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Overview

 Massive data sets
 Streaming algorithms
 Regression
 Clarkson‘s algorithm
 Our results
 Subspace embeddings
 Noisy sampling  
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Massive data sets

Examples
 Internet traffic logs
 Financial data
 etc.
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Streaming algorithms

Scenario
 Data arrives sequentially at a high rate and in arbitrary order
 Data is too large to be stored completely or is stored in secondary memory 

(where streaming is the fastest way of accessing the data)
 We want some information about the data

Algorithmic requirements
 Data must be processed quickly
 Only a summary of the data can be stored
 Goal: Approximate some statistics of the data
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Streaming algorithms

The turnstile model
 Input: A sequence of updates to an object (vector, matrix, database, etc.) 
 Output: An approximation of some statistics of the object
 Space: significantly sublinear in input size
 Overall time: near-linear in input size
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Streaming algorithms

Example
 Approximating the number of users of a search engine
 Each user has its ID (IP-address)
 Take the vector v of all valid IP-addresses as the object
 Entries of v: #queries submitted to search engine
 Whenever a user submits a query, increment v at the entry corresponding to 

the submitting IP-address
 Required statistic: # non-zero entries in the current vector
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Regression analysis

Regression
 Statistical method to study dependencies between variables in the 

presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Example
 Ohm's law V = R ∙ I 
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Example
 Ohm's law V = R ∙ I 
 Find linear function that best 

fits the data
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Standard Setting
 One measured variable y
 A set of predictor variables x  ,…, x
 Assumption:

y  = b + b x  + … + b x   + e
 e is assumed to be a noise (random) variable and the b are model 

parameters

1 d

1 1 d d0

j
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Regression analysis

Example
 Measured variable is the voltage V
 Predictor variable is the current I
 (Unknown) model parameter is the resistance R
 We get pairs of observations for V and I, i.e. pairs (x ,y ) where x is some 

current and y is some measured voltage

Assumption
 Each pair (x,y) was generated 

through y  = R ∙ x  + e,
where e is distributed according 
to some noise distribution, 
e.g. Gaussian noise

i i
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Regression analysis

Setting
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g., a Gaussian distribution

Least Squares Method

 Find b* that minimizes S (y – b* x  )²
 Maximizes the (log)-likelihood of b, i.e. the 

probability density of the y  given b
 Other desirable statistical properties

i i
i 0 1 i,1 d i,d

i i

i
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation

 Find b* that minimizes S |y – b* x  |
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (l  -regression)

 Find b* that minimizes S |y – b* x  |
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i

1 
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g., a Gaussian distribution

l  -regression

 Find b* that minimizes S |y – b* x  |     , 1 < p < 2
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i
p

p 
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Regression analysis

Matrix form for lp -regression, 1≤p≤2
 Input:  nd-matrix X whose rows are the xi and a vector y=(y1,…, yn)

n is the number of observations; d is the number of predictor 
variables (We assume that b0 = 0 for all i) 

 Output:  b* that minimizes ||Xb*-y||pp
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Regression analysis

Geometry of regression
 Assume n À d
 We want to find a b* that minimizes ||Xb*-y|| 
 The product Xb* can be written as

X   b* +X   b*+ …+ X    b*

 where X    is the i-th column of X
 This is a linear k-dimensional subspace (k≤d is the rank of X)
 The problem is equivalent to computing the point of the column space of X 

nearest to y in lp-norm

*1 *2 *d1 2 d

*i

p
p
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Regression analysis

(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

1

i i

i i i*

i
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Regression analysis

1
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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New problem:
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis

1

Xb

r'i

i
i

i*

i

i

(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis

Solving l  -regression via linear programming

 Minimize (1,…,1) ∙ (a + a )
 Subject to: 

X b + a  - a = y
a , a  ≥ 0

+ -

+ -

1

+ -



32

Regression for data streams

l  -regression
 X: nd-matrix of  predictor variables, n is the number of observations 
 y: vector of measured variables
 b: unknown model parameter (this is what we want to optimize)
 Find b that minimizes ||Xb-y||   

Turnstile model
 We get updates for X and y
 Example: (i,j,c) means X[i,j] = X[i,j] + c
 Heavily overconstrained case: n À d  

1

1
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Regression for data streams

State of the art
 Small space streaming algorithm in the turnstile model  for l  -regression for 

all p, 1 ≤ p ≤ 2; the time to extract the solution is prohibitively large
[Feldman, Monemizadeh, Sohler, W; SODA'10]

 Efficient streaming algorithm in the turnstile model for l  -regression
[Clarkson, W, STOC'09]

 Somewhat efficient non-streaming (1+e)-approximations for l  –regression
[Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06; 
Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]

p

2

p
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Our Results

 A (1+ε)-approximation algorithm for lp-regression problem for any p in [1, 2]
 First 1-pass algorithm in the turnstile model
 Space complexity poly(d log n / ε)
 Time complexity nd1.376 poly(log n / ε)
 Improves earlier nd5 log n time algorithms for every p

 New linear oblivious embeddings from lpn to lpr

 r = poly(d log n)
 Preserve d-dimensional subspaces
 Distortion is poly(d)

 This talk will focus on the case p = 1
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Regression for data streams

First approach
 Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute O(1)-approximation Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 

the residual
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Regression for data streams

Theorem 1(l  -subspace embedding)
 Let r≥poly(d, ln n). There is a probability space over r  n matrices R such 

that for any nd-matrix A with probability at least 99/100 we have 
for all bℝ   :

||Ab||1 ≤  ||RAb||1 ≤ O(d²) ∙ ||Ab||1

• R is a scaled matrix of i.i.d. Cauchy random variables

• Argues through the existence of well-conditioned bases
• Uses "well-conditioned nets"

• Generalizes to p > 1

d

1
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the stream
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

R can be stored implicitly.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

R(X+D) = RX + RD
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

Using [Clarkson; SODA‘05] or
[Dasgutpta et. al.; SICOMP09]
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

The span of U equals the span of RX
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

Intermediate summary
 Can compute poly(d)-approximation
 Can compute Y s.t. XY is well-conditioned

Compute O(1)-approximation Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 

the residual
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Regression for data streams

We can reduce everything to a new problem
 Updates to matrix B 
 Need to sample rows from B with probability according to their l1-norm
 Assume we know M=||B||1

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]
 Subdivide rows into groups 

≤4
≤8 rows

Norm:   M      M/2         M/4                     M/8  
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Regression for data streams

Noisy sampling
 Subdivide rows into groups
 Try to sample from each group separately 

≤4
≤8 rows

Norm:   M      M/2         M/4                     M/8 
Prob.:     1         1/2            1/4                        1/8



47

Regression for data streams

Noisy sampling 
 Subdivide rows into groups 
 Try to sample from each group separately 
 Problem: Can't store the sample in the stream

≤8 rows

Norm:                                                            M/8
Prob.:                                                              1/8
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Regression for data streams

Noisy sampling
 Subdivide rows into groups 
 Try to sample from each group separately 
 Problem: Can't store the sample
 Instead: Subsampling

≤8 rows

Norm:                                                            M/8
Prob.:                                                              1/8
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Regression for data streams

Noisy Sampling
 Grouping:
 I  ={i : ||B ||1  (M/2  , 2 M/2  ]}

 Sample step (Group I  ): 
 Subsample rows with probability 1/2
 Hash sampled rows into w buckets 
 Maintain sum of each bucket
 Noise in a bucket ¼ M/(2j w)

 Verification step:
 Check if bucket has norm approx. M/2
 If yes, then return bucket as noisy sample with weight 2

j i
j j

j
j

j

j
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Regression for data streams

Summary of the algorithm
 Maintain RX and Ry to obtain poly(d)-approximation and access to 

matrix B
 Sample rows using our noisy sampling data structure
 Solve the problem on the noisy sample
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Regression for data streams

Some simplifications
 Let B be the matrix XY adjunct r' = Xb'-y

 Assume the stream has updates for B
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Regression for data streams

Some simplifications
 Let B be the matrix XY adjunct r' = Xb'-y

 Assume the stream has updates for B

Why don‘t we need another pass for this? 
 We can treat the entries of Y and b' as formal variables and plug in the 

values at the end of the stream 

Assume we know Y in 
advance:

(X+D)Y = XY+ DY 
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Theorem

The above algorithm is a (1+e)-approximation to the l1-
regression problem

• uses poly(d, log n, 1/e) space

• implementable in 1-pass in the turnstile model

• can be implemented in nd1.376 poly(log n / ε) time
• Main point is that well-conditioned basis computed in sketch-space
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Conclusion

Main results
 First efficient streaming algorithm for lp-regression, 1 · p < 2 
 nd1.376 running time improves previous nd5 running time
 First oblivious poly(d) subspace embedding for l1

Open problems
 Streaming and/or approximation algorithms for even more robust 

regression problems like least median of squares, etc.
 Regression when d À n  (redundant parameters, structural restrictions, …)
 Kernel methods
 Algorithms for statistical problems on massive data sets
 Other applications of our subspace embedding


