
Stat 39100/FinMath 34600 Lecture 8

CONTINUOUS TIME PRICING AND TRADING:

A REVIEW, WITH SOME EXTRA PIECES

THE SOURCE OF A PRICE IS ALWAYS A TRADING
STRATEGY

• SPECIAL CASES WHERE TRADING STRATEGY
IS INDEPENDENT OF PROBABILITY MEASURE

• COMPLETENESS, RISK NEUTRAL PRICING
including quantile hedging (in the lect 7 case)

• SUPERREPLICATION
American options
unknown probability measure
known probability measure, incomplete market

• MEAN-VARIANCE, UTILITY BASED PRICING
such as the paper by Schweizer
unknown probability measure
known probability measure, incomplete market
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THE SIMPLEST CASE

Problem: A contract pays the owner 1 share of stock
S at the first time t, 0 ≤ t ≤ T that the share price St

exceeds $ X. If the share price does not exceed X at any
time t = 0, ..., T , the contract pays one share of stock S
at time T . Find the price of this contract.

Solution: To satisfy this contract, you need to buy one
share of stock at time zero

THIS IS A TRADING STRATEGY, BUT DOES NOT
REQUIRE STOCHASTIC CALCULUS

IF SUCH A STRATEGY IS AVAILABLE, USE IT!

OTHER EXAMPLES

• prices of forward contracts

• put call parity for European options
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IN MOST CASES:

REDUCE PROBLEM BY NUMERAIRE INVARIANCE

S̃t = discounted price η̃ = discounted payoff at T

η̃ can be exactly financed if and only if

η̃ = c̃ +

∫ T

0

θtdS̃t (∗)

(Lect 9 last quarter, p. 9-10)

c̃ is initial (discounted) price

θt is the “delta” (independent of numeraire)

• This is a “self financing strategy” (SFS)

• Same principle for multiple securities

• This does not depend on “risk free” or “actual” mea-
sure

IF YOU FIND SUCH A STRATEGY W/OUT

GOING THROUGH THE USUAL MACHINERY:

USE IT!
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CLASSICAL EXAMPLE: THE VOLATILITY SWAP

dS̃t = S̃tµtdt + S̃tσtdWt

Ito’s formula: log S̃T = log S̃0 +
∫ T

0
1

S̃t

dS̃t −
1
2

∫ T

0
σ2

t dt

Or:
∫ T

0
σ2

t dt = 2
(
− log S̃T + log S̃0 +

∫ T

0
1

S̃t

dS̃t

)

Read directly from this that discounted payoff
∫ T

0
σ2

t dt
can be replicated by:

• initial capital: 2 log S̃0

• + by owning an option with payoff −2 log S̃T

• Dynamic hedge: θt = 2

S̃t

Note: we have not told you which
probability distribution, P or P ∗,

we are using
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VOLATILITY SWAP, CONTINUED

If you wish to replicate actual (not discounted payoff)∫ T

0
σ2

t dt:

Suppose discounting by zero coupon bond Λt, ΛT = 1

• The discounted payoff is 1
Λ0

∫ T

0
σ2

t dt

• Therefore: same strategy as on previous page, multi-
plied by 1

Λ0

WHICH MEANS REPLICATION BY:

• initial capital: 2
Λ0

log S̃0

• + by owning an option with payoff − 2
Λ0

log S̃T

• Dynamic hedge: θt = 2

Λ0S̃t

IMPORTANT:

THIS IS A HEDGE FOR THE CUMULATIVE VOLATIL-
ITY OF THE DISCOUNTED SECURITY

(This is the same as the cum. vol. for the original secu-
rity if r is constant)

Winter 2005 5 Per A. Mykland



Stat 39100/FinMath 34600 Lecture 8

THE “USUAL MACHINERY”

IN MORE COMPLEX CASES, CANNOT READ HEDGE
DIRECTLY

SIMPLEST APPROACH: COMPLETENESS FROM GE-
OMETRIC BROWNIAN MOTION

system: dSt = µtStdt + σStdWt and r = constant

payoff: η = function of the path of S

IN THIS CASE, THE ALGORITHM IS...

• Define P ∗ to be such that dSt = rStdt + σStdWt

• Compute C̃t = E∗(η̃ | Ft)

• The delta is θt = d[C̃,S̃]t

d[S̃,S̃]t

This works (gives SFS) because of the martingale repre-
sentation theorem (p. 11-12 in Lect 9 of last quarter)

YOU NEED TO KNOW HOW TO DO THIS

FOR MORE EXERCISE, COMPUTE THE ANALYTIC
EXPRESSIONS GIVEN IN HULL’S BOOK
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A MORE COMPLEX COMPLETE (?) CASE:

THE HESTON MODEL

dSt = µtStdt + v
1/2
t StdWt

dvt = a(b − vt)dt + cv
1/2
t dBt

with d[W, B]t = ρdt and constant interest rate r

System is generated by two Brownian motions. Two
possibilities:

• if only S is traded: market is incomplete, need to use
methods to this case

• if one derivative is traded, may be able to complete
market with this derivative (need as many securities as
you have Brownian motions)

But a problem is as follows: under the risk neutral mea-
sure

dSt = rStdt + v
1/2
t StdW ∗

t

dvt =???dt + cv
1/2
t dB∗

t

The market may not be complete under P ∗
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BACK TO THE DRAWING BOARD...

Suppose the model is valid under P ∗

dSt = rStdt + v
1/2
t StdW ∗

t

dvt = a(b − vt)dt + cv
1/2
t dBt

Suppose for simplicity that ρ = 0 (otherwise numerical
solution only). European call payoff ηK = (ST − K)+.

If B̃(S̃t, σ
2(T − t)) is Black-Scholes price (for constant

σ2), then, since ρ = 0:

E∗(η̃K | (vu)0≤u≤T , (Su)0≤u≤t) = B(S̃t,

∫ T

t

vudu)

and so the discounted price for payoff ηK is

C̃K
t = E∗(η̃K | Ft) = E∗(B(S̃t,

∫ T

t

vudu) | Ft)

= fK(S̃t, vt, T − t)

which can be calculated if one knows a, b, c
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HOW TO HEDGE IN THIS MODEL

Since the system is generated by two Brownian motions
under the risk neutral measure: need two securities to
hedge, say St, and CX

t for one strike price X

If fK
v means fK

v (S̃t, vt, T − t), etc, and since d[S̃, v]t = 0

dC̃K
t = fK

S dS̃t +
1

2
fK

SSd[S̃, S̃]t + fK
v dvt +

1

2
fK

vvd[v, v]t − fK
t dt

and the same for CX , so that

dC̃K
t = fK

S dS̃t + fK
v dvt + dt-terms

dC̃X
t = fX

S dS̃t + fX
v dvt + dt-terms

Express the dvt-term by

dvt =
1

fX
v

dC̃X
t −

fX
S

fX
v

dS̃t + dt-terms

and get

dC̃K
t = fK

S dS̃t + fK
v

(
1

fX
v

dC̃X
t −

fX
S

fX
v

dS̃t

)
+ dt-terms
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Rearrange:

dC̃K
t =

(
fK

S −
fK

v fX
S

fX
v

)
dS̃t +

fK
v

fX
v

dC̃X
t + dt-terms

However, C̃K
t , S̃t and C̃X

t are all (local) martingales, so

dt-terms = 0

Final self financing strategy:

dC̃K
t =

(
fK

S −
fK

v fX
S

fX
v

)
dS̃t +

fK
v

fX
v

dC̃X
t

in other words: to hedge payoff ηK , hold

•
(
fK

S −
fK

v
fX

S

fX
v

)
units of stock St

•
fK

v

fX
v

units of the option with payoff ηX

Initial starting capital: f(S̃0, v0, T ) dollars

THE ONLY THING THAT REMAINS IS TO CALCU-
LATE THE FUNCTION f
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ANOTHER CASE OF HEDGING
IN ADDITIONAL SECURITIES

The superreplication in HW 6

THE THREE INVARIANCES

SELF FINANCING STRATEGIES ARE INVARIANT
UNDER:

• Change of numeraire

• Change of measure (so long as absolutely continuous)

• Change of time
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CHANGE OF TIME

Function f : [0, T ] → [0, T ′] is a time change if

• f is increasing

• f(0) = 0 and f(T ) = T ′

• f (−1)(t) is a stopping time, for each t

Securities on original time scale S̃t, C̃t are connected by

C̃t = C̃0 +

∫ t

0

θudS̃u

Securities on new time scale

S̃new
t = S̃f(t) and C̃new

t = C̃f(t)

satisfy

C̃new
t = C̃0 +

∫ t

0

θnew
u dS̃new

u

where
θnew

t = θf(t)
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This is because the stochastic integral is a limit of sums:

Set ui = f(vi):

C̃new
t − C̃0 =

∫ f(t)

0

θudS̃u

≈
∑

ui<f(t)

θui
(S̃ui+1

− S̃ui
)

=
∑

vi<t

θf(vi)(S̃f(vi+1) − S̃f(vi))

=
∑

vi<t

θnew
vi

(S̃new
vi+1

− Snew
vi

)

≈

∫ t

0

θnew
u dS̃new

u
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IMPORTANT CONSEQUENCE OF
INVARIANCE TO TIME CHANGE

Suppose that the discounted payoff η̃ satisfies:

η̃ = g(S̃)

where g is invariant to time:

if snew
t = sf(t) for any deterministic time change, then

g(snew) = g(s)

Example: European payoffs, barrier and lookback pay-
offs written on the discounted process, or future

THEN: if you know that
∫ T

0
σ2

t dt = Ξ, you can price
option as if σ2

t = Ξ/T = constant

Technically: time change on the form:

f (−1)(t) =

∫ t

0

σ2
udu

The time changed security is

dS̃new
t =

√
Ξ

T
S̃new

t dWnew

(see p. 4-6 in Lect 5 (part 2))
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CONVEXITY AND OPTIMAL STOPPING

JENSENS INEQUALITY

g is a convex function, Mt is a martingale, τ1, τ2 are
stopping times, with 0 ≤ τ1 ≤ τ2 ≤ T

E(g(Mτ2
) | Fτ1

) ≥ g(Mτ1
)

SEVERAL CONSEQUENCES, SUCH AS

APPLICATION 1: If the interest rate is zero, it is never
optimal to exercise any convex payoff early. Application
to superhedging in Lecture 5.

APPLICATION 2: The American option inequality (Lect
5 in Fall (p. 14))

Assume also g(s) ≥ 0, g(0) = 0, and that exp{−
∫ t

0
rudu}St

is a martingale. Then

exp{−
∫ t

0
rudu}g(St) is a submartingale .

In particular, it is never optimal to exercise an American
call early (when there is no dividend)
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