ONE PERIOD MODELS

\[t = \text{TIME} = 0 \text{ or } 1 \]

BASIC INSTRUMENTS:

* \(S_t \): STOCK
* \(B_t \): RISKLESS BOND

\[B_0 = 1 \quad B_1 = 1 + r \text{ or } e^r \]

* FORWARD CONTRACT:
 AGREEMENT TO SWAP $$ FOR STOCK
 - AGREEMENT TIME: \(t = 0 \)
 - AGREEMENT PRICE: \(F_0 \)
 - SWAP TIME \(t = 1 \)
 - SWAP: $$ \(F_0 \) FOR 1 STOCK \(S_1 \)

ACTUAL INSTRUMENT: \(W_t \):

\[W_0 = 0 \quad W_1 = S_1 - F_0 \]
ABITRAGE ARGUMENT: $F_0 = e^r S_0$

If $F_0 < e^r S_0$:

FORM PORTFOLIO AT $t = 0$: NET POSITION

SELL 1 STOCK
BUY S_0 # BONDS
ENTER 1 FORWARD CONTR

TOTAL PORTFOLIO

\[V_t = -S_t + S_0 B_t + W_t \]

VALUE: $V_0 = -S_0 + S_0 + 0 = 0$

\[V_1 = -S_1 + e^r S_0 + S_1 - F_0 = e^r S_0 - F_0 > 0 \]

V_t IS AN ARBITRAGE: MONEY FOR NOTHING NOT SUPPOSED TO OCCUR
MORE GENERALLY...

* $K + 1$ ASSETS, PRICE S_t^j, $j = 1, \ldots, K$
 $S^0 = B$ IS BOND: $S^0_0 = 1$, $S^0_1 = e^r$

* PORTFOLIO $\Delta = (\Delta_0, \ldots, \Delta_K)$:

 \[\text{HOLD } \Delta_j \# \text{ OF SECURITY } S_t^j \]

* VALUE OF PORTFOLIO:
 \[
 V_t(\Delta) = \sum_{j=0}^{K} \Delta_j S_t^j
 \]

* ARBITRAGE: A PORTFOLIO FOR WHICH

 \[
 V_0(\Delta) \leq 0 \\
 V_1(\Delta) \geq 0 \\
 V_1(\Delta) > 0 \text{ IN SOME SCENARIO} \\
 \quad (= \text{ WITH PROBABILITY } > 0)
 \]

Autumn 2005

Per A. Mykland
TWO STATE MODEL FOR STOCK

\[S_0 \xrightarrow{\text{SCENARIO H: } S_1(H)} S_1 = uS_0 \]
\[S_1 = dS_0 \xrightarrow{\text{SCENARIO T: } S_1(T)} \]

Conditions to avoid arbitrage

Consider portfolio: buy \(\frac{1}{B_0} \) # of bonds, \(-\frac{1}{S_0} \) # of stocks at time 0. Properties:

\[V_0 = \frac{1}{B_0}B_0 - \frac{1}{S_0}S_0 = 0 \]
\[V_1 = \frac{1}{B_0}B_1 - \frac{1}{S_0}S_1 = \begin{cases} e^r - u & \text{under scenario H} \\ e^r - d & \text{under scenario T} \end{cases} \]

If \(e^r \geq u \):
\[V_1 \geq 0 \quad \text{under H} \quad \text{ARBITRAGE} \]
\[V_1 > 0 \quad \text{under T} \quad \text{NOT ALLOWED} \]

It follows that \(u > e^r \) (unless \(P(T) = 0: e^r = u \) OK)

Similarly: portfolio \(-\frac{1}{B_0} \) bonds, \(\frac{1}{S_0} \) stocks \(\Rightarrow e^r > d \)

CONCLUSION: no arbitrage implies \(u > e^r > d \).
CALL OPTIONS

\[V_1 = (S_1 - K)^+ \quad V_0 = \text{???} \]

\[S_0 \leftarrow S_1 = uS_0 \quad \text{SCENARIO } H \]

\[S_1 = dS_0 \quad \text{SCENARIO } T \]

Suppose \(uS_0 > K > dS_0 \)
otherwise \(V_1 = S_1 - K \) \((dS_0 \geq K)\) or \(V_1 = 0 \) \((uS_0 \leq K)\)

REPLICATING PORTFOLIO
Buy \(\Delta_0 \) bonds and \(\Delta_1 \) stocks at time 0

portfolio: \(V_t(\Delta) = \Delta_0 B_t + \Delta_1 S_t \)
replication: \((S_1 - K)^+ = \Delta_0 B_1 + \Delta_1 S_1\)

FINDING THE \(\Delta \)s: 2 EQUATIONS, 2 UNKNOWNS:

\[uS_0 - K = \Delta_1 e^r + \Delta_2 uS_0 \quad \text{SCENARIO } H \]

\[0 = \Delta_1 e^r + \Delta_2 dS_0 \quad \text{SCENARIO } T \]

OR: \(\Delta_2 = \frac{uS_0 - K}{uS_0 - dS_0} \) and \(\Delta_1 = -e^{-r} \Delta_2 dS_0 \)

PRICE FOR THIS OPTION:

\[V_0 = \Delta_1 B_0 + \Delta_2 S_0 \]
\[= \Delta_2 e^{-r}(-dS_0 + e^r S_0) \]
ARGUMENT DEPENDS ON

• bond, stock can be bought or sold in any quantity
• bond, stock can be short sold (in the case of bond: this means that borrowing rate is same as lending rate)
• no bid-ask spread
• binomial model

Binomial model is oversimplification
“Brownian motion” is close to binomial model
Increasingly realistic models as the course progresses

ARGUMENT DOES NOT DEPEND ON

• Assumption of no arbitrage, except that $u > e^r > d$
MORE GENERAL DERIVATIVE SECURITIES
IN THE ONE PERIOD BINOMIAL MODEL

payoff $V_1(H)$ or $V_1(T)$
or $V_1 = f(S_1)$

where $f(s) = \begin{cases} (s - K)^+ & \text{call option} \\ (K - s)^+ & \text{put option} \end{cases}$
etc

REPLICATING PORTFOLIO
Buy Δ_0 bonds and Δ_1 stocks at time 0

portfolio: $V_t(\Delta) = \Delta_0 B_t + \Delta_1 S_t$
replication: $f(S_1) = \Delta_0 B_1 + \Delta_1 S_1$

FINDING THE Δs: 2 EQUATIONS, 2 UNKNOWNS:

$f(uS_0) = \Delta_1 e^r + \Delta_2 uS_0$ SCENARIO H
$f(dS_0) = \Delta_1 e^r + \Delta_2 dS_0$ SCENARIO T

OR: $\Delta_2 = \frac{f(uS_0) - f(dS_0)}{uS_0 - dS_0}$ and $\Delta_1 = e^{-r} \frac{uf(dS_0) - df(uS_0)}{u - d}$

PRICE FOR THIS OPTION:

$V_0 = \Delta_1 B_0 + \Delta_2 S_0$
DISCOUNTING

Discounted stock: \(S_t^* = S_t / B_t \)
Discounted bond: \(B_t^* = B_t / B_t = 1 \)
Discounted portfolio value: \(V_t^* = V_t / B_t \)

NUMERAIRE INVARIANCE

Portfolio in original numeraire: \(V_t(\Delta) = \Delta_0 B_t + \Delta_1 S_t \)
Portfolio in discounted numeraire:

\[
V_t^*(\Delta) = \frac{\Delta_0 B_t + \Delta_1 S_t}{B_t}
= \Delta_0 B_t^* + \Delta_1 S_t^*
\]

The number \(\Delta_0, \Delta_1 \) of bonds, stocks is the same in original and discounted numeraire
Exit interest. This is often convenient

TWO EQUATIONS, TWO UNKNOWNS
ON DISCOUNTED SCALE

\[
V_1^*(H) = \Delta_1 + \Delta_2 u S_0^* \text{ SCENARIO } H
\]
\[
V_1^*(T) = \Delta_1 + \Delta_2 d S_0^* \text{ SCENARIO } T
\]
PROBABILISTIC INTERPRETATION

Let $\pi(H), \pi(T)$ be two numbers

From $V_t^* = \Delta_0 B_t^* + \Delta_1 S_t^*$:

$$
\pi(H)V_1^*(H) + \pi(T)V_1^*(T)
= \pi(H)(\Delta_0 B_1^*(H) + \Delta_1 S_1^*(H))
+ \pi(T)(\Delta_0 B_1^*(T) + \Delta_1 S_1^*(T))
= \Delta_0 (\pi(H)B_1^*(H) + \pi(T)B_1^*(T))
+ \Delta_1 (\pi(H)S_1^*(H) + \pi(T)S_1^*(T))
= \Delta_0 B_0^* + \Delta_1 S_0^* = V_0^*
$$

provided

$$
\begin{cases}
\pi(H)B_1^*(H) + \pi(T)B_1^*(T) = B_0^* \\
\pi(H)S_1^*(H) + \pi(T)S_1^*(T) = S_0^*
\end{cases}
$$

($**$) ($***$)

$B_t^* = 1$: ($**$) \iff $\pi(H) + \pi(T) = 1$

π is a probability measure, provided $\pi(H), \pi(T) \geq 1$

This is the case since, by solving ($**$)-($***$):

$$
\pi(T) = \frac{u - e^r}{u - d} \quad \text{and} \quad \pi(H) = \frac{e^r - d}{u - d}
$$

If E_π is expectation under π:

$$
E_\pi X = X(H)\pi(H) + X(T)\pi(T)
$$

($*$) \iff $E_\pi V_1^* = V_0^*$

($**$) \iff $E_\pi S_1^* = S_0^*$

π IS A “RISK NEUTRAL” PROBABILITY MEASURE
A RISK NEUTRAL PROBABILITY DISTRIBUTION:

\[\pi : \quad S_0^j = e^{-r} E_\pi S_1^j = E_\pi S_1^{j*} \text{ for all } j \]

FUNDAMENTAL THEOREM OF ARBITRAGE PRICING:

THERE EXISTS A RISK NEUTRAL MEASURE IF AND ONLY IF ARBITRAGE DOES NOT OCCUR.

EVALUATING PRICES USING \(\pi \):

\[
V_0 = \sum_{j=1}^{K} \Delta_j S_0^j \\
= e^{-r} \sum_{j=1}^{K} \Delta_j E_\pi S_1^j \\
= e^{-r} E_\pi V_1
\]

BUT WHAT IS \(\pi \)?

BRUNO DE FINETTI (1937): FORESIGHT: ITS LOGICAL LAWS, ITS SUBJECTIVE SOURCES:

“PROBABILITY DOES NOT EXIST.”
HORSE RACING
(from Baxter and Rennie: Financial Calculus. An introduction to derivative pricing.)

TWO HORSES: H_1, H_2

<table>
<thead>
<tr>
<th>ACTUAL CHANCE OF WINNING</th>
<th>BETS PLACED ON HORSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1 25%</td>
<td>$5000</td>
</tr>
<tr>
<td>H_2 75%</td>
<td>$10000</td>
</tr>
<tr>
<td>TOTAL FOR BOOKIE</td>
<td>$15000</td>
</tr>
</tbody>
</table>

PRICE OF BETS

ACTUAL PROBABILITIES: $\bar{\pi}_1 = \frac{1}{4} \bar{\pi}_2 = \frac{3}{4}$

BETTING 1 ON HORSE H_1: WIN 4
BETTING 1 ON HORSE H_2: WIN $\frac{4}{3}$

OUTCOME FOR BOOKIE:

WINNING HORSE $\quad $$$
H_1 $15000 - 4 \times 5000 = -5000$
H_2 $15000 - \frac{4}{3} \times 10000 = 1666$

A RISKY BUSINESS
HORSE RACING:

RISK NEUTRAL PROBABILITY

ACTUAL CHANCE OF WINNING BETS PLACED ON HORSE

H_1 IRRELEVANT 5000
H_2 10000

PRICE OF BETS:

1 ON H_1 GIVES $\frac{1}{\pi_1}$ \times 5000 IF WIN
1 ON H_2 GIVES $\frac{1}{\pi_2}$ \times 10000 IF WIN

OUTCOME FOR BOOKIE:

WINNER $$

H_1 15000 - \frac{1}{\pi_1} \times 5000$
$H_2 15000 - \frac{1}{\pi_2} \times 10000$

OUTCOME $= 0$ IF $\bar{\pi}_1 = \frac{1}{3}$, $\bar{\pi}_2 = \frac{2}{3}$ A SAFE BUSINESS.

JUST LIKE SELLING OPTIONS...
COMPLETE MARKETS

EQUIVALENT:

1) ALL RANDOM VARIABLES V_1 CAN BE REPRESENTED

$$V_1 = \Delta_0 B_0 + \Delta_1 S_1^1 + \cdots + \Delta_K S_1^K$$

2) π IS UNIQUE

IN CALL OPTION — TWO STATE MODEL: DID NOT NEED TO VERIFY EXISTENCE OF PORTFOLIO