List of proofs

Proof of Lemma 1. First, note that
\[\mathbb{E} \left[\|GX\|^2 \right] = \mathbb{E} \left[\left(\sum_{i=1}^n \|g_i\| \|\hat{g}_i X\| \right)^2 \right], \]
where \(g_i \) is the \(i \)th column of \(G \) and \(\hat{g}_i = g_i/\|g_i\|_\infty \). Using the condition \(\|G\|_\infty \leq 1 \) and Jensen’s inequality, we find that
\[\mathbb{E} \left[\|GX\|^2 \right] \leq \sum_{i=1}^n \|g_i\| \mathbb{E} \left[\|\hat{g}_i X\|^2 \right] \leq \|X\|^2. \]
The other inequality follows by noting that for any \(f \) inequality, we find that
\[\text{Proof of Theorem 1.} \]
\[\|f\|_\infty \leq 1 \]
\[\text{dimensions. Suppose that the result holds in } n - 1 \text{ dimensions. We will show that it must also therefore hold in } n \text{ dimensions and conclude, by induction, that the result holds in any dimension.} \]
Let \(\bar{\Phi} \) be the \((n-1) \times (n-1)\) principle submatrix of an \(n \times n \) matrix \(A \). For any vector \(f \in \mathbb{C}^n \) we can write
\[f^H Af = \sum_{i=1}^n |f_i|^2 A_{ii} + 2 \mathbb{R} \left(\sum_{i=1}^n \sum_{j=1}^{i-1} f_i A_{ij} \hat{f}_j \right) \]
\[= f^H \bar{A} f + |f_n|^2 A_{nn} + 2 \mathbb{R} \left(f_n \sum_{j=1}^{n-1} A_{nj} \hat{f}_j \right), \]
where \(\hat{f} \in \mathbb{C}^{n-1} \) has entries equal to the first \(n - 1 \) entries of \(f \).
By the induction hypothesis, we can choose the first \(n - 1 \) entries of \(f \) (i.e., \(\hat{f} \)) so that the right-hand side of the last display is not less than
\[\sum_{i=1}^{n-1} A_{ii} + |f_n|^2 A_{nn} + 2 \mathbb{R} \left(f_n \sum_{j=1}^{n-1} A_{nj} \hat{f}_j \right). \]
If, for this choice of \(\hat{f} \), \(\sum_{j=1}^{n-1} A_{nj} \hat{f}_j \) is nonzero, then choose \(f_n \) as
\[f_n = \frac{\sum_{j=1}^{n-1} A_{nj} \hat{f}_j}{\sum_{j=1}^{n-1} A_{nj} \hat{f}_j}. \]
Otherwise set \(f_n = 1 \). With the resulting choice of \(f_n \),
\[|f_n|^2 A_{nn} + 2 \mathbb{R} \left(f_n \sum_{j=1}^{n-1} A_{nj} \hat{f}_j \right) \geq A_{nn}. \]
We have therefore shown that
\[\sup_{\|f\|_\infty \leq 1} f^H Af \geq \sum_{i=1}^n A_{ii}. \]

Proof of Theorem 2. Let \(V_t^m \) be generated by (11). Let \(Y_t^m = \Phi_t^m(V_t^m) \) and notice that
\[\mathcal{U}(V_t^m) = \mathcal{U}(\mathcal{M}(Y_{t-1}^m)) \]
\[\leq R + \alpha \mathcal{U}(V_{t-1}^m) + \alpha \left(\mathcal{U}(Y_{t-1}^m) - \mathcal{U}(V_{t-1}^m) \right). \]
Using the fact that \(\mathcal{U} \) is twice differentiable with bounded second derivative, this last expression is bounded above by
\[\mathcal{U}(V_t^m) \leq R + \alpha \mathcal{U}(V_{t-1}^m) + \alpha \nabla \mathcal{U}(V_{t-1}^m) (Y_{t-1}^m - V_{t-1}^m) + \frac{\alpha \sigma}{2} \|G (Y_{t-1}^m - V_{t-1}^m)\|^2. \]
Taking the expectation and using (30) yields
\[\mathbb{E} \left[\mathcal{U}(V_t^m) \right] \leq R + \alpha \mathbb{E} \left[\mathcal{U}(V_{t-1}^m) \right] + \frac{\alpha \sigma}{2} \mathbb{E} \left[\|G (Y_{t-1}^m - V_{t-1}^m)\|^2 \right]. \]
An application of Lemma 1 reveals that
\[\mathbb{E} [||G (Y_{t-1}^{m} - V_{t-1}^{m})||^2] \leq ||Y_{t-1}^{m} - V_{t-1}^{m}||^2. \]
As a consequence, noting (28), we arrive at the upper bound
\[
\begin{align*}
\mathbb{E} [\mathcal{U}(V_{t}^{m})] & \leq R + \alpha \mathbb{E} [\mathcal{U}(V_{t-1}^{m})] + \frac{\alpha \gamma^2 \sigma^2}{2m} \mathbb{E} [||V_{t-1}^{m}||^2] \\
& \leq R + \alpha \left(1 + \frac{\beta \gamma^2 \sigma^2}{2m} \right) \mathbb{E} [\mathcal{U}(V_{t-1}^{m})],
\end{align*}
\]
from which we can conclude that
\[\mathbb{E} [||V_{t}^{m}||^2] \leq \beta \mathbb{E} [\mathcal{U}(V_{t}^{m})] \leq \beta R \left[1 - \alpha t \left(1 + \frac{\beta \gamma^2 \sigma^2}{2m} \right) \right] + \beta \alpha t \left(1 + \frac{\beta \gamma^2 \sigma^2}{2m} \right)^t \mathcal{U}(V_0^{m}). \]

\textbf{Proof of Theorem 2.} We begin with a standard expansion of the scheme’s error.
\[||V_{t}^{m} - v_t|| = ||V_{t}^{m} - \mathcal{M}_{t}^{m}(v_0)|| \]
\[= \left| \sum_{r=0}^{t-1} \mathcal{M}_{r}^{m}(V_{r+1}^{m}) - \mathcal{M}_{t}^{m}(V_{r}^{m}) \right|. \]
Now notice that if we define \(Y_{r}^{m} = \Phi_{r}^{m}(V_{r}^{m}) \), then \(V_{r}^{m} = \mathcal{M}(Y_{r}^{m}) \) and the last equation becomes
\[||V_{t}^{m} - v_t|| = \left| \sum_{r=0}^{t-1} \mathcal{M}_{r}^{m}(Y_{r}) - \mathcal{M}_{t}^{m}(Y_{r}^{m}) \right|. \]
The right-hand side of the last equation is bounded above by
\[\left| \sum_{r=0}^{t-1} \mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] \right| + \sum_{r=0}^{t-1} ||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})||. \]
Considering the first term in the last display, note that, for any fixed \(f \in \mathbb{C}^{\mathbb{R}} \),
\[
\begin{align*}
\mathbb{E} [|f^{H} \sum_{r=0}^{t-1} (\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}])|^{2}] &= \sum_{r=0}^{t-1} \mathbb{E} [|f^{H}(\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m})]|^{2}] \\
& + 2 \sum_{s=0}^{t-1} \sum_{r=s+1}^{t-1} \mathbb{R} \{ \mathbb{E} [(f^{H}(\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m})]) \times (f^{H}(\mathcal{M}_{s}^{m}(Y_{s}) - \mathbb{E}[\mathcal{M}_{s}^{m}(Y_{s}) | V_{s}^{m})])] \}.
\end{align*}
\]
Letting \(\mathcal{F}_{r} \) denote the \(\sigma \)-algebra generated by \(\{Y_{s}^{m}\}_{s=0}^{r-1} \) and \(\{Y_{r}^{m}\}_{r=0}^{t-1} \), for \(s < r \) we can write
\[
\begin{align*}
\mathbb{E} [(f^{H}(\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m})]) \times (f^{H}(\mathcal{M}_{s}^{m}(Y_{s}) - \mathbb{E}[\mathcal{M}_{s}^{m}(Y_{s}) | V_{s}^{m})])]
& = \mathbb{E} [(f^{H}(\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m})]) \times (f^{H}(\mathcal{M}_{s}^{m}(Y_{s}) - \mathbb{E}[\mathcal{M}_{s}^{m}(Y_{s}) | V_{s}^{m})])] \\
& \quad \times (f^{H}(\mathcal{M}_{s}^{m}(Y_{s}) - \mathbb{E}[\mathcal{M}_{s}^{m}(Y_{s}) | V_{s}^{m})])].
\end{align*}
\]
Because, conditioned on \(V_{r}^{m} \), \(Y_{r}^{m} \) is independent of \(\mathcal{F}_{r} \), the expression above vanishes exactly.

Supreming over the choice of \(f \), we have shown that
\[\|V_{t}^{m} - v_t\| \leq \left(\sum_{r=0}^{t-1} ||\mathcal{M}_{r}^{m}(Y_{r}) - \mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}]|| \right)^{1/2} + \sum_{r=0}^{t-1} ||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})||. \]
Expanding the term inside of the square root, we find that
\[\|V_{t}^{m} - v_t\| \leq \left(\sum_{r=0}^{t-1} \left(||\mathcal{M}_{r}^{m}(Y_{r}) - \mathcal{M}_{r}^{m}(V_{r}^{m})|| + ||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})|| \right)^{2} \right)^{1/2} \\
+ \sum_{r=0}^{t-1} \left(||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})|| \right)^{2} \]
\[\leq \left(\sum_{r=0}^{t-1} \left(||\mathcal{M}_{r}^{m}(Y_{r}) - \mathcal{M}_{r}^{m}(V_{r}^{m})|| \right)^{2} \right)^{1/2} + \left(\sum_{r=0}^{t-1} \left(||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})|| \right)^{2} \right)^{1/2} \]
\[+ \sum_{r=0}^{t-1} \left(||\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m})|| \right)^{2}, \]
where, in the second inequality, we have used the triangle inequality for the \(\ell^2 \)-norm in \(\mathbb{R}^{t} \). Noting that \(\mathbb{E} [A(V_{r}^{m})(Y_{r} - V_{r}^{m}) | V_{r}^{m}] = 0 \) yields
\[\mathbb{E}[\mathcal{M}_{r}^{m}(Y_{r}) | V_{r}^{m}] - \mathcal{M}_{r}^{m}(V_{r}^{m}) = \mathbb{E} [(\mathcal{M}_{r}^{m} - A_{r})(Y_{r}) | V_{r}^{m}] - (\mathcal{M}_{r}^{m} - A_{r})(V_{r}^{m}), \]
As a consequence, applying our assumptions (31) and (32), we obtain the upper bound
\[\|V_{t}^{m} - v_t\| \leq (L_{1} + L_{2}) \left(\sum_{r=0}^{t-1} \alpha^{2(t-r)} || \Phi_{r}^{m}(V_{r}^{m}) - V_{r}^{m} ||^{2} \right)^{1/2} + L_{2} \sum_{r=0}^{t-1} \alpha^{r-t} || \Phi_{r}^{m}(V_{r}^{m}) - V_{r}^{m} ||^{2}. \]
Bounding the error from the random compressions, we arrive at the error bound
\[\|V_{t}^{m} - v_t\| \leq \frac{\gamma(L_{1} + L_{2})}{\sqrt{m}} \left(\sum_{r=0}^{t-1} \alpha^{2(t-r)} \mathbb{E} [||V_{r}^{m}||^2] \right)^{1/2} + \frac{\gamma L_{2}}{m} \sum_{r=0}^{t} \alpha^{r-t} \mathbb{E} [||V_{r}^{m}||^2]. \]

\[\square \]
Proof of Corollary 1. We have already seen that when \(\mathcal{M}(v) = Kv \) we can take \(\alpha = \|K\|_1 \) in the statement of Theorem 2 to verify conditions (31) and (32). We have also commented above that when \(K \) is nonnegative, the quantities \(E\left[\|V^m_r\|_1^2\right] \) can be bounded independently of \(n \).

When \(\mathcal{M}(v) = Kv/\|Kv\|_1 \), bounding the size of the iterates is not an issue, but it becomes slightly more difficult to verify (31) and (32). That \(K \) is aperiodic and irreducible implies that the dominant left and right eigenvectors, \(v_L \) and \(v_R \), of \(K \) are unique and have all positive entries. Because power iteration is invariant to scalar multiples of \(K \) we can assume that the dominant eigenvalue of \(K \) is 1. We will assume that \(v_r \) is normalized so that \(\|v_r\|_\infty = 1 \) and that \(v_R \) is normalized so that \(v_L^T v_R = 1 \). Let \(D \) be the diagonal matrix with \(D_{ii} = (v_L)_i \) (i.e., \(D1 = v_L \)).

Our matrix \(K \) can be written \(K = D^{-1}SPD \) where \(S \) is an aperiodic, irreducible, column-stochastic matrix. Let

\[
\tilde{K} = K - v_Rv_L^T = D^{-1}SPD,
\]

where we have defined the projection \(P = I - Dv_R1^T \). Note that \(\|P\|_1 \leq 2 \) and that \(PSP = SP \) so that for any positive integer \(r \), \(\tilde{K}^r = D^{-1}S^rPD \). Letting

\[
C = \frac{1}{\min_j \{(v_L)_j\}} \geq 1
\]

we find that, for any positive integer \(r \),

\[
\|\tilde{K}^r\|_1 \leq \|D^{-1}\|_1 \|D\|_1 \|S^rP\|_1 \leq 2C \sup_{\|v\|_1 = 1} \|S^r v\|_1 \leq 2C \alpha^r
\]

where

\[
\alpha = \sup_{\|v\|_1 = 1} \|Sv\|_1
\]

Aperiodicity and irreducibility of \(S \) implies that \(\alpha < 1 \). We also have that

\[
\sup_{v^*_Lv = 1} \|K^rv\|_1 \leq C \quad \text{and} \quad \inf_{v^*_Lv \geq 0} \|K^rv\|_1 \geq 1.
\]

Now let \(u \) and \(v \) be any two non-negative vectors normalized so that \(v^*_Lv = v^*_Lv = 1 \) and, for \(\theta \in [0, 1] \), define \(w_\theta = (1 - \theta)u + \theta v \). Note that \(w_\theta \) also has non-negative entries and that \(v^*_Lw_\theta = 1 \). For any fixed \(f \in \mathbb{R}^n \) with \(\|f\|_\infty \leq 1 \), define the function

\[
\varphi_r(u, v; \theta) = \frac{f^T K^r w_\theta}{\|K^r w_\theta\|_1} - \frac{f^T K^r u}{\|K^r u\|_1}.
\]

Our goal is to establish bounds on

\[
\varphi_r(u, v; 1) = \frac{f^T K^r v}{\|K^r v\|_1} - \frac{f^T K^r u}{\|K^r u\|_1}.
\]

To that end note that

\[
\frac{d}{d\theta} \varphi_r(u, v; \theta) = \frac{f^T K^r (v - u)}{\|K^r w_\theta\|_1} - \frac{(f^T K^r w_\theta)(1^T K^r (v - u))}{\|K^r w_\theta\|_1^2}
\]

and

\[
\frac{d^2}{d\theta^2} \varphi_r(u, v; \theta) = -2 \frac{(f^T K^r (v - u))(1^T K^r (v - u))}{\|K^r w_\theta\|_1^2} + 2 \frac{(f^T K^r w_\theta)(1^T K^r (v - u))^2}{\|K^r w_\theta\|_1^3}.
\]

Observing that \(K^r (v - u) = \tilde{K}^r (v - u) \), and applying our bounds we find that

\[
|\varphi_r(u, v; 1)| \leq \max_{\theta} \left| \frac{d}{d\theta} \varphi_r(u, v; \theta) \right|
\]

\[
\leq \left| f^T \tilde{K}^r (v - u) \right| + C \left| 1^T \tilde{K}^r (v - u) \right|
\]

\[
\leq 4C^2 \alpha^r \|G(v - u)\|_1
\]

(52)
where $G \in \mathbb{R}^{n \times n}$ is the matrix with first row equal to $f^T \tilde{K}^r/\|f^T \tilde{K}^r\|_\infty$, second row equal to $1^T \tilde{K}^r/\|1^T \tilde{K}^r\|_\infty$, and all other entries equal to 0.

Defining the matrix valued function
\[
A_r(u) = \frac{1}{\|K^ru\|_1} \left[I - \frac{K^ru1^T}{\|K^ru\|_1} \right] K^r
\]
we observe that
\[
\frac{d}{d\theta} \varphi_r(u, v; \theta) = f^T A_r(u)(v - u)
\]
so that
\[
|\varphi_r(u, v; 1) - f^T A_r(u)(v - u)| \leq \frac{1}{2} \max_\theta \left| \frac{d^2}{d\theta^2} \varphi_r(u, v; \theta) \right|
\leq |f^T \tilde{K}^r(v - u)||1^T \tilde{K}^r(v - u)| + C|1^T \tilde{K}^r(v - u)|^2
\leq 16C^3 \alpha^{2r} \|G(v - u)\|^2
\]
Expressions (52) and (53) verify the stability conditions in the statement of Theorem 2 with L_1 and L_2 dependent only on C yielding the first term on the right-hand side of (33). The second term follows similarly when one observes that (31) implies
\[
\sup_{v, \tilde{v} \in \mathcal{X}} \left| \mathcal{M}_s^r(v) - \mathcal{M}_s^r(\tilde{v}) \right|_1 \leq L_1 \alpha^{r-s}.
\]

Proof of Lemma 3. If $Y^m_t = \Phi^m_t(V^m_t)$, then
\[
\mathbb{E} \left[|f^t \Phi^m_t(V^m_t) - f^t V^m_t|^2 \mid Y^m_{t-1} \right] = \mathbb{E} \left[|f^t \Phi^m_t (Y^m_{t-1} + \varepsilon b(Y^m_{t-1})) - f^t (Y^m_{t-1} + \varepsilon b(Y^m_{t-1}))|^2 \mid Y^m_{t-1} \right]
\leq \gamma_p \frac{\varepsilon}{m} \|b(Y^m_{t-1})\|_1 \|V^m_t\|_1
\]
for some constant C. Our assumed bound on the growth of b along with (29) implies that
\[
\mathbb{E} \left[\|b(Y^m_{t-1})\|^2 \right] \leq C' (1 + \mathbb{E} \left[\|V^m_{t-1}\|^2 \right])
\]
for some constant C'. From these bounds it follows that for some constant $\hat{\gamma}$,
\[
\|\Phi^m_t(V^m_t) - V^m_t\|^2 \leq \hat{\gamma}^2 \frac{\varepsilon}{m} \mathbb{E} \left[\|V^m_t\|^2 \right] \sqrt{1 + \mathbb{E} \left[\|V^m_{t-1}\|^2 \right]}.
\]

Proof of Theorem 5. By exactly the same arguments used in the proof of Theorem 2 we arrive at the bound
\[
\|V^m_t - v_t\| \leq (L_1 + L_2) \left(\sum_{r=0}^{t-1} e^{-2\beta(t-r)\varepsilon} \|\Phi^m_t(V^m_r) - V^m_r\|^2 \right)^{1/2} + L_2 \sum_{r=0}^{t-1} e^{-\beta(t-r)\varepsilon} \|\Phi^m_t(V^m_r) - V^m_r\|^2.
\]

Bounding the error from the random compressions, we arrive at the error bound
\[
\|V^m_t - v_t\| \leq \frac{\hat{\gamma}(L_1 + L_2)}{\sqrt{m}} \left(e^{-2\beta\varepsilon} \mathbb{E} \left[\|V^m_0\|^2 \right] + \varepsilon \sum_{r=0}^{t-1} e^{-2\beta(t-r)\varepsilon} \mathbb{E} \left[\|V^m_r\|^2 \right] \sqrt{1 + \mathbb{E} \left[\|V^m_{t-1}\|^2 \right]} \right)^{1/2}
+ \frac{\hat{\gamma}^2 L_2}{m} \sum_{r=0}^{t-1} e^{-\beta(t-r)\varepsilon} \mathbb{E} \left[\|V^m_r\|^2 \right] \sqrt{1 + \mathbb{E} \left[\|V^m_{t-1}\|^2 \right]}.
\]

Proof of Theorem 6. By an argument very similar to that in the proof of Theorem 2, we arrive at the bound
\[
\|V^m_t - v_t\| \leq \left(\sum_{r=0}^{t-1} \mathbb{E} \left[\mathcal{M}_{t+1}^r(V^m_r + \varepsilon b(Y^m_r)) - \mathcal{M}_{t+1}^r(V^m_r + \varepsilon b(V^m_r)) \right]^2 \right)^{1/2}
+ \left(\sum_{r=0}^{t-1} \mathbb{E} \left[\mathcal{M}_{t+1}^r(V^m_r + \varepsilon b(Y^m_r)) \mid V^m_r \right] - \mathcal{M}_{t+1}^r(V^m_r) \right)^2 \right)^{1/2}
+ \sum_{r=0}^{t-1} \mathbb{E} \left[\mathcal{M}_{t+1}^r(V^m_r + \varepsilon b(Y^m_r)) \mid V^m_r \right] - \mathcal{M}_{t+1}^r(V^m_r + \varepsilon b(V^m_r)) \right].
which, also as in that proof, is bounded above by
\[\|V_t^m - v_t\| \leq (L_1 + L_2) \left(\varepsilon^2 \sum_{r=0}^{t-1} \alpha^{2(t-r-1)} \|b(Y_r^m) - b(V_r^m)\|^2 \right)^{1/2} \]
\[+ L_2 \varepsilon^2 \sum_{r=0}^{t-1} \alpha^{t-r} \|b(Y_r^m) - b(V_r^m)\|^2. \]

From (37) and Lemma 1 we find that
\[\|b(Y_r^m) - b(V_r^m)\| \leq L_1 \|Y_r^m - V_r^m\|. \]

The rest of the argument proceeds exactly as in the proof of Theorem 2.

\[\square \]

Proof of Lemma 4. Observe that if \(\tau_v^m > 0 \), then condition
\[\sum_{j=\ell+1}^{n} |v_{\sigma_j}| \leq \frac{m - \ell}{m} \|v\|_1 \]
holds for \(\ell = 0 \). Assume that
\[\sum_{j=\ell}^{n} |v_{\sigma_j}| \leq \frac{m - \ell + 1}{m} \|v\|_1 \]
for some \(\ell \leq \tau_v^m \). From the definition of \(\tau_v^m \) and the fact that \(\ell \leq \tau_v^m \), we must also have that
\[\frac{1}{m - \ell} \sum_{j=\ell+1}^{n} |v_{\sigma_j}| < |v_{\sigma_{\ell+1}}|. \]

Combining the last two inequalities yields
\[\sum_{j=\ell+1}^{n} |v_{\sigma_j}| \leq \frac{m - \ell}{m} \|v\|_1. \]

\[\square \]

Proof of Lemma 5. First we assume that, for all \(j \), \(|v_j + w_j| \leq \|v + w\|/m \). We will remove this assumption later. With this assumption in place, \(N_j \in \{0,1\} \) and the while loop in Algorithm 1 is inactive so that
\[f^H \Phi_t(v + w) = \sum_{j=1}^{n} \tilde{f}_j \frac{v_j + w_j}{|v_j + w_j|} \frac{\|v + w\|}{m} N_j, \]
\[\mathbb{E}[|f^H \Phi_t(v + w) - f^H(v + w)|^2] = \frac{\|v + w\|^2}{m^2} \mathbb{E} \left[\sum_{j=1}^{n} \tilde{f}_j \left(\frac{v_j + w_j}{|v_j + w_j|} \right)^2 \left(N_j - \frac{m|v_j - w_j|}{\|v + w\|_1} \right)^2 \right]. \]

The random variables in the sum are independent, so the last expression becomes
\[\mathbb{E}[|f^H \Phi_t(v + w) - f^H(v + w)|^2] \leq \frac{\|v + w\|^2}{m^2} \sum_{j=1}^{n} \tilde{f}_j \mathbb{E} \left[\left(N_j - \frac{m|v_j - w_j|}{\|v + w\|_1} \right)^2 \right]. \]

Since \(N_j \in \{0,1\} \), the expression for the variance of \(N_j \) becomes
\[\text{var} [N_j] = \mathbb{E} [N_j] (1 - \mathbb{E} [N_j]) = \frac{m|v_j + w_j|}{\|v + w\|_1} \left(1 - \frac{m|v_j + w_j|}{\|v + w\|_1} \right), \]
so that
\[\mathbb{E}[|f^H \Phi_t(v + w) - f^H(v + w)|^2] \leq \frac{\|v + w\|^2}{m^2} \left[m - \left(\frac{m}{\|v + w\|_1} \right)^2 \|v + w\|_2^2 \right]. \]

Because this scheme does not depend on the ordering of the entries of \(v + w \) we can assume that the entries have been ordered so that \(v_j = 0 \) for \(j > m \). In this case we can write
\[\|v + w\|_2^2 = \sum_{j=1}^{m} |v_j + w_j|^2 + \sum_{j=m+1}^{n} |w_j|^2 \geq \frac{1}{m} \left(\sum_{j=1}^{m} |v_j + w_j| \right)^2, \]
which then implies that

\[
E \left[|f^H \Phi_t(v + w) - f^H(v + w)|^2 \right] \leq \frac{\|v + w\|^2}{m} \left(1 - \frac{1}{\|v + w\|^2} \left(\|v + w\|_1 - \sum_{j=m+1}^n |w_j| \right)^2 \right)
\]

\[
\leq \frac{2\|v + w\|_1}{m} \|v + w\|_1.
\]

We now remove the assumption that \(|v_j + w_j| \leq \|v + w\|/m\). Let \(\sigma\) be a permutation of the indices of \(v + w\) resulting in a vector \(v_{\sigma} + w_{\sigma}\) with entries of nonincreasing magnitude. Since Algorithm 1 preserves the largest \(\tau_{v+w}^{m}\) entries of \(v + w\) and the remaining entries, \(v_{\sigma} + w_{\sigma}\) for \(j > \tau_{v+w}^{m}\), satisfy

\[
|v_{\sigma_j} + w_{\sigma_j}| \leq \frac{1}{m - \tau_{v+w}^{m}} \sum_{k=\tau_{v+w}^{m}}^n |v_{\sigma_k} + w_{\sigma_k}|,
\]

we can apply the sampling error bound just proved to find that

\[
\|\Phi_t(v + w) - v - w\| \leq \frac{\sqrt{2} \left(\sum_{j=\tau_{v+w}^{m}}^n |w_j| \right) \frac{1}{2} \left(\sum_{j=\tau_{v+w}^{m}}^n |v_j + w_j| \right) \frac{1}{2}}{\sqrt{m - \tau_{v+w}^{m}}}
\]

An application of Lemma 4 then yields (43).

In bounding the size of \(\Phi_t(v + w)\) we will again assume that \(\tau_{v+w}^{m} = 0\) and that the entries have been ordered so that \(v_j = 0\) for \(j > m\). The size of the resampled vector can be bounded by first noting that, since the \(N_j\) are independent and are in \(\{0, 1\}, \)

\[
E \left[\left(\sum_{j=1}^n N_j \right)^2 \right] = \sum_{j=1}^n \frac{m|v_j + w_j|}{\|v + w\|_1} + 2 \sum_{i=1}^n \sum_{j=i+1}^n \frac{m|v_i + w_i| m|v_j + w_j|}{\|v + w\|_1}
\]

\[
= \sum_{j=1}^n \left(\frac{m|v_j + w_j|}{\|v + w\|_1} \right)^2 + 2 \sum_{i=1}^n \sum_{j=i+1}^n \frac{m|v_i + w_i| m|v_j + w_j|}{\|v + w\|_1}
\]

\[
+ \sum_{j=1}^n \frac{m|v_j + w_j|}{\|v + w\|_1} - \left(\frac{m|v_j + w_j|}{\|v + w\|_1} \right) \frac{2}{2}
\]

\[
= m^2 + \sum_{j=1}^n \frac{m|v_j + w_j|}{\|v + w\|_1} - \left(\frac{m|v_j + w_j|}{\|v + w\|_1} \right)^2.
\]

Breaking up the last sum in this expression, we find that

\[
\sum_{j=1}^m \frac{m|v_j + w_j|}{\|v + w\|_1} - \left(\frac{m|v_j + w_j|}{\|v + w\|_1} \right)^2 \leq m \sum_{j=1}^m \frac{|v_j + w_j|}{\|v + w\|_1} - m \left(\sum_{j=1}^m \frac{|v_j + w_j|}{\|v + w\|_1} \right)^2
\]

\[
\leq m \left(1 - \sum_{j=1}^m \frac{|v_j + w_j|}{\|v + w\|_1} \right) \leq \frac{m\|w\|_1}{\|v + w\|_1}
\]

and that

\[
\sum_{j=m+1}^n \frac{m|w_j|}{\|v + w\|_1} - \left(\frac{m|w_j|}{\|v + w\|_1} \right)^2 \leq \frac{m\|w\|_1}{\|v + w\|_1},
\]

so that

\[
E \left[\left(\sum_{j=1}^n N_j \right)^2 \right] \leq m^2 + 2 \frac{m\|w\|_1}{\|v + w\|_1}.
\]

It follows then that (at least when \(\tau_{v+w}^{m} = 0\))

\[
E \left[\|\Phi_t^m(v + w)\|^2 \right] \leq \|v + w\|_1 + 2 \frac{\|v + w\|_1\|w\|_1}{m}
\]

Writing the corresponding formula for \(\tau_{v+w}^{m} > 0\) and applying Lemma 4 gives the bound in the statement of the lemma.
Finally we consider the probability of the event \(\{ \Phi^{m}_i(v + w) = 0 \} \). If \(\tau^m_{v+w} = 0 \), then \(N_j \in \{0, 1\} \), so that \(P[N_j = 0] = 1 - m|v_j + w_j|/\|v + w\|_1 \), and, since the \(N_j \) are independent,

\[
P[N_j = 0 \text{ for all } j] = \prod_{j=1}^{n} \left(1 - \frac{m|v_j + w_j|}{\|v + w\|_1} \right) \leq \prod_{j \leq n, v_j \neq 0} \left(1 - \frac{m|v_j + w_j|}{\|v + w\|_1} \right).
\]

The first product in the last display is easily seen to be bounded above by \(e^{-m} \). The second product is maximized subject to the constraint

\[
\sum_{j \leq n, v_j \neq 0} \left(1 - \frac{m|v_j + w_j|}{\|v + w\|_1} \right) \leq \frac{m\|w\|_1}{\|v + w\|_1}
\]

when the terms in the product are all equal, in which case we get

\[
P[N_j = 0 \text{ for all } j] \leq \left(\frac{\|w\|_1}{\|v + w\|_1} \right)^m.
\]

\(\square \)