MathFinance 346/Stat 391. Winter 2004.

Homework for Lecture 7. Due Fri 3/5 at the beginning of the review session.

1. The digital band option.

Consider a discounted stock price \tilde{S} with unknown and time varying volatility σ_t^2 . There are also no known bounds on this volatility. Consider strike prices K_1 and K_2 , and we are interested in a discounted payoff at time T given by

$$\tilde{\eta} = \text{ amount of time } t \in [0, T] \text{ so that } K_1 \leq \tilde{S}_t \leq K_2.$$

- (a) Given the existence of a market traded European put with (discounted) strike price $K, K_1 < K < K_2$, given an approximate hedge for $\tilde{\eta}$. Use a limiting argument to show the validity of the approximation.
- (b) What whould happen if there are market traded puts with (discounted) strike price K, for all $K_1 < K < K_2$?
- 2. The American down and out put. Let the volatility σ and the short rate r be fixed. Consider the option η which pays $(K - S_{\tau})^+$ if $\min_{t < \tau} S_t > H$, and 0 otherwise. The exercise time τ is, as usual, determined by the option owner, and must satisfy $0 \le \tau \le T$.
 - (a) State a formula for the price of η at time t < T.
- (b) Describe, as well as you can, the shape of \mathcal{C} , \mathcal{S} , and \mathcal{S}_t^* (the continuation and stopping regions, and the exercise boundary).

3. The essential supremum.

On a probability space (Ω, \mathcal{F}, P) , let $\{X_{\alpha}\}$ be a collection of random variables.

We define X to be "ess $\sup_{\alpha} X_{\alpha}$ " if (I) $X \geq X_{\alpha}$ a.s. for all α , and provided (II) any Y that satisfies

- $Y \ge X_{\alpha}$ a.s. for all α also satisfies $Y \ge X$ a.s. (a) Show that if the collection $\{X_{\alpha}\}$ is countable, i.e., on the form $\{X_n, n=1,2,...\}$, then ess $\sup_n X_n = 1$ $\lim_{n\to\infty} \max(X_1,...,X_n)$, almost surely.
- (b) In the following let \mathcal{P}^* be the set of all risk neutral measures equivalent to P. Suppose that there is a countable subset $\mathcal{Q}^* \subset \mathcal{P}^*$ so that for every $P^* \in \mathcal{P}^*$, there is a sequence Q_n^* in \mathcal{Q}^* so that dQ_n^*/dP converges a.s. to dP^*/dP . Also let $\mathcal{G} \subset \mathcal{F}$, and let Z be bounded. Show that, in this case, $E_{Q_*^*}(Z|\mathcal{G}) \to E_{P^*}(Z|\mathcal{G})$.
- (c) In the setting of (b), find and prove a result similar to (a) to approximate ess $\sup_{P^* \in \mathcal{P}^*} E_{P^*}(Z|\mathcal{G})$ with a countable sequence.