STOCHASTIC INTEGRALS

$X_t = \text{CONTINUOUS PROCESS} \begin{cases} S_t : \text{STOCK PRICE} \\ M_t : \text{MG} \\ W_t : \text{BROWNIAN MOTION} \end{cases}$

$\theta_t = \text{PORTFOLIO: \#} X_t \text{ HELD AT } t$

DISCRETE TIME: $0 = t_0 < t_1 < \ldots < t_n = t$

$$P/L_t = \sum_{i<n} \theta_{t_i} \frac{(X_{t_{i+1}} - X_{t_i})}{\Delta X_{t_i}}$$

GRID BECOMES “DENSE”: $\max_i \Delta t_i \to 0$

$$P/L_t \to \int_0^t \theta_u dX_u$$

INTEGRAL DEFINED AS LIMIT OF SUMS
PROPERTIES MOSTLY FROM SUMS:

\[
\sum_{i<n} (a\theta_{t_i} + b\eta_{t_i}) \Delta X_{t_i} = a \sum_{i<n} \theta_{t_i} \Delta X_{t_i} + b \sum_{i<n} \eta_{t_i} \Delta X_{t_i}
\]

\[
\int_0^t (a\theta_u + b\eta_u) dX_u = a \int_0^t \theta_u dX_u + b \int_0^t \eta_u dX_u
\]

⇒ LINEARITY OK

TIME VARYING INTEGRAL:

\[
\int_0^t \theta_u dX_u = \text{limit of} \quad \sum_{t_i+1 \leq t} \theta_{t_i} (X_{t_{i+1}} - X_{t_i})
\]

Limit in probability
MARTINGALE PROPERTY:

If \(X_t = M_t = \text{MG} \):

\[
U_t^{(n)} = \sum_{t_i+1 \leq t} \theta_{t_i} \Delta X_{t_i} : \quad \Delta U_{t_{i+1}}^{(n)} = \theta_{t_i} \Delta X_{t_i}
\]

If on grid \(t_0, t_1, \ldots \):

\[
E(\Delta U_{t_{i+1}}^{(n)} \mid \mathcal{F}_{t_i}) = E(\theta_{t_i} \Delta X_{t_i} \mid \mathcal{F}_{t_i}) = 0
\]

\[\Rightarrow U_t^{(n)} \text{ is } \mathcal{F}_{t_i} - \text{MG} \]

Taking limits:

\[
E(U_t \mid \mathcal{F}_s) = U_s
\]
QUADRATIC VARIATION (Q. V.)

\[U_t^{(n)} = \sum_{t_{i+1} \leq t} \theta_{t_i} \Delta X_{t_i} \]

so: \[\Delta U_{t_i}^{(n)} = U_{t_{i+1}}^{(n)} - U_{t_i}^{(n)} = \theta_{t_i} \Delta X_{t_i} \]

\[(\Delta U_{t_i}^{(n)})^2 = \theta_{t_i}^2 (\Delta X_{t_i})^2 \]

Aggregate:

\[[U^{(n)}, U^{(n)}]_t = \sum_{t_{i+1} \leq t} (\Delta U_{t_i}^{(n)})^2 \]

\[= \sum_{t_{i+1} \leq t} \theta_{t_i}^2 (\Delta X_{t_i})^2 = \sum_{t_{i+1} \leq t} \theta_{t_i}^2 \Delta [X, X]_{t_i} \]

\[[U, U]_t = \int_0^t \theta_u^2 d[X, X]_u \]

If \(X_t = W_t = \text{B.M.} \): \(d[X, X]_t = dt \)

IT FOLLOWS THAT \([U, U]_t = \int_0^t \theta_u^2 du \)
Differential Notation

Integral:

\[\Delta U_{ti}^{(n)} = \theta_{ti} \Delta X_{ti} \text{ vs. } U_t = \sum_{t_{i+1} \leq t} \theta_{ti} \Delta X_{ti} \]

becomes

\[dU_t = \theta_t dX_t \text{ vs. } U_t = \int_0^t \theta_s dX_s \]

Quadratic Variation:

\[(\Delta U_{ti}^{(n)})^2 = \theta_{ti}^2 (\Delta X_{ti})^2 \text{ vs. } [U^{(n)}, U^{(n)}]_t = \sum \theta_{ti}^2 \Delta [X, X_{ti}] \]

\[\Delta [U^{(n)}, U^{(n)}]_{ti} = \theta_{ti}^2 \Delta [X, X]_{ti} \]

becomes:

\[(dU_t)^2 = \theta_t^2 (dX_t)^2 \text{ vs. } [U, U]_t = \int_0^t \theta_u^2 d[X, X]_u \]

\[d[U, U]_t = \theta_t^2 d[X, X]_t \]

Brownian Motion:

\[(dW_t)^2 = dt \quad \text{AND} \quad d[U, U]_t = \theta_t^2 dt \]
QUADRATIC COVARIATION:

\[U, Z : \quad [U, Z]_t = \text{limit of} \sum_{t_{i+1} \leq t} \Delta U_{t_i} \Delta Z_{t_i} \]

CASE OF TWO INTEGRALS:

\[U_t = \int_0^t \theta_s dX_s, \quad Z_t = \int_0^t \eta_s dY_s \]

THEN:

\[[U, Z]_t = \int_0^t \theta_s \eta_s d[X, Y]_s \]

BECAUSE

\[\Delta U_{t_i} \Delta Z_{t_i} = \theta_{t_i} \eta_{t_i} \Delta X_{t_i} \Delta Y_{t_i} \]

or

\[\begin{aligned} dU_t dZ_t &= \theta_t \eta_t \begin{array}{c} \overbrace{dX_t dY_t} \end{array} \\ d[U, Z]_t &= \theta_t \eta_t d[X, Y]_t \end{aligned} \]

IF: \(X_t = Y_t = W_t \) THE \underline{SAME} B.M.:

\[d[U, Z]_t = \theta_t \eta_t dt \]
DETERMINISTIC INTEGRAND

IF θ_t IS NONRANDOM:

$$\int_0^t \theta_s dW_s = \text{limit of } \sum_{t_{i+1} \leq t} \theta_{t_i} \Delta W_{t_i}$$

$\sum_{t_{i+1} \leq t} \theta_{t_i} \Delta W_{t_i}$:

- **LINEAR COBIMINATION OF NORMAL RANDOM VARIABLES IS A NORMAL RANDOM VARIABLE**

- **MEAN**: $E \sum_{t_{i+1} \leq t} \theta_{t_i} \Delta W_{t_i} = 0$

- **VARIANCE**: $\text{Var} \left(\sum_{t_{i+1} \leq t} \theta_{t_i} \Delta W_{t_i} \right) = \sum_{t_{i+1} \leq t} \theta_{t_i}^2 \Delta t_i$

IN THE LIMIT:

$$\int_0^t \theta_s dW_s$$

- **NORMAL RANDOM VARIABLE**

- **MEAN IS ZERO**

- **VARIANCE**: $\text{Var} \left(\int_0^t \theta_s dW_s \right) = \int_0^t \theta_s^2 ds$
ITÔ’s FORMULA

X_t: CONTINUOUS PROCESS (SOME RESTRICTIONS):

$$\xi(X_t) = \xi(X_0) + \int_0^t \xi'(X_u) dX_u + \frac{1}{2} \int_0^t \xi''(X_u) d[X, X]_t$$

DIFFERENTIAL NOTATION:

$$d\xi(X_t) = \xi'(X_t) dX_t + \frac{1}{2} \xi''(X_t) d[X, X]_t$$

EX: $X_t = W_t = B.M.$:

$$d\xi(W_t) = \xi'(W_t) dW_t + \frac{1}{2} \xi''(W_t) dt$$

EX: $dX_t = V_t dt + \sigma_t dW_t$ ITÔ PROCESS

or: $X_t = X_0 + \int_0^t V_s ds + \int_0^t \sigma_s dW_s$

First question:

¿What is $d[X, X]_t$?
FIRST: CASE OF EXPLICIT INTEGRATION:

\(W_t = \text{B.M.} \) \(\text{WHAT IS } \int_0^t W_s dW_s? \)

\[
U_t = W_t^2 = \zeta(W_t), \zeta(x) = x^2 \]

\[
dU_t = \zeta'(W_t)dW_t + \frac{1}{2}\zeta''(W_t)dt \]

\[
= 2W_t dW_t + dt \]

so: \(W_t dW_t = \frac{1}{2}dU_t - \frac{1}{2}dt \)

\[
> \int_0^t W_s dW_s = \frac{1}{2}(U_t - U_0) - \frac{1}{2}\int_0^t ds \]

\[
= \frac{1}{2}W_t^2 - \frac{1}{2}t \]

DIFFERENT FROM ORDINARY INTEGRAL:

If \(X_t = g(t) \) \(g' \) exists, continuous, \(g(t) = 0 \)

\[
\int_0^t X_s dX_s = \int_0^t g(s)g'(s)ds \]

\[
= \frac{1}{2}g(t)^2 \]

\[
= \frac{1}{2}X_t^2 \]
ITÔ PROCESS:

\[X_t = X_0 + \int_0^t \nu_s \, ds + \int_0^t \sigma_s \, dW_s \]

Grid:

\[\Delta X_{t_i} = \Delta Z_{t_i} + \Delta U_{t_i} \]

so:

\[(\Delta X_{t_i})^2 = (\Delta Z_{t_i})^2 + (\Delta U_{t_i})^2 + 2\Delta Z_{t_i} \Delta U_{t_i} \]

\[\sum (\Delta X_{t_i})^2 = \sum (\Delta Z_{t_i})^2 + \sum (\Delta U_{t_i})^2 + \sum 2 \Delta Z_{t_i} \Delta U_{t_i} \]

\[|\Delta Z_{t_i}| = \left| \int_{t_i}^{t_{i+1}} \nu_s \, ds \right| \leq \int_{t_i}^{t_{i+1}} |\nu_s| \, ds \]

\[\leq \sup_s |\nu_s|(t_{i+1} - t_i) = \sup_s |\nu_s| \Delta t_i \]

\[\sum (\Delta Z_{t_i})^2 \leq (\sup_s |\nu_s|)^2 \sum (\Delta t_i)^2 \]

\[\leq (\sup_s |\nu_s|)^2 \sup \Delta t_i \sum \Delta t_i \to 0 \]

\[\simeq t \]

\[\subset: [Z, Z]_t = 0 \quad \text{ALSO: } [Z, U]_t = 0 \]

\[\text{ONLY: } [U, U]_t = \int_0^t \sigma_s^2 \, ds \]
ITÔ PROCESS

\[X_t = X_0 + \int_0^t \nu_s ds + \int_0^t \sigma_s dW_s \]

\[d[Z, Z]_t = 0 \quad d[Z, U]_t = 0 \quad d[U, U]_t = \sigma_t^2 dt \]

USING DIFFERENTIALS:

ANY \(dt \)-TERM HAS ZERO Q.V.:

\[(dZ_t)^2 = \nu_t^2 (dt)^2 = 0 \quad \text{ETC} \]

COMBINING TERMS:

\[(dX_t)^2 = (dZ_t + dU_t)^2 \]

\[= (dZ_t)^2 + 2dZ_t dU_t + (dU_t)^2 \]

\[= (dU_t)^2 = \sigma_t^2 dt \]

RIGOROUS:

\[(\Delta X_{t_i})^2 = (\Delta Z_{t_i}^2 + 2 \Delta Z_{t_i} \Delta U_{t_i} + (\Delta U_{t_i})^2 \]

SUM OVER \(t_i \), TAKE LIMITS, GET SAME RESULT
INTEGRALS WITH RESPECT TO AN ITÔ PROCESS

\[X_t = X_0 + \int_0^t \nu_s \, ds + \int_0^t \sigma_s \, dW_s \]

CAN SHOW THAT:

\[\int_0^t \theta_s \, dX_s = \int_0^t \theta_s \nu_s \, ds + \int_0^t \theta_s \sigma_s \, dW_s \]

A NEW ITÔ PROCESS
BACK TO ITÔ’S FORMULA:

\[d\xi(X_t) = \xi'(X_t) dX_t + \frac{1}{2} \xi''(X_t) d[X, X]_t \quad (\ast) \]

ITÔ PROCESS:

\[dX_t = \nu_t dt + \sigma_t dW_t \]

SO

\[d[X, X]_t = \sigma_t^2 dt \]

PLUG IN:

\[
\begin{align*}
 d\xi(X_t) &= \xi'(X_t)(\nu_t dt + \sigma_t dW_t) \\
 &\quad + \frac{1}{2} \xi''(X_t) \sigma_t^2 dt \\
 &= \left(\xi'(X_t) \nu_t + \frac{1}{2} \xi''(X_t) \sigma_t^2\right) dt \\
 &\quad + \xi'(X_t) \sigma_t dW_t
\end{align*}
\]

EASIER TO REMEMBER (\ast)…
"PROOF" OF ITÔ'S FORMULA:

\[U_t = \xi(X_t) : \]

\[\Delta U_{ti} = \xi(X_{ti+1}) - \xi(X_{ti}) = \xi(X_{ti} + \Delta X_{ti}) - \xi(X_{ti}) = \zeta'(X_{ti})\Delta X_{ti} + \frac{1}{2}\zeta''(X_{ti})\Delta X_{ti}^2 + \frac{1}{3!}\zeta'''(X_{ti})\Delta X_{ti}^3 + \cdots \]

sum up:

\[U_t - U_i = \sum_{i} \zeta'(X_{ti})\Delta X_{ti} + \frac{1}{2} \sum_{i} \zeta''(X_{ti})\Delta X_{ti}^2 \]

\[\int_0^t \zeta'(X_s)dX_s + \frac{1}{2} \int_0^t \zeta''(X_s)d[X,X]_s \]

OTHER "PROOF":

\[dU_t = \zeta(X_t + dX_t) - \zeta(X_t) = \zeta'(X_t)dX_t + \frac{1}{2}\zeta''(X_t)(dX_t)^2 + \cdots \underbrace{d[X,X]_t}_{d[X,X]_t} \]
MULTIVARIATE FORMULA

\[U_t = \zeta(X_t, Y_t) \]

\[dU_t = \zeta'_x(X_t, Y_t)dX_t + \zeta'_y(X_t, Y_t)dY_t \]

\[+ \frac{1}{2} \left\{ \zeta''_{xx}(X_t, Y_t)d[X, X]_t \right. \]

\[+ \left. \zeta''_{yy}(X_t, Y_t)d[Y, Y]_t \right. \]

\[+ 2\zeta''_{xy}(X_t, Y_t)d[X, Y]_t \}

etc.
EXAMPLE: GEOMETRIC BROWNIAN MOTION

\[S_t = S_0 \exp \left\{ \int_0^t \sigma_s dW_s + \int_0^t \left(r_s - \frac{1}{2} \sigma_s^2 \right) ds \right\} \]

SET

- \(X_t = \int_0^t \sigma_s dW_s + \int_0^t \left(r_s - \frac{1}{2} \sigma_s^2 \right) ds \)
- \(S_t = f(X_t) \) \((f(x) = S_0 \exp\{x\}) \)

USE ITÔ’S FORMULA

\[dS_t = f'(X_t)dX_t + \frac{1}{2}f''(X_t)d[X, X]_t \]

\(f'(x) = f''(x) = f(x) \) AND \(d[X, X]_t = \sigma_t^2 dt \), SO:

\[dS_t = f(X_t)dX_t + \frac{1}{2}f(X_t)\sigma_t^2 dt \]

\[= S_t dX_t + \frac{1}{2}S_t \sigma_t^2 dt \]

\[= S_t \left(dX_t + \frac{1}{2} \sigma_t^2 dt \right) \]

\[= S_t (\sigma_t dW_t + r_t dt) \]

\[= S_t \sigma_t dW_t + S_t r_t dt \]

DIFFERENTIAL REPRESENTATION OF \(S_t \)
VASICEK MODEL

\[dR_t = (\alpha - \beta R_t)dt + \sigma dW_t \]

- **STEP 1:** SET \(U_t = R_t - \frac{\alpha}{\beta} \)

EQUATION BECOMES:

\[dU_t = -\beta U_t dt + \sigma dW_t \]

- **STEP 2:** NOTE THAT (FROM ITO’S FORMULA)

\[
\begin{align*}
 d(\exp{\beta t}U_t) &= \exp{\beta t}dU_t + U_t d\exp{\beta t} \\
 &= \exp{\beta t}dU_t + U_t \beta \exp{\beta t} dt \\
 &= \exp{\beta t} (dU_t + U_t \beta dt) \\
 &= \exp{\beta t} \sigma dW_t
\end{align*}
\]

SO

\[\exp{\beta t}U_t = U_0 + \int_0^t \exp{\beta s} \sigma dW_s \]

OR

\[U_t = \exp{-\beta t}U_0 + \int_0^t \exp{\beta(s-t)} \sigma dW_s \]
IN OTHER WORDS: U_t IS NORMAL

- MEAN IS $\exp\{-\beta t\} U_0$
- VARIANCE IS

$$
\int_0^t (\exp\{\beta(s - t)\}\sigma^2) \, ds
$$

$$
= \int_0^t \exp\{2\beta(s - t)\}\sigma^2 \, ds
$$

$$
= \left[\frac{1}{2\beta} \exp\{2\beta(s - t)\}\sigma^2 \right]_{s=0}^{s=t}
$$

$$
= \frac{1}{2\beta} (1 - \exp\{-2\beta t\}) \sigma^2
$$

DEDUCE FOR $R_t = U_t + \frac{\alpha}{\beta}$ THAT

- R_t IS NORMAL
- $E(R_t) = \exp\{-\beta t\} U_0 + \frac{\alpha}{\beta}$
- $\text{Var} (R_t) = \text{Var} (U_t)$
LEVY’S THEOREM

IF M_t IS A CONTINUOUS MARTINGALE, $M_0 = 0$, $[M, M]_t = t$ FOR ALL t, THEN M_t IS A CONTINUOUS BROWNIAN MOTION

PROOF: SET $f(x) = \exp\{hx\}$

ITO:

$$df(M_t) = f'(M_t)dt + \frac{1}{2}f''(M_t)d[M, M]_t$$

$$= f'(M_t)dt + \frac{1}{2}f''(M_t)dt.$$

SINCE dM_t TERM IS MG, AND $f''(x) = h^2f(x)$:

$$E(f(M_t)|F_s) = f(M_s) + \frac{1}{2}h^2 E\left(\int_s^t f(M_u)du|F_s\right)$$

$$= f(M_s) + \frac{1}{2}h^2 \int_s^t E(f(M_u)|F_s)du$$

Set $g(t) = E(\exp\{h(M_t - M_s)\}|F_s)$:

$$g(t) = 1 + \frac{1}{2}h^2 \int_s^t g(u)du$$
SOLUTION:

\[g(t) = \exp\left\{ \frac{1}{2} h^2 (t - s) \right\} \]

IN OTHER WORDS:

\[E(\exp\{h(M_t - M_s)\}|\mathcal{F}_s) = \exp\left\{ \frac{1}{2} h^2 (t - s) \right\} \]

CHARACTERISTIC FUNCTION ARGUMENT GIVES:

- \(M_t - M_s \) IS INDEPENDENT OF \(\mathcal{F}_s \)
- \(M_t - M_s \) IS \(N(0, t - s) \)