
JASPER Software Documentation

Version 1.0
December 14, 2023

Joelle Mbatchou1 and Mary Sara McPeek1,2

Department of Statistics1 and Human Genetics2

The University of Chicago, Chicago IL 60637, USA.

1

JASPER
A C/C++ program to assess significance for a general class of test statistics in genetic association
analyses with structured samples.
Copyright© 2019-2023 Joelle Mbatchou and Mary Sara McPeek
Homepage: http://www.stat.uchicago.edu/~mcpeek/software/index.html
Release 1.0

==

License
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY of FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program (see
file gpl.txt); if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

==

This program includes code provided by others under licenses compatible with GNU GPL as free
software:
Eigen, which is under Mozilla Public License (version 2.0)
Numerical recipes utility functions, which are public domain
GNU Scientific Library, which is under GNU General Public License (version 3)
Hash table library by Attractive Cahos, which is under an Open Source MIT License

==

We request that use of this software be cited in publications as follows:

Mbatchou, J. and McPeek, M. S. JASPER: fast, powerful, multitrait association testing in struc-
tured samples gives insight on pleiotropy in gene expression. Manuscript in preparation, 2023

==

2

http://www.stat.uchicago.edu/~mcpeek/software/index.html

Contents

1 Overview of JASPER 4

2 Installing JASPER 4
2.1 Instructions . 4
2.2 Compilation Prerequisites . 4
2.3 Compiling the JASPER binary . 5

3 Running JASPER 5

4 Input 6
4.1 Phenotype data file (specified by flag --pheno) . 6
4.2 Genotype data file (specified by flag --geno) . 6
4.3 Ancestry-informative covariates file (specified by flag --covG) 7
4.4 GRM file (specified by flag --grm when --eigen is not used) 8
4.5 Optional eigendecomposition file (specified by flag --eigen) 8

5 Output 9

6 Examples 9

7 Bug reports and feedback 10

8 Acknowledgements 10

3

1 Overview of JASPER

JASPER is a C/C++ program that assesses significance for a reasonably broad class of association
tests that involve two matrices. JASPER (for ”Joint Association analysis in Structured samples
based on approximating a PERmutation distribution”) a fast, powerful, robust method for assessing
significance of multi-trait association with a set of genetic variants, in samples that have popula-
tion sub-structure, admixture and/or relatedness. It allows for covariates, ascertainment and rare
variants and is robust to phenotype model misspecification.

The main features of JASPER are:

• Applicable to a wide range of association test statistics, including kernel-based (“KAT”-type)
tests with essentially arbitrary phenotype kernels

• Well-suited to handle high-dimensional traits.

• Allows for covariates in the model

• Adjusts for population structure, cryptic relatedness and/or related individuals

• Computationally efficient

2 Installing JASPER

2.1 Instructions

1. Download the JASPER package. This package contains the documentation, source code,
example files, and the GNU GPL license.

2. Read the entire documentation (this document) carefully to understand the purpose of this
program and how it works.

3. Decompress the archive with GNU software gzip: tar xvfz JASPER v1.0.tar.gz

4. Switch to the newly created directory: cd JASPER

5. This directory contains the GNU GPL license in file gpl.txt and four subdirectories:

• bin is where the compiled binary executable file will be generated;

• src contains the source code;

• doc contains this document JASPER v1.0 doc.pdf;

• examples contains example input and output files.

2.2 Compilation Prerequisites

You will need GCC including the standard C++ and Fortran libraries. If GCC is not available
on your system, it can be obtained from: https://gcc.gnu.org. You will also need to install the
Boost C++ libraries (https://www.boost.org/).

4

https://gcc.gnu.org
https://www.boost.org/

2.3 Compiling the JASPER binary

1. Set the variable BOOST_LIB_PATH in the Makefile to point to the installation folder for the
installed boost library

2. Type make

. This will build an executable program in the bin/ directory called JASPER.

Note: alternatively, you can specify the BOOST_LIB_PATH variable directly in the make command.
For example: BOOST_LIB_PATH=/opt/lib/boost/1.83.0/ make

3 Running JASPER

1. To run the executable program, first, prepare the input files (see Section 4). Then JASPER
can be run from the command line via the command ./bin/JASPER with the desired options.
For example, the command might look like:

./JASPER -p phenofile -e eigfile -n 1000 -o prefix

./JASPER -p phenofile -r GRMfile -s 12345

We briefly summarize the usage of the available command line options below. Note that they
are case-sensitive.

• --pheno phenofile: Allows the user to specify the name of the phenotype data file.

• --geno genofile: Allows the user to specify the name of the genotype data file.

• --covG covarfile: Allows the user to specify the name of the ancestry-informative
covariates file. (optional)

• --grm GRMfile: When an eigendecomposition file is not available, the program offers
the option to make use of a known genetic relationship matrix. The flag -r indicates the
availability of the genetic relationship matrix and instructs the program to read in the
matrix from the text file under the name GRMfile. When the --eigen option is used,
the --grm option will be ignored.

• --eigen eigfile: Allows the user to specify the name of the file containing the eigende-
composition results for the genetic relationship matrix, if available. (optional)

• --out prefix: Allows the user to specify the prefix string added to the default output
filenames.

• -s: This option can be used in conjunction with --grm, to instruct the program to
output the eigendecomposition results of the genetic relationship matrix. The name of
the output file will be prefix eig, where prefix is specified by the --out option.

• --mc 1000: This option specifies the number of Monte Carlo iterations to perform if
the Pearson approximation need for JASPER fails. If unused, no Monte Carlo iterations
are performed. (optional)

5

4 Input

4.1 Phenotype data file (specified by flag --pheno)

The phenotype data file contains data on the 1+ phenotypes. This file should have the format of
a plink PED file. The columns in the file are:

family ID (numeric or alphanumeric)

individual ID (numeric or alphanumeric)

father ID (numeric or alphanumeric)

mother ID (numeric or alphanumeric)

sex (1/2)

phenotype #1

phenotype #2
...

The requirements are the following:

• Tab or space delimited. No header row.

• The individual ID is assumed to be unique across individuals. Numeric and alphanumeric
IDs are allowed.

• Information on family ID, father ID, mother ID and sex is not used by the program. So one
could simply have arbitrary values for them.

• Phenotypes should be numerical. No missing phenotype is allowed. Phenotypes could be
residuals from a mixed model.

Example
A file with 4 individuals, and three phenotypes might look like:

FAM1 IND1 0 0 1 0 2.54 47

FAM1 SAMP345 0 0 2 1 -2.88 25

FAM1 3 0 0 2 1 4.37 29

FAM2 SUB4 0 0 1 0 -4.35 37

4.2 Genotype data file (specified by flag --geno)

The genotype data file contains data on the genotypes across the phenotyped individuals. The
columns in the file correspond to the individuals and the rows to the variants:

variant ID

individual 1 ID

individual 2 ID
...

The requirements are the following:

• Tab or space delimited.

6

• The header row must contain the individual IDs (first column can have any value [e.g. ID]).

• The order of individuals must match that of the phenotype file. If that is not the case, the
program will report an error.

• Genotype should be in [0,2]. No missing genotype is allowed (if missingness is present, impute
genotypes prior to running JASPER, e.g. with average).

Example
A file with 3 variants across 4 individuals might look like:

ID IND1 SAMP345 3 SUB4

rs12 1 0 0 1

rs98 0 0 0 1

rs45 0 1 0 1

4.3 Ancestry-informative covariates file (specified by flag --covG)

The covariate file contains data on ancestry-informative covariates across the phenotyped individ-
uals. The columns in the file are:

family ID

individual ID

covariate #1

covariate #2
...

The requirements are the following:

• Tab or space delimited. No header row.

• The order of individuals must match that of the phenotype file. If that is not the case, the
program will report an error.

• Intercept should NOT be included in this file as a covariate. The program will automatically
add an intercept column.

Example
A file with 4 individuals, and 2 covariates might look like:

FAM1 IND1 2.54 47

FAM1 SAMP345 -2.88 25

FAM10 3 4.37 29

FAM11 SUB4 -4.35 37

7

4.4 GRM file (specified by flag --grm when --eigen is not used)

When the flag --eigen is not used, the program offers the option to perform eigendecomposition
on a known genetic relationship matrix. The GRM file is a text file listing one entry of the matrix
per row. The three columns are

individual_1 ID

individual_2 ID

entry_in_matrix

The requirements are:

• The order of the rows does not matter.

• Individuals IDs should agree with those in the phenotype file.

• Any pair of individuals should be included in the file at most once, regardless of the order
they appear. If a pair is included more than once with different values, the program will
produce a warning and will discard the new value.

• When indiv1 and indiv2 are the same, the row in the file corresponds to a diagonal element
in the matrix.

• If a pair is not found in the file, 0 will be used for the corresponding entry in the matrix. If
it corresponds to a diagonal entry, 1 will be used for that entry in the matrix.

• If the resulting matrix is not positive semi-definite, the program will return an error.

• For a sample with individuals IND1, SAMP345, and 3, the GRM file may look like:

3 3 1.01

SAMP345 SAMP345 0.98

IND1 SAMP345 0.02

SAMP345 3 0.06

So that the corresponding genetic relationship matrix is:

1.00 0.02 0.00

0.02 0.98 0.06

0.00 0.06 1.01

4.5 Optional eigendecomposition file (specified by flag --eigen)

This file is used to improve computational efficiency by making use of existing eigendecomposition
results of the genetic relationship matrix. It is a binary file that encodes the eigenvalues and
eigenvectors of the genetic relationship matrix in double (double precision floating-point type).
Let Φ be a n × n genetic relationship matrix, and Φ = V DV −1 be an eigendecomposition of Φ,
where D is a diagonal matrix containing the eigenvalues and V is an orthogonal matrix containing
the corresponding eigenvectors. The eigendecomposition input file should encode the diagonal
elements of D followed by a row-wise list of the elements of V in binary format as double precision
floating-point numbers.

8

• The genetic relationship matrix Φ underlying this file should correspond exactly to the set
and ordering of individuals in the phenotype data file. In particular, the dimension Φ should
equal the number of individuals in the phenotype data file. Mismatched dimension will likely
result in a segmentation fault. While mismatched ordering may not result in an error, it will
lead to incorrect results.

Remarks: In the current version of the program,

• A user-specified filename should not exceed 2000 characters in length. Otherwise, an error
will be reported. To increase this maximum length, one may open the file jasper.h in the
directory src, locate the line starting with ”#define MAXFILELEN 2001”, replace ”2001” with
the number which equals the desired maximum length plus 1, and re-compile the program as
instructed in Section 2.

• The number of Monte Carlo iterations cannot be greater than 106 , otherwise an error will be
reported. To increase this amount, one may open the file jasper.h in the directory src, locate
the line starting with ”#define NITER MAX 1e6”, replace ”1e6” with the desired maximum
amount, and re-compile the program as instructed in Section 2.

5 Output

The program will output up to two files: a text file that contains the p-value result, and an
optional binary file that records the eigenvalues and the eigenvectors of the genetic relationship
matrix. Assuming prefix has been specified to --out, the filenames are prefix out.txt, and
prefix eig. Below we explain each of the output files.

1. prefix out.txt is a text file containing the p-value testing for association between the variants
with the phenotypes specified:

pvalue 0.91212602132517717

2. prefix eigen is a binary file that stores the eigenvalues and eigenvectors of the genetic rela-
tionship matrix, as computed by the JASPER program. It will be part of the output only
when both --grm and -s are used. The formatting of this output file is the same as that of
the binary eigen-decomposition input file described in Section 4.5.

6 Examples

The directory JASPER/examples provides example input files: pheno ex, geno ex, ai cov ex, and
grm ex. Below, we list several example commands that can be run on these files.

1. ./bin/JASPER --pheno examples/pheno ex --geno examples/geno ex --grm examples/grm ex

--out run1

This command instructs the program to perform the JASPER method, testing for association
between the phenotypes in pheno ex with the genotypes in geno ex. The relationship matrix
is specified from grm ex. The --out option specifies the prefix of the output files to be run1.
The program will generate a single output file: run1 out.txt.

9

2. ./bin/JASPER --pheno examples/pheno ex --geno examples/geno ex --grm examples/grm ex

--out run2 -s

With this command, the program will first read the genetic relationship matrix from grm ex

and compute its eigendecomposition, whose result will be written to file run2 eigen.

7 Bug reports and feedback

We appreciate comments and suggestions and if you do encounter a bug in the JASPER software
please send us a message. Please include in your message the program version (printed out when the
program is run), platform (windows, mac, linux, etc.), description of your problem, and if possible
example files (in a zip folder) that caused the problem.

8 Acknowledgements

1. Numerical Recipes in C. We use the utility functions in nrutil.h Eigen. We use the package
for some of the matrix computations.

2. LAPACK.We use the dsyevr routine and its dependencies as one of the options for performing
eigen-decomposition.

3. khash.h a fast and light-weighted hash table library in C.

4. Valgrind and gdb, for software debugging and profiling.

References

[1] Mbatchou, J. and McPeek, M. S. JASPER: fast, powerful, multitrait association testing in
structured samples gives insight on pleiotropy in gene expression. Manuscript in preparation,
2023.

10

	Overview of JASPER
	Installing JASPER
	Instructions
	Compilation Prerequisites
	Compiling the JASPER binary

	Running JASPER
	Input
	Phenotype data file (specified by flag --pheno)
	Genotype data file (specified by flag --geno)
	Ancestry-informative covariates file (specified by flag --covG)
	GRM file (specified by flag –grm when –eigen is not used)
	Optional eigendecomposition file (specified by flag –eigen)

	Output
	Examples
	Bug reports and feedback
	Acknowledgements

