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Tensors as hypermatrices

Up to choice of bases on U, V, W, atensor Ac U® V ® W may be
represented as a hypermatrix

_ I,m,n Ixmxn
A= [[aijk]]i,j,kzl eR

where dim(U) = I,dim(V) = m,dim(W) = n if

@ we give it coordinates;

@ we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Multilinear matrix multiplication

@ Matrices can be multiplied on left and right: A € R™*" X € RP*™,

Y € RI*M,
C=(X,Y) A= XAYT € RP*9,

m,n
Cap = E Pi=1 xa,-yﬁja,-j.

@ 3-tensors can be multiplied on three sides: A € R*™xn X ¢ RP*/

Y € qum, Zc Rrxn’
C= (X7 sz) -Ae RquXr’
I,m,n
Caﬁ»y = Zi,j 1 xa,-ygjzvka,-jk.

@ Correspond to change-of-bases transformations for tensors.

@ Define ‘right’ (covariant) multiplication by
(X,Y,2) - A=A-(XT, YT, Z").

L.H. Lim & J. Morton (MSRI Workshop) Higher-order correlations December 15, 2008

3/30



Symmetric tensors

Cubical tensor [aji] € R"*™*" is symmetric if

djjk = dikj = djik = djki = Akij = Akji-

For order p, invariant under all permutations o € &, on indices.

SP(IR™) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X, X, X) - A where

I,m;n
C = E XoiXBi X~k Ak -
afy Pjk=1" Bj%vk4ijk
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Examples of symmetric tensors

@ Higher order derivatives of real-valued multivariate functions.

@ Moments of a vector-valued random variable x = (x1,...,xp):
n
SP(X) = [[E(XJlsz e ij)]]jhm’jpzl'

e Cumulants of a random vector x = (xi, ..., Xp):

fcp(x)=|, S o e( Tk Hx)m

. . jeA
A A=t o R PR
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Cumulants

@ In terms of log characteristic and cumulant generating functions,
9P
Kjyojy(X) = 70—
i
P 8tj1 oo 8tj

log E(exp((t,x))

= (1P 5 TR Elexpli )

p

t=0

@ In terms of Edgeworth expansion,

] o]

ta
log E(exp(i(t,x) Z —!, log E(exp((t,x)) = Zma(x)a,
a=0 a=0
a=(ai,...,ap) is a multi-index, t&* = t[" -+ t3", al = aq! - -l

@ For each x, Kp(x) = [rj...j,(x)] € SP(R") is a symmetric tensor.
o [Fisher, Wishart; 1932]
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Properties of cumulants

Multilinearity: If x is a R"-valued random variable and A € R™*"
Y

Kp(Ax) = (A, ..., A) - Kp(x).

Additivity: If x1, ..., X, are mutually independent of yi, ..., yk, then

ICp(xl T Y1, Xk —i—yk) = ICp(xl, . ,Xk) —i—ICp(yl,. ..

Independence: If | and J partition {ji,...,jp} so that x; and x, are
independent, then

/@J-I...J-p(x) =0.

Support: There are no distributions where

#0 3<p<n,
Kp(x){:() p>n
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Examples of cumulants

Univariate: Kp(x) for p=1,2,3,4 are mean, variance, skewness,
kurtosis (unnormalized)

Discrete: x ~ Poi(\), Kp(x) = A for all p.

Continuous: x ~ U([0,1]), Kp(x) = Bp/p where B, = pth Bernoulli
number.

Nonexistent: x ~ t(3), Kp(x) does not exist for all p > 3.
Multivariate: C1(x) = E(x) and K2(x) = Cov(x).
Discrete: x ~ Mult(n,q),

_ or t t,
Rjrip(X) = N g log(que™™ + - + qre’™™)

Continuous: x ~ N(u, X), Kp(x) = 0 for all p > 3.

tr,...,tx=0
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Estimation of cumulants

e How do we estimate K,(x) given multiple observations of x?

@ Central and non-central moments are

. 1 _ . 1
i = — Zt(xt —-X)", §,=-— thf, etc.

@ Cumulant estimator I@,,(x) for p=1,2,3,4 given by

Ri=mi =

Rij = g = 15 (85 — 15%)
Rik = D=z Mik = Gy ik — 5 (88 + &3 + 385) + 5 883]
2
Rijke = W[(" + 1) Mie — (’7 — 1) (A e + Miucje + Miein)]
)Ei

= W[(n + 1)3jke — “2(5i8jke + 8i8ike + Sk8jc + SeSik)

n
~ =1 (38ke + 3iSje + Sie8k) + (§jk ~+ Sje + Ske)
+§J‘2(§ik + S0 + 8ke) + 80 (85 + Sie + i) + 87 (85 + S + 8)

6 AnA A
— 558i85,58].
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In terms of matrix multiplication

Data often presented as Y € R™*", e.g. gene X microarray, text x
document, person X image, user X movie, webpage x webpage etc.

“And so we now have eigengenes, eigenarrays and eigenexpression in the world of
transcriptomics, eigenproteins and eigenprofiles in proteomics, eigenpathways in
metabolomics, and eigenSNPs in genetics. There are also eigenimages and
eigenfaces in image analysis, and eigenpatterns in seismology. In fact, if you put any
word you like after eigen- into a Google query box and hit return, | guarantee a

result. Yes, even eigenresult and eigenGoogle!”
— Terry Speed, IMS Bulletin, April 2008

@ Mean centered, otherwise y = x — E(x).
o Ki(y)=0.

o Kaly) = 221 VYT = 225(Y.Y) - hnxn-

o K3(y) = erjay (Y- Y+ Y) - Tonxn:

® Tnunxn = [0jk] € S*(R") is the ‘Kronecker delta tensor’, i.e. & = 1
if i =j =k and d; = 0 otherwise.

L.H. Lim & J. Morton (MSRI Workshop) Higher-order correlations December 15, 2008 10 / 30



Factor analysis

@ Linear generative model
y=As+e

noise € € R™, factor loadings A € R™*", hidden factors s € R’,

observed data y € R™.

@ Do not know A, s, €, but need to recover s and sometimes A from
multiple observations of y.

e Time series of observations, get matrices Y = [y1,...,¥n],
S=1Is1,...,8q), E=[e1,...,€p], and

Y =AS+E.

Factor analysis: Recover A and S from Y by a low-rank matrix
approximation Y ~ AS
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Principal and independent components analysis

Principal components analysis: s Gaussian,

Ka(y) = QMQ"T = (Q, Q) - A,

Az =~ K2(s) diagonal matrix, Q € O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries,
Gaussian

Ko(y) =(Q,...,Q)- Ny, p=2,3,..

*

A, = K,(s) diagonal tensor, @ € O(n, r), [Comon; 1994].
What if

@ s not Gaussian, e.g. power-law distributed data in social networks.
@ s not independent, e.g. functional components in neuroimaging.

@ £ not white noise, e.g. idiosyncratic factors in financial modelling.
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Principal cumulant components analysis
@ Note that if € = 0, then
Koly) = Kp(Qs) = (Q, ..., Q) - Kp(s).

@ In general, want principal components that account for variation in all
cumulants simultaneously

mingeo(n,n), coese®) O apllKo(y) = (@, Q) - Coll,
p=1

o C, ~ K,(s) not necessarily diagonal.
@ Appears intractable: optimization over infinite-dimensional manifold
(n,r) x H SP(R").

@ Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n—r),

maxgecr(nn Y, @lKp(¥) - (Q.-- QI

@ In practice co = 3 or 4.
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Some geometric notions

@ Set of 'honest’ secants of the Veronese variety in SP(R") — not
closed, not irreducible, difficult to study.

@ Symmetric subspace variety in SP(R") — closed, irreducible, easy to
study.

o Stiefel manifold O(n, r): set of n x r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

e Grassmann manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

e Parametrization of SP(R") via

Gr(n, r) x SP(R") — SP(R™).

@ More generally

6.0 < T, ) ~ T
p=1 p1
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From Stiefel to Grassmann
e Given A € SP(R"), some r < n, want
minXEO(n,r), CeSP(RN) HA - (Xv s 7X) ’ CHFv

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.
@ Equivalent to

maxxco(nn (X, ..., XT) - AllF = maxxco(mn A (X, ..., X)|F.
@ Problem defined on a Grassmannian since
[A-(X,... . X)lF =4 (XQ,..., XQ)|F,

for any Q € O(r). Only the subspaces spanned by X matters.
Equivalent to

MaxxeGr(n,r) ||-’4 ’ (Xv ce 7X)||F :

@ Once we have optimal X, € Gr(n, r), may obtain C, € SP(R") up to
O(n)-equivalence,

C.=(X!,....x")- A
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Coordinate-cycling heuristics

o Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for
minimizing
W(X,Y.2) = A (XY, 2)|7

for A € R/*™*n cycling between X, Y, Z and solving a least squares
problem at each iteration.

e What if A € S3(R") and
O(X) = A (X, X, X)|3?
@ Present approach: disregard symmetry of A, solve W(X, Y, Z), set

upon final iteration.

@ Better: L-BFGS on Grassmannian.
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Newton /quasi-Newton on a Grassmannian

o Objective ® : Gr(n,r) — R, &(X) = ||A- (X, X, X)||z.
e Tx tangent space at X € Gr(n,r)

R™SAeTx <« A'X=0

@ Compute Grassmann gradient Vo € Tx.
@ Compute Hessian or update Hessian approximation

H:AeTx - HA € Tx.

© At X € Gr(n,r), solve
HA = -Vo

for search direction A.
© Update iterate X: Move along geodesic from X in the direction given
by A.
o [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.;
2008].
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Picture
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BFGS on Grassmannian

The BFGS update

Hisks) Hi  yry)

Hi+1 = Hi —
s, Hisk YL Yk

where

Sk = Xk+1 — Xk = Pk,
Yk = ka-i-l — ka.

On Grassmannian the vectors are defined on different points belonging to
different tangent spaces.
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Different ways of parallel transporting vectors

X € Gr(n,r), A1, Ap € Tx and X(t) geodesic path along A;
o Parallel transport using global coordinates
Az(t) = TAl(t)Az

we have also
AlZXJ_Dl and AzZXLDg

where X, basis for Tx. Let X(t), be basis for Tx(y).

o Parallel transport using local coordinates

Ag(t) = X(t)J_D2.
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Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in
the basis X(t) at all points on the path X(t).

Plus: No need to transport the gradient or the Hessian.
Minus: Need to compute X(t) .
In global coordinate we compute
© Tiy1 2 sk =ty Ta,(tk)Pk
© Tyi13yk = Vi1 — Ta, (te) Vi
o Ta,(ti)Hx T&:(tk) t Tk — T

Hisks, Hi  ykyj
Hi+1 = Hi — . .

T T
S, Hiksk Yy Yk
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BFGS

Compact representation of BFGS in Euclidean space:

-T T -1
Hi = Ho + [Sk HoY«] [Rk (D Yy HoYioRy

“1
—R,
where
Sk =[s0s---sSk-1],
Yk — [y07"' 7yk—1]7
Dy = diag SJYO7---,SZ_1YI<—1] ,
SJYO 5@1 SQ—FYk—l
0 sjy1 -+ S;Yk-1
Ry = . ! ' .
0 0 s| iYk-1
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L.H. Lim & J. Morton (MSRI Workshop)

L-BFGS

Limited memory BFGS [Byrd et al; 1994]. Replace Hy by ~yx/ and keep the
m most resent s; and yj,

R (D +vY,)YIRY —RT1T S)
Hie = + [Sk v Y] [ v (D« _Z}k_lk KR Ok w#ﬁj
k

where

Sk = [Skems -+, Sk-1] ,
Y= Yk—ms---s¥Yk-1],

. T T
Dk = dlag Sk—mY¥Yk—m>--- ask—lyk—l] )
T T T
Si_mYk—m _?_k_mYk—m—&—l Tt _?_k_mYk—l
R 0 Sk_mi1Yk—m+1l ' S pmi1Yk—1
k = . i )
T
0 0 s 1Yk
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L-BFGS on the Grassmannian

@ In each iteration, parallel transport vectors in Sk and Y) to Ty, ie.

perform B B

where T is the transport matrix.

@ No need to modify Ry or Dy
(u,v) = (Tu, Tv)

where u,v € Ty and Tu, Tv e Tyg.

@ Hy nonsingular, Hessian is singular. No problem T, at x, is invariant
subspace of Hy, ie. if v € Ty then Hyv € Ty.

@ [Savas, L.; 2008]
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Convergence

@ Compares favorably with Alternating Least Squares.

—f—aN- e

=5 E 5 5 5 E ——aLs

RELATIVE MORM OF THE GRADIEMT

0 i i i i ; i i i
a 20 40 60 gn 100 120 140 160 180
ITERATION #
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Higher order eigenfaces

Principal cumulant subspaces supplement varimax subspace from PCA.
Take face recognition for example, eigenfaces (p = 2) becomes
skewfaces (p = 3) and kurtofaces (p = 4).

o Eigenfaces: given image x pixel matrix A € R™*" with centered
columns where m < n.

@ Eigenvectors of pixel x pixel covariance matrix ngixel € S?(R") are
the eigenfaces.

@ For efficiency, compute image x image covariance matrix
K528 € S2(R™) instead.

e SVDA=UZVT gives both implicitly,

K = LAT,AT)  hm = SATA= LVAVT,
K5 = LA A) - loxn = 2AAT = LUAUT.

. ixel .
@ Orthonormal columns of U, eigenvectors of nk’5™, are the eigenfaces.
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Computing image and pixel skewness

@ Want to implicitly compute ngixel € S3(R"), third cumulant tensor of
the pixels (huge).

@ Just need projector [1 onto the subspace of skewfaces that best
explain Kg'xel.

o Let A=UZVT, UecO(n,m), XecR™™ VecO(m).
KgiXEI =2 (A A A) mxmxm
=L(U,U,0)- (Z,5,5)- (VI,VT V) Toimum
Kiamage = (AT AT AT) nxnxn
= H(V’ V? V) : (27272) (UT UT UT) nxnxn

@ ZTnxnxn = [0ji] € S3(R") is the ‘Kronecker delta tensor’, i.e. dj =1
iff i = j = k and dj = 0 otherwise.
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Computing skewmax projection

o Define A € S3(R™) by
A = (Za Za Z) : (VT7 VT7 VT) 'ZmeXm

e Want @ € O(m, s) and core tensor C € S3(R®) not necessarily
diagonal, so that A = (Q, Q, Q) - C and thus

kP~ L(U,U,U)-(Q,Q,Q)-C = L(UQ,UQ, UQ)-C.
@ Solve

MiNQeo(m,s), ces3(rs) A — (Q, Q, Q) - C|I¢

e 1= UQ € O(n,s) is our orthonormal-column projection matrix onto
the 'skewmax’ subspace.

e Caveat: Q only determined up to O(s)-equivalence. Not a problem if
we are just interested in the associated subspace or its projector.
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Combining eigen-, skew-, and kurtofaces

Combine information from multiple cumulants:

@ Same procedure for the kurtosis tensor (a little more complicated).

@ Say we keep the first r eigenfaces (columns of U), s skewfaces, and t
kurtofaces. Their span is our optimal subspace.

@ These three subspaces may overlap; orthogonalize the resulting
r+ s+ t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

o first r vectors best explain the pixel covariance Kgixel € S?(R™),
@ next s vectors, with Wj.,, best explain the pixel skewness
Ko e S3(Rn)

@ last t vectors, with Wi., s, best explain pixel kurtosis ICZixeI € S*(R").
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