Fast I_p-regression in a Data Stream

Christian Sohler (TU Dortmund)

David Woodruff (IBM Almaden)

Overview

- Massive data sets
- Streaming algorithms
- Regression
- Clarkson's algorithm
- Our results
- Subspace embeddings
- Noisy sampling

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Streaming algorithms

Scenario

- Data arrives sequentially at a high rate and in arbitrary order
- Data is too large to be stored completely or is stored in secondary memory (where streaming is the fastest way of accessing the data)
- We want some information about the data

Algorithmic requirements

- Data must be processed quickly
- Only a summary of the data can be stored
- Goal: Approximate some statistics of the data

Streaming algorithms

The turnstile model

- Input: A sequence of updates to an object (vector, matrix, database, etc.)
- Output: An approximation of some statistics of the object
- Space: significantly sublinear in input size
- Overall time: near-linear in input size

Streaming algorithms

Example

- Approximating the number of users of a search engine
- Each user has its ID (IP-address)
- Take the vector v of all valid IP-addresses as the object
- Entries of v: #queries submitted to search engine
- Whenever a user submits a query, increment v at the entry corresponding to the submitting IP-address
- Required statistic: # non-zero entries in the current vector

Regression

 Statistical method to study dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R · I
- Find linear function that best ²⁰ fits the data

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable y
- A set of predictor variables x₁,..., x_d
- Assumption:

$$y = b_0 + b_1 x_1 + \dots + b_d x_d + e$$

 e is assumed to be a noise (random) variable and the b_j are model parameters

Example

- Measured variable is the voltage V
- Predictor variable is the current I
- (Unknown) model parameter is the resistance R
- We get pairs of observations for V and I, i.e. pairs (x_i,y_i) where x is some current and y is some measured voltage

Assumption

 Each pair (x,y) was generated through y = R · x + e, where e is distributed according to some noise distribution, e.g. Gaussian noise

Setting

- Experimental data is assumed to be generated as pairs (x_i, y_i) with $y_i = b_0 + b_1 x_{i,1} + \dots + b_d x_{i,d} + e_i$
- where e is drawn from some noise distribution, e.g., a Gaussian distribution

Least Squares Method

- Find b* that minimizes $S (y_i b^* x_i)^2$
- Maximizes the (log)-likelihood of b, i.e. the probability density of the y_i given b
- Other desirable statistical properties

Model

- Experimental data is assumed to be generated as pairs (x_i, y_i) with $y_i = b_0 + b_1 x_{i,1} + \dots + b_d x_{i,d} + e_i$
- where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation

- Find b* that minimizes S |y_i b* x_i |
- More robust than least squares

Model

- Experimental data is assumed to be generated as pairs (x_i, y_i) with $y_i = b_0 + b_1 x_{i,1} + \dots + b_d x_{i,d} + e_i$
- where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (I_1 -regression)

- Find b* that minimizes S |y_i b* x_i |
- More robust than least squares

Model

- Experimental data is assumed to be generated as pairs (x_i, y_i) with $y_i = b_0 + b_1 x_{i,1} + \dots + b_d x_{i,d} + e_i$
- where e is drawn from some noise distribution, e.g., a Gaussian distribution

*I*_p-regression

- Find b* that minimizes $S |y_i b^* x_i|^p$, 1
- More robust than least squares

Matrix form for I_p *-regression,* $1 \le p \le 2$

- Input: n×d-matrix X whose rows are the x_i and a vector y=(y₁,..., y_n) n is the number of observations; d is the number of predictor variables (We assume that b₀ = 0 for all i)
- Output: b* that minimizes ||Xb*-y||^p_p

Geometry of regression

- Assume n À d
- We want to find a b* that minimizes ||Xb*-y||^p_p
- The product Xb* can be written as

$$X_{*1} b_1^* + X_{*2} b_2^* + \dots + X_{*d} b_d^*$$

- where X_{*i} is the i-th column of X
- This is a linear k-dimensional subspace ($k \le d$ is the rank of X)
- The problem is equivalent to computing the point of the column space of X nearest to y in I_p-norm

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y

Output: vector b' s.t. $||Xb' - y||_1 \le (1+e) \cdot ||Xb^* - y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb' - y||_1 \le (1+e) \cdot ||Xb^* - y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_1$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb' - y||_1 \le (1+e) \cdot ||Xb^* - y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_1$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb''-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_1$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb' - y||_1 \le (1+e) \cdot ||Xb^* - y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb''-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_1$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb' - y||_1 \le (1+e) \cdot ||Xb^* - y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with $||z||_1 \cdot ||Uz||_1 \cdot poly(d)||z||_1$

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with $||z||_1 \cdot ||Uz||_1 \cdot poly(d)||z||_1$

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with $||z||_1 \cdot ||Uz||_1 \cdot poly(d)||z||_1$

(1+e)-approximation algorithm for I₁ - regression [Clarkson, SODA'05]

Input: $n \times d$ matrix X, vector y Output: vector b' s.t. $||Xb'-y||_1 \le (1+e) \cdot ||Xb^*-y||_1$

- 1. Compute O(1)-Approximation b"
- 2. Compute the residual r' = Xb"-y
- 3. Scale r' such that $||r'||_1 = d$
- 4. Compute a well-conditioned basis U of the column space of X
- 5. Sample row i according to $p_i = f_i \cdot poly(d, 1/e)$ where $f_i = |r'_i| + ||u_{i^*}|| / (|r'| + ||U||)$
- 6. Assign to each sample row a weight of $1/p_i$
- 7. Solve the problem on the sample set using linear programming

Well-conditioned basis U: Basis with $||z||_1 \cdot ||Uz||_1 \cdot poly(d)||z||_1$

Solving I₁ -regression via linear programming

- Minimize $(1,...,1) \cdot (a^+ + a^-)$
- Subject to:

Regression for data streams

*I*₁-regression

- X: n×d-matrix of predictor variables, n is the number of observations
- y: vector of measured variables
- b: unknown model parameter (this is what we want to optimize)
- Find b that minimizes ||Xb-y||₁

Turnstile model

- We get updates for X and y
- Example: (i,j,c) means X[i,j] = X[i,j] + c
- Heavily overconstrained case: n À d

Regression for data streams

State of the art

- Small space streaming algorithm in the turnstile model for I_p-regression for all p, 1 ≤ p ≤ 2; the time to extract the solution is prohibitively large [Feldman, Monemizadeh, Sohler, W; SODA'10]
- Efficient streaming algorithm in the turnstile model for I₂-regression [Clarkson, W, STOC'09]
- Somewhat efficient non-streaming (1+e)-approximations for I_p-regression [Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06; Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]

Our Results

- A $(1+\epsilon)$ -approximation algorithm for I_p -regression problem for any p in [1, 2]
 - First 1-pass algorithm in the turnstile model
 - Space complexity poly(d log n / ε)
 - Time complexity nd^{1.376} poly(log n / ε)
 - Improves earlier nd⁵ log n time algorithms for every p
- New linear oblivious embeddings from Ipⁿ to Ip^r
 - r = poly(d log n)
 - Preserve d-dimensional subspaces
 - Distortion is poly(d)
- This talk will focus on the case p = 1

Regression for data streams

First approach

Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute O(1)-approximation

Compute well-conditioned basis

Sample rows from the well-conditioned basis and the residual

Regression for data streams

Theorem 1(I₁ -subspace embedding)

 Let r≥poly(d, ln n). There is a probability space over r × n matrices R such that for any n×d-matrix A with probability at least 99/100 we have for all b∈ ℝ^d:

 $||Ab||_1 \leq ||RAb||_1 \leq O(d^2) \cdot ||Ab||_1$

- R is a scaled matrix of i.i.d. Cauchy random variables
- Argues through the existence of well-conditioned bases
 - Uses "well-conditioned nets"
- Generalizes to p > 1

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the stream
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

Lemma 2

R can be stored implicitly.

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

Lemma 2

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned bas
 U for RX
- Compute Y such that U = RXY

$$\mathsf{R}(\mathsf{X}\texttt{+}\mathsf{D}) = \mathsf{R}\mathsf{X} + \mathsf{R}\mathsf{D}$$

Lemma 2

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

Lemma 2

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

Using [Clarkson; SODA'05] or [Dasgutpta et. al.; SICOMP09]

Lemma 2

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

The span of U equals the span of RX

Lemma 2

The algorithm – part 1

- Pick random matrix R according to the distribution from the previous theorem
- Maintain RX and Ry during the streaming
- Find b' that minimizes ||RXb'-Ry|| using linear programming
- Compute a well-conditioned basis U for RX
- Compute Y such that U = RXY

Lemma 2

Intermediate summary

- Can compute poly(d)-approximation
- Can compute Y s.t. XY is well-conditioned

Compute O(1)-approximation

Compute well-conditioned basis

Sample rows from the well-conditioned basis and the residual

We can reduce everything to a new problem

- Updates to matrix B
- Need to sample rows from B with probability according to their I₁-norm
- Assume we know M=||B||₁

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]

Subdivide rows into groups

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- **Problem:** Can't store the sample in the stream

Norm: Prob.:

Noisy sampling

- Subdivide rows into groups
- Try to sample from each group separately
- **Problem:** Can't store the sample
- Instead: Subsampling

Norm: Prob.:

Noisy Sampling

- Grouping:
- $I_j = \{i : ||B_j||_1 \in (M/2^j, 2M/2^j]\}$

Sample step (Group I i):

- Subsample rows with probability 1/2^j
- Hash sampled rows into w buckets
- Maintain sum of each bucket
- Noise in a bucket ¼ M/(2^j w)

Verification step:

- Check if bucket has norm approx. M/2^j
- If yes, then return bucket as noisy sample with weight 2^j

Summary of the algorithm

- Maintain RX and Ry to obtain poly(d)-approximation and access to matrix B
- Sample rows using our noisy sampling data structure
- Solve the problem on the noisy sample

Some simplifications

- Let B be the matrix XY adjunct r' = Xb'-y
- Assume the stream has updates for B

Some simplifications

Let B be the matrix XY adjunct r' = Xb'-y

Assume we know Y in advance: (X+D)Y = XY+ DY

Assume the stream has updates for B

Why don't we need another pass for this?

 We can treat the entries of Y and b' as formal variables and plug in the values at the end of the stream

Theorem

The above algorithm is a (1+e)-approximation to the I_1 regression problem

- uses poly(d, log n, 1/e) space
- implementable in 1-pass in the turnstile model
- can be implemented in $nd^{1.376}$ poly(log n / ϵ) time
 - Main point is that well-conditioned basis computed in sketch-space

Conclusion

Main results

- First efficient streaming algorithm for I_p -regression, $1 \cdot p < 2$
- nd^{1.376} running time improves previous nd⁵ running time
- First oblivious poly(d) subspace embedding for I₁

Open problems

- Streaming and/or approximation algorithms for even more robust regression problems like least median of squares, etc.
- Regression when d À n (redundant parameters, structural restrictions, ...)
- Kernel methods
- Algorithms for statistical problems on massive data sets
- Other applications of our subspace embedding