Fast I_{p}-regression in a Data Stream

Christian Sohler (TU Dortmund)

David Woodruff (IBM Almaden)

Overview

- Massive data sets
- Streaming algorithms
- Regression
- Clarkson's algorithm
- Our results
- Subspace embeddings
- Noisy sampling

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Streaming algorithms

Scenario

- Data arrives sequentially at a high rate and in arbitrary order
- Data is too large to be stored completely or is stored in secondary memory (where streaming is the fastest way of accessing the data)
- We want some information about the data

Algorithmic requirements

- Data must be processed quickly
- Only a summary of the data can be stored
- Goal: Approximate some statistics of the data

Streaming algorithms

The turnstile model

- Input: A sequence of updates to an object (vector, matrix, database, etc.)
- Output: An approximation of some statistics of the object
- Space: significantly sublinear in input size
- Overall time: near-linear in input size

Streaming algorithms

Example

- Approximating the number of users of a search engine
" Each user has its ID (IP-address)
- Take the vector v of all valid IP-addresses as the object
" Entries of v: \#queries submitted to search engine
- Whenever a user submits a query, increment v at the entry corresponding to the submitting IP-address
- Required statistic: \# non-zero entries in the current vector

Regression analysis

Regression

- Statistical method to study dependencies between variables in the presence of noise.

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R • I

Example Regression

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R • I
- Find linear function that best fits the data

Example Regression

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable y
- A set of predictor variables x_{1}, \ldots, x_{d}
- Assumption:

$$
y=0^{+}{ }_{1} x_{1}+\ldots+{ }_{d} x_{d}+
$$

- is assumed to be a noise (random) variable and the ${ }_{j}$ are model parameters

Regression analysis

Example

- Measured variable is the voltage V
- Predictor variable is the current I
- (Unknown) model parameter is the resistance R
- We get pairs of observations for V and I, i.e. pairs $\left(x_{i}, y_{i}\right)$ where x is some current and y is some measured voltage

Example Regression

Assumption

- Each pair (x,y) was generated through $y=R \cdot x+$, where is distributed according to some noise distribution, e.g. Gaussian noise

Regression analysis

Setting

- Experimental data is assumed to be generated as pairs $\left(x_{i}, y_{i}\right)$ with $y_{i}={ }_{0}{ }^{+}{ }_{1} \mathrm{X}_{\mathrm{i}, 1}+\ldots+{ }_{\mathrm{d}} \mathrm{X}_{\mathrm{i}, \mathrm{d}}+$,
- where is drawn from some noise distribution, e.g., a Gaussian distribution

Least Squares Method
" Find *that minimizes $\left(y_{i}-{ }^{*} x_{i}\right)^{2}$

- Maximizes the (log)-likelihood of , i.e. the probability density of the y_{i} given
- Other desirable statistical properties

Regression analysis

Model

- Experimental data is assumed to be generated as pairs $\left(x_{i}, y_{i}\right)$ with $\mathrm{y}_{\mathrm{i}}={ }_{0}{ }^{+}{ }_{1} \mathrm{X}_{\mathrm{i}, 1}+\ldots+{ }_{d} \mathrm{X}_{\mathrm{i}, \mathrm{d}}+$,
- where is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation

- Find * that minimizes $\left|y_{i}-{ }^{*} x_{i}\right|$
- More robust than least squares

Regression analysis

Model

- Experimental data is assumed to be generated as pairs (x_{i}, y_{i}) with $\mathrm{y}_{\mathrm{i}}={ }_{0}{ }^{+}{ }_{1} \mathrm{X}_{\mathrm{i}, 1}+\ldots+{ }_{d} \mathrm{X}_{\mathrm{i}, \mathrm{d}}+$,
- where is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (l_{1}-regression)

- Find * that minimizes $\left|y_{i}-{ }^{*} x_{i}\right|$
- More robust than least squares

Regression analysis

Model

- Experimental data is assumed to be generated as pairs ($\mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) with $y_{i}={ }_{0}{ }^{+}{ }_{1} x_{i, 1}+\ldots+{ }_{d} X_{i, d}+$,
- where is drawn from some noise distribution, e.g., a Gaussian distribution
I_{p}-regression
- Find * that minimizes $\left|y_{i}-{ }^{*} x_{i}\right|^{p} \quad, 1<p<2$
- More robust than least squares

Regression analysis

Matrix form for I_{p}-regression, $1 \leq p \leq 2$
" Input: $\mathrm{n} \times \mathrm{d}$-matrix X whose rows are the x_{i} and a vector $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ n is the number of observations; d is the number of predictor variables (We assume that ${ }_{0}=0$ for all i)
" Output: * that minimizes \|X *-yl|p

Regression analysis

Geometry of regression

- AssumenÀ d
- We want to find a * that minimizes $\left\|X^{*}-y\right\|_{p}^{p}$
- The product X * can be written as

$$
X_{*_{1}}{ }_{1}^{*}+X_{*_{2}}{ }_{2}^{*}+\ldots+X_{* d} \stackrel{*}{d}
$$

- where $X_{t_{i}}$ is the i-th column of X
- This is a linear k-dimensional subspace ($k \leq d$ is the rank of X)
- The problem is equivalent to computing the point of the column space of X nearest to y in I_{p}-norm

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *-\mathrm{y} \|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r' such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *$ *y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X} "-\mathrm{y}$
3. Scale r' such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+\left|\left|u_{i} \|\right| / /\left(\left|r^{\prime}\right|+||U \|| |)\right.\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set
 using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *$ *y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $r^{\prime}=X \quad "-y$
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set
 using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\left\|\mathrm{X}^{\prime}-\mathrm{y}\right\|_{1} \leq(1+) \cdot \| \mathrm{X}{ }^{*}$-y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $r^{\prime}=X \quad "-y$
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set
 using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *$ *y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}=-\mathrm{y}$
3. Scale r' such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set
 using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *$ *y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $r^{\prime}=X \quad "-y$
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_{i}=f_{i} \cdot$ poly $(d, 1 /)$ where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set

New problem:

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *$ *y $\|_{1}$

1. Compute O(1)-Approximation
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r ' such that $\|r\|^{\prime} \|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+\left|\left|u_{i} \|\right| / /\left(\left|r^{\prime}\right|+||U \|| |)\right.\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set
 using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *-\mathrm{y} \|_{1}$

1. Compute $\mathrm{O}(1)$-Approximation
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X} \quad \mathrm{m}-\mathrm{y}$
3. Scale r' such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \|| |)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set

Well-conditioned basis U:
Basis with
$\|z\|_{1} \cdot\|U z\|_{1} \cdot \operatorname{poly}(d)\|z\|_{1}$ using linear programming

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ ' $-\mathrm{y}\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *-\mathrm{y} \|_{1}$

1. Compute O(1)-Approximation
"
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_{i}=f_{i} \cdot$ poly $(d, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U:
Basis with
$\|z\|_{1} \cdot\|U z\|_{1} \cdot \operatorname{poly}(d)\|z\|_{1}$
Example Regression

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ ' $-\mathrm{y}\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X}{ }^{*}-\mathrm{y} \|_{1}$

1. Compute O(1)-Approximation
"
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_{i}=f_{i} \cdot$ poly $(d, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U:
Basis with
$\|z\|_{1} \cdot\|U z\|_{1} \cdot \operatorname{poly}(d)\|z\|_{1}$

Example Regression

Regression analysis

(1+)-approximation algorithm for I_{1} - regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ '-y $\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *-\mathrm{y} \|_{1}$

1. Compute O(1)-Approximation
"
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $\mathrm{p}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} \cdot$ poly $(\mathrm{d}, 1 /$) where $f_{i}=\left|r_{i}^{\prime}\right|+\left|\left\|u_{i}\right\|\right| /\left(\left|r^{\prime}\right|+||U \|| |)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U:
Basis with
$\|z\|_{1} \cdot\|U z\|_{1} \cdot \operatorname{poly}(d)\|z\|_{1}$

Example Regression

Regression analysis

(1+)-approximation algorithm for I_{1}-regression [Clarkson, SODA'05]
Input: $\mathrm{n} \times \mathrm{d}$ matrix X , vector y
Output: vector 's.t. $\| \mathrm{X}$ ' $-\mathrm{y}\left\|_{1} \leq(1+) \cdot\right\| \mathrm{X} *-\mathrm{y} \|_{1}$

1. Compute O(1)-Approximation
"
2. Compute the residual $\mathrm{r}^{\prime}=\mathrm{X}$ "-y
3. Scale r^{\prime} such that $\left\|r^{\prime}\right\|_{1}=d$
4. Compute a well-conditioned basis U of the column space of X
5. Sample row i according to $p_{i}=f_{i} \cdot$ poly $(d, 1 /)$ where $f_{i}=\left|r_{i}^{\prime}\right|+| | u_{i}\| \| /\left(\left|r^{\prime}\right|+||U \||)\right.$
6. Assign to each sample row a weight of $1 / p_{i}$
7. Solve the problem on the sample set using linear programming

Well-conditioned basis U:
Basis with
$\|z\|_{1} \cdot\|U z\|_{1} \cdot \operatorname{poly}(d)\|z\|_{1}$

Example Regression

Regression analysis

Solving I_{1}-regression via linear programming

- Minimize $(1, \ldots, 1) \cdot\left({ }^{+}+{ }^{-}\right)$
- Subject to:

$$
\begin{aligned}
\text { X } \quad+^{+} & =y \\
+, & \geq 0
\end{aligned}
$$

Regression for data streams

I_{1}-regression

- X : $\mathrm{n} \times \mathrm{d}$-matrix of predictor variables, n is the number of observations
- y : vector of measured variables
- : unknown model parameter (this is what we want to optimize)
- Find that minimizes $\|X-y\|_{1}$

Turnstile model

- We get updates for X and y
- Example: (i,j,c) means $X[i, j]=X[i, j]+c$
- Heavily overconstrained case: n À d

Regression for data streams

State of the art

- Small space streaming algorithm in the turnstile model for I_{p}-regression for all $p, 1 \leq p \leq 2$; the time to extract the solution is prohibitively large [Feldman, Monemizadeh, Sohler, W; SODA'10]
- Efficient streaming algorithm in the turnstile model for I_{2}-regression [Clarkson, W, STOC'09]
- Somewhat efficient non-streaming (1+)-approximations for I_{p}-regression [Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06; Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]

Our Results

- A $(1+\varepsilon)$-approximation algorithm for I_{p}-regression problem for any p in [1, 2]
- First 1-pass algorithm in the turnstile model
- Space complexity poly(d $\log n / \varepsilon)$
- Time complexity nd ${ }^{1.376}$ poly ($\log n / \varepsilon$)
- Improves earlier nd ${ }^{5}$ log n time algorithms for every p
- New linear oblivious embeddings from $I_{p}{ }^{n}$ to $I_{p}{ }^{r}$
- $r=\operatorname{poly}(d \log n)$
- Preserve d-dimensional subspaces
- Distortion is poly(d)
- This talk will focus on the case $p=1$

Regression for data streams

First approach

- Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute $\mathrm{O}(1)$-approximation

Compute well-conditioned
basis

Sample rows from the well-conditioned basis and the residual

Regression for data streams

Theorem 1 (l_{1}-subspace embedding)

- Let $r \geq p o l y(d, \ln n)$. There is a probability space over $r \times n$ matrices R such that for any $n \times d$-matrix A with probability at least $99 / 100$ we have for all $\in \mathbb{R}^{d}$:

$$
\|\mathrm{A}\|_{1} \leq\|\mathrm{RA}\|_{1} \leq \mathrm{O}\left(\mathrm{~d}^{2}\right) \cdot\|\mathrm{A}\|_{1}
$$

- $\quad R$ is a scaled matrix of i.i.d. Cauchy random variables
- Argues through the existence of well-conditioned bases
- Uses "well-conditioned nets"
- Generalizes to $p>1$

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the stream
- Find ' that minimizes ||RX '-Ry\| using linear programming
- Compute a well-conditioned basis U for $R X$
- Compute Y such that $U=R X Y$

Lemma 2

With probability $99 / 100, \mathrm{XY}$ is a well-conditioned basis for the column space of X.

Regression for data streams

R can be stored implicitly.
The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes ||RX '-Ry\| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U=R X Y$

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes ||RX '-Ry\| using linear programming
- Compute a well-conditioned bas U for RX
- Compute Y such that $U=R X Y$

Lemma 2

$$
R(X+)=R X+R
$$

With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes ||RX '-Ry\| using linear programming
- Compute a well-conditioned basis U for $R X$
- Compute Y such that $U=R X Y$

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes $\| R X$ '-Ry\| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $U=R X Y$

Lemma 2 Using [Clarkson; SODA‘05] or

With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes \|RX '-Ry\| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that $\mathrm{U}=\mathrm{RXY}$

The span of U equals the span of $R X$
Lemma 2
With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

The algorithm - part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find ' that minimizes \|RX '-Ry\| using linear programming
- Compute a well-conditioned basis U for $R X$
- Compute Y such that $U=R X Y$

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the column space of X.

Regression for data streams

Intermediate summary

- Can compute poly(d)-approximation
- Can compute Y s.t. XY is well-conditioned

Compute O(1)-approximation
Compute well-conditioned basis

Sample rows from the well-conditioned basis and the residual

Regression for data streams

We can reduce everything to a new problem

- Updates to matrix B
- Need to sample rows from B with probability according to their I_{1}-norm
- Assume we know $\mathrm{M}=\|\mathrm{B}\|_{1}$

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]

- Subdivide rows into groups

Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately

Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- Problem: Can't store the sample in the stream

Norm:

Prob.:

Regression for data streams

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- Problem: Can't store the sample
- Instead: Subsampling

Norm:

Prob.:

Regression for data streams

Noisy Sampling

- Grouping:
- $I_{j}=\left\{i:\left\|B_{i}\right\|_{1} \in\left(M / 2^{j}, 2 M / 2^{j}\right]\right\}$
- Sample step (Group I_{j}):
- Subsample rows with probability $1 / 2^{j}$
- Hash sampled rows into w buckets
- Maintain sum of each bucket
- Noise in a bucket ¼M/(2j w)
- Verification step:
- Check if bucket has norm approx. M/2 ${ }^{j}$
- If yes, then return bucket as noisy sample with weight 2^{j}

Regression for data streams

Summary of the algorithm

- Maintain RX and Ry to obtain poly(d)-approximation and access to matrix B
- Sample rows using our noisy sampling data structure
- Solve the problem on the noisy sample

Regression for data streams

Some simplifications

- Let B be the matrix XY adjunct $\mathrm{r}^{\prime}=\mathrm{X}$ '-y
- Assume the stream has updates for B

Regression for data streams

Some simplifications

- Let B be the matrix XY adjunct $\mathrm{r}^{\prime}=\mathrm{X} \quad$ '-y

Assume we know Y in
advance:
$(X+) Y=X Y+Y$

- Assume the stream has updates for B

Why don't we need another pass for this?

- We can treat the entries of Y and ' as formal variables and plug in the values at the end of the stream

Theorem

The above algorithm is a (1+)-approximation to the l_{1} regression problem

- uses poly(d, log n, 1/) space
- implementable in 1-pass in the turnstile model
- can be implemented in nd ${ }^{1.376}$ poly(log $\left.n / \varepsilon\right)$ time
- Main point is that well-conditioned basis computed in sketch-space

Conclusion

Main results

- First efficient streaming algorithm for I_{p}-regression, 1 - $p<2$
- nd ${ }^{1.376}$ running time improves previous nd ${ }^{5}$ running time
- First oblivious poly(d) subspace embedding for I_{1}

Open problems

- Streaming and/or approximation algorithms for even more robust regression problems like least median of squares, etc.
- Regression when d À n (redundant parameters, structural restrictions, ...)
- Kernel methods
- Algorithms for statistical problems on massive data sets
- Other applications of our subspace embedding

