Uncertain Volatility and Interest

\(\Lambda_t = \) zero coupon bond, \(\Lambda_T = 1 \)

\[\tilde{S}_t = S_t / \Lambda_t \]

\[d\tilde{S}_t = \mu_t \tilde{S}_t dt + \sigma_t \tilde{S}_t dW_t \]

Suppose

\[\sigma^- \leq \sigma_t \leq \sigma^+ \text{ for all } t \] \hspace{1cm} (1)

(Pointwise bound assumption) or

\[\equiv^- \leq \int_0^T \sigma^2_t dt \leq \equiv^+ \] \hspace{1cm} (2)

(Integral bound assumption)

What is the “ask” price \(A \) for European payoff

\[\eta = f(S_T) = f(\tilde{S}_T)? \quad \text{(note: } \Lambda_T = 1 : S_T = \tilde{S}_T) \]
Case: Pointwise bounds

\[\sigma^- \leq \sigma_t \leq \sigma^+ \] \hspace{1cm} (1)

(Avellaneda, Levy, Paras (1995), Lyons (1995)).

Let \(V(s, t) \) solve \((V(\tilde{S}_t, t) = \text{discounted value of portfolio})\)

\[
\begin{cases}
V_t(s, t) + \frac{1}{2} s^2 \max_{(1)}(\sigma^2 V_{SS}(s, t)) = 0 \\
V(s, T) = f(s)
\end{cases}
\] \hspace{1cm} (3)

(3): Barenblatt equation

Ito + (3)

\[
dV(\tilde{S}_t, t) = V_s(\tilde{S}, t)d\tilde{S}_t + V_t(\tilde{S}, t)dt + \frac{1}{2} \tilde{S}_t^2 \sigma_t^2 V_{SS}(\tilde{S}_t, t)dt
\]

\[
= V_S(\tilde{S}, t)d\tilde{S}_t - d\tilde{D}_t
\]

\[
d\tilde{D}_t = -(V_t(\tilde{S}, t) + \frac{1}{2} \tilde{S}_t \sigma_t^2 V_{SS}(\tilde{S}, t))dt
\]

\[
= \frac{1}{2} \tilde{S}_t^2 (\max_{(1)}[\sigma^2 V_{SS}(\tilde{S}_t, t)] - \sigma_t^2 V_{SS}(\tilde{S}_t, t))dt
\]

\[\geq 0 \]
Interpretation 1:

\[V(\tilde{S}_t, t) = \text{super-replication of } f(S_T) \]
\[D_t = \text{dividend} \]

Interpretation 2:

\[V(\tilde{S}_t, t) = P^* - \text{supermartingale} \]
\[V(\tilde{S}_T, T) = f(\tilde{S}_T) \]

In any case: \(\tilde{A} \leq V(\tilde{S}_0, 0) \)

However, if

\[\sigma_t^2 = \begin{cases} (\sigma^+)^2 & \text{if } V_{SS}(\tilde{S}_t, t) \geq 0 \\ (\sigma^-)^2 & \text{if } V_{SS}(\tilde{S}_t, t) < 0 \end{cases} \]

(one choice of \(P^* \) under (1))

then \(D_t \equiv 0 \), so \(V(\tilde{S}_t, t) \) exact replication on discounted scale,

so \(\tilde{A} \geq V(\tilde{S}_0, 0) \)

Conclusion:

\[\tilde{A} = V(\tilde{S}_0, 0) \]

\(f \) convex: use \(V(s, t) = \text{BS with } \sigma = \sigma^+ \)

\(f \) concave: use \(V(s, t) = \text{BS with } \sigma = \sigma^- \)
Case: Integral bounds (2)

Recall:

\(\Lambda_t = \) zero coupon bond, maturity \(T \)
\(\widetilde{S}_t = S_t / \Lambda_t \)
\(d\widetilde{S}_t = \mu_t \widetilde{S}_t dt + \sigma_t \widetilde{S}_t dW_t \)

Suppose

\[-\equiv \leq \int_0^T \sigma_u^2 du \leq \equiv^+ \]

(2)

What is the ask price \(A \) for payoff?

\(\eta = f(S_T) = f(\widetilde{S}_T) \)
\[A = \sup_{P^* \sim (2)} E^* \Lambda_0 f(\widetilde{S}_T) \]

Computation of \(A \):

Under \(P^* \sim (2) \):

\[d\widetilde{S}_t = \sigma_t \widetilde{S}_t dW_t^* \]

Or

\[d\log \widetilde{S}_t = -\frac{\sigma_t^2}{2} dt + \sigma_t dW_t^* \]
We set
\[\tau_t = \int_0^t \sigma_u^2 du \]
(require \(t \to \tau_t \) to be 1-1 (\(\sigma_u^2 > 0 \ a.s.) \)) and define \(\tilde{S} \) by
\[\tilde{S}_t = \tilde{S}_{\tau_t} \]
Define \(M_t = \int_0^t \sigma_u dW_u^* = \hat{M}_{\tau_t} \)
If \(\mathcal{F}_t = \hat{\mathcal{F}}_{\tau_t} \), then
\[\hat{M}_t \text{ is } (\hat{\mathcal{F}}_t) - \text{ MG } \text{ (show below)} \]
Also
\[[\hat{M}, \hat{M}]_{\tau_t} = [M, M]_t = \int_0^t \sigma_u^2 du = \tau_t \]
so
\[[\hat{M}, \hat{M}]_u = u \Rightarrow \hat{M}_t \text{ is std BM } /. \ (\hat{\mathcal{F}}_t) \]
\[\log \tilde{S}_{\tau_t} = \log \tilde{S}_t \]
\[= \log \tilde{S}_0 - \int_0^t \frac{\sigma_u^2}{2} du + \int_0^t \sigma_u dW_u^* \]
\[= \log \tilde{S}_0 - \frac{1}{2} \tau_t + \hat{M}_{\tau_t} \]
or
\[\log \tilde{S}_t = \log \tilde{S}_0 - \frac{1}{2} t + \hat{M}_t \]
or
\[d\tilde{S}_t = \tilde{S}_t d\hat{M}_t \]
Why is \((\widehat{M}_t)\) an \((\widehat{F}_t) - \text{MG}\)?

Set \(\lambda_t: \tau_{\lambda_t} = \lambda_{\tau_t} = t\)

If \(t \rightarrow \tau_t\) is \(1 - 1\) then \(\lambda_t\) is continuous

since \(M_t = \widehat{M}_{\tau_t}\), get \(\widehat{M}_t = M_{\lambda_t}\)

by \(\mathcal{F}_t = \widehat{\mathcal{F}}_{\tau_t}\) we mean \(\widehat{\mathcal{F}}_t = \mathcal{F}_{\lambda_t}\)

Use optional stopping:

\[
E(\widehat{M}_t \mid \widehat{\mathcal{F}}_s) = E(M_{\lambda_t} \mid \mathcal{F}_{\lambda_s}) = M_{\lambda_s} = \widehat{M}_s
\]

Recall

\[
\mathcal{F}_\lambda = \{ A \in \mathcal{F}: \forall t, \ A \cap \{ \lambda \leq t \} \in \mathcal{F}_t \}\]
Back to original problem:

\[\tilde{S}_T = \tilde{S}_{\tau_T}, \quad \tau_T = \int_0^T \sigma_u^2 du \]

\[P^* \sim (2) \iff \equiv^- \leq \int_0^T \sigma_u^2 du \leq \equiv^+ \]

\[\iff \equiv^- \leq \tau_T \leq \equiv^+ \]

It follows:

\[A = \sup_{P^* \sim (2)} \Lambda_0 E^* f(\tilde{S}_T) = \sup_{\equiv^- \leq \tau_T \leq \equiv^+} \Lambda_0 E^* f(\tilde{S}_{\tau_T}) \]

Also, \(\hat{S} \) is the same for all \(P^* \)

\[\hat{S}_0 = \tilde{S}_0 = \frac{1}{\Lambda_0} S_0, \quad d\hat{S}_t = \hat{S}_t d\hat{M}_t \]

If \(f = \) convex, Jensen’s inequality \(\Rightarrow \)

\[E[f(\hat{S}_{\equiv^+}) \mid \hat{F}_{\tau_T}] \geq f(\hat{S}_{\tau_T}) \quad \text{since } \tau_T \leq \equiv^+ \]

so

\[A = \Lambda_0 E^+ f(\hat{S}_{\equiv^+}) = BS(S_0, -\log \Lambda_0, \equiv^+) \]

If \(f = \) concave:

\[E[f(\hat{S}_{\tau_T}) \mid \mathcal{F}_{\equiv^-}] \leq f(\hat{S}_{\equiv^-}) \]

\[A = \Lambda_0 E^* f(\hat{S}_{\equiv^-}) = BS(S_0, -\log \Lambda_0, \equiv^-) \]
Integral bound + traded options?

Ask price A for payoff $f(\tilde{S}_T) = (\tilde{S}_T - K)^+$ under call prices

$$\Lambda_0 E^*(\tilde{S}_T - K_i)^+ = C_0^{(i)} \quad i = 1, \ldots, p \quad (5)$$

Set

$$h_\lambda(s) = (s - K)^+ + \sum_{i=1}^{P} \lambda_i [(s - K_i)^+ - \tilde{C}_0^{(i)}]$$

$$A \leq \inf_{\lambda} \sup_{P^* \sim (2)} \Lambda_0 E^* h_\lambda(\tilde{S}_T)$$

since one can replicate $h_\lambda(\tilde{S}_T)$ instead of $f(\tilde{S}_T)$. Any $\lambda \Rightarrow \sup$ over P^* satisfying (5):

$$A \leq \sup_{P^* \sim (2), (5)} \Lambda_0 E^*(\tilde{S}_T - K)^+$$

Some regularity conditions: $A = \text{this supremum}$
Time change:

\[A = \sup_{\tau} \Lambda_0 E^* (\hat{S}_\tau - K)^+ \]

where \(\tau = \) stopping time:

\[\Xi^- \leq \tau \leq \Xi^+ \quad (2)' \]

\[\Lambda_0 E^* (\hat{S}_\tau - K_i)^+ = C_0^{(i)} \quad (5)' \]

\(\hat{S} \) as before: \(d\hat{S}_t = \hat{S}_t d\hat{M}_t \)

If \(\tau' \) solves problem (in place of \(\tau \)), set

\[\tau = \inf \{ t \geq \tau' \mid \hat{S}_t = K_i \} \wedge \Xi^+ , \]

then

\[E^* [(\hat{S}_\tau - K_i)^+ \mid \mathcal{F}_{\tau'}] = (S_{\tau'} - K_i)^+ \]

and (Jensen)

\[E^*(\hat{S}_\tau - K)^+ \geq E^*(\hat{S}_{\tau'} - K)^+ \]

Can take

\[\hat{S}_\tau = K_i \quad \text{for some } i, \text{ or } \tau = \Xi^+ \]
Simple case: all calls have some implied volatility \equiv:

$$BS(S_0, -\log \Lambda_0, \equiv) = \Lambda_0 E^* (\hat{S}_{\equiv} - K_i)^+ = C^{(i)}_0$$

Can take

$$\tau' = \equiv$$

This gives optimal A.