
Let’s price a lookback option using the methods in this paper. We shall mainly be working with the European call example from Section 3. The payoff is

\[H = g(\max_{0 \leq t \leq T} X_t), \]

where \(g \) is a nondecreasing function, such as \(g(m) = (m - K)^+ \).

From the development in Section 3, we know that \(dP^* / dP = c_1 X_T^{-m/\sigma^2} \). Hence the set \(A \) can be written

\[A = \{ c_1^{-1} X_T^{m/\sigma^2} > c_2 g(M_T) \} = \{ X_T^{m/\sigma^2} > c_3 g(M_T) \}. \]

As in the paper, there will be two different cases depending on whether \(m/\sigma^2 \) is bigger or smaller than 1.

What we then need to do is to calculate \(P(A) \). For this purpose, one can use the known results about the joint distribution of a brownian motion and its running maximum. Suppose that \(Z_t \) is a Brownian motion and the maximum is given by

\[M_t = \max_{0 \leq u \leq t} Z_u. \]

Then, the joint density of \(Z_T \) and \(M_T \) is

\[f_{Z,M}(z,b) = -\frac{2}{T} \phi' \left(\frac{2b - z}{\sqrt{T}} \right) \text{ for } b \geq z^+ \]

where \(\phi \) is the standard normal density (and so \(\phi'(x) = -x\phi(x) \)). \(f_{Z,M}(z,b) = 0 \) if \(b < 0 \) or \(b < z \). See Karatzas and Shreve (1987), p. 95.

Of course, \(X \) is not a Brownian motion, but if we set \(Z_t = \sigma^{-1} \log(X_t/X_0) \), then we can use Girsanov to force \(Z \) to become one. Since, under \(P \)

\[Z_t = \theta t + W_t \]

where \(\theta = \frac{1}{\sigma} \left(m - \frac{\sigma^2}{2} \right) \), \(Z \) will be a Brownian motion under \(\hat{P} \) for which

\[\frac{dP}{d\hat{P}} = \exp\{\theta Z_T - \frac{1}{2} \theta^2 T\}. \]

As usual,

\[\max_{0 \leq t \leq T} X_t = X_0 \exp\{\sigma M_T\} \]

Finding \(A \), therefore, boils down to calculating

\[P(A) = \hat{E}_A \frac{dP}{d\hat{P}} \]

or

\[P(A) = \int \int_C \exp\{\theta z - \frac{1}{2} \theta^2 T\} f_{Z,M}(z,b) dz db \]
where C is the set so that $A = \{(Z, M) \in C\}$, i.e.,

$$C = \{(z, b) : \exp \left\{ \frac{m}{\sigma^2} \sigma z + \log X_0 \right\} > c_3 g(X_0 \exp \{\sigma b\}) \}.$$

Delightful expression, but analytic expressions can be found for standard call style payoffs. Once A has been determined from ϵ, then the price of the option becomes

$$E^*(H I_A) = \int \int_C g(X_0 \exp \{\sigma b\}) \exp \{\theta^* z - \frac{1}{2} \theta^* \sigma^2 T\} f_{Z, M}(z, b) dz db,$$

where θ^* is now such that

$$\frac{dP^*}{dP} = \exp \{\theta^* Z_T - \frac{1}{2} \theta^* \sigma^2 T\}.$$

2. References