 14))

Assume also $g(s) \geq 0$, $g(0) = 0$, and that $\exp\{-\int_0^t ru\,du\}S_t$ is a martingale. Then

$$\exp\{-\int_0^t ru\,du\}g(S_t)$$

is a submartingale. Then

In particular, it is never optimal to exercise an American call early (when there is no dividend)