Spectral Ranking

Sebastiano Vigna
Dipartimento di Scienze dell'Informazione Università degli Studi di Milano

Advertising

Advertising

- LAW (Laboratory for Web Algorithmics) @ Università degli Studi di Milano

Advertising

- LAW (Laboratory for Web Algorithmics) @ Università degli Studi di Milano
- We provide crawls for people interested in experimenting with the web as a physical object

Advertising

- LAW (Laboratory for Web Algorithmics) @ Università degli Studi di Milano
- We provide crawls for people interested in experimenting with the web as a physical object
- Crawls are accessible in compressed form using WebGraph (Java) or WebGraph++ (C++)

Advertising

- LAW (Laboratory for Web Algorithmics) @ Università degli Studi di Milano
- We provide crawls for people interested in experimenting with the web as a physical object
- Crawls are accessible in compressed form using WebGraph (Java) or WebGraph++ (C++)
- Some Matlab stuff by David Gleich

Advertising

- LAW (Laboratory for Web Algorithmics) @ Università degli Studi di Milano
- We provide crawls for people interested in experimenting with the web as a physical object
- Crawls are accessible in compressed form using WebGraph (Java) or WebGraph++ (C++)
- Some Matlab stuff by David Gleich
- Stanford Matrix Considered Harmful [V.]

A Historical Talk

A Historical Talk

- This talk is about spectral ranking

A Historical Talk

- This talk is about spectral ranking
- PageRank is just the currently trendy incarnation of spectral ranking

A Historical Talk

- This talk is about spectral ranking
- PageRank is just the currently trendy incarnation of spectral ranking
- The main ideas were developed in the late forties and in the early fifties

A Historical Talk

- This talk is about spectral ranking
- PageRank is just the currently trendy incarnation of spectral ranking
- The main ideas were developed in the late forties and in the early fifties
- However, the connection between these ideas emerged during the study of PageRank

Perspective

Perspective

- PageRank is probably the most talked-about algorithm ever

Perspective

- PageRank is probably the most talked-about algorithm ever
- Nonetheless, we have no scientific, reproducible proof that it works (quite the opposite)...

Perspective

- PageRank is probably the most talked-about algorithm ever
- Nonetheless, we have no scientific, reproducible proof that it works (quite the opposite)...
- ...and it's likely to be of minuscule importance in today's ranking

Perspective

- PageRank is probably the most talked-about algorithm ever
- Nonetheless, we have no scientific, reproducible proof that it works (quite the opposite)...
- ...and it's likely to be of minuscule importance in today's ranking
- Nonetheless, the idea is useful in several applications

Basic Setup

Basic Setup

- M is a matrix representing relations between entities

Basic Setup

- M is a matrix representing relations between entities
- M might contain "contradictory" information, as in...

Basic Setup

- M is a matrix representing relations between entities
- M might contain "contradictory" information, as in...
- i likes j, j likes k, but i does not like k, or...

Basic Setup

- M is a matrix representing relations between entities
- M might contain "contradictory" information, as in...
- i likes j, j likes k, but i does not like k, or...
- i is better than j, j is better than k, but i is not better than k

The Basic Solution

The Basic Solution

- John R. Seeley (1949) wants to rank children

The Basic Solution

- John R. Seeley (1949) wants to rank children
- Given M containing 0 or I depending on whether i likes j...

The Basic Solution

- John R. Seeley (1949) wants to rank children
- Given M containing 0 or I depending on whether i likes j...
- Seeley argues that the rank of a child should be the sum of the ranks of the children that like him...

The Basic Solution

- John R. Seeley (1949) wants to rank children
- Given M containing 0 or I depending on whether i likes j...
- Seeley argues that the rank of a child should be the sum of the ranks of the children that like him...
- ...and here we are! Seeley computes the dominant left eigenvector of M (normalised by row)

How it works

| x_{0} | x_{1} | x_{2} | x_{3} | x_{4} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \left\lvert\, | 0 | $1 / 3$ | $1 / 3$ | 0 |
| :---: | :---: | :---: | :---: |
| 0 | $1 / 3$ | | |
| 0 | 0 | 0 | 1 |
| 0 | 0 | $1 / 2$ | $1 / 2$ |
| $1 / 3$ | $1 / 3$ | $1 / 3$ | 0 |
| $1 / 2$ | 0 | 0 | $1 / 2$ |$=\right.$

$1 / 3 x_{3}+1 / 2 x_{4} 1 / 3 x_{0}+1 / 3 x_{3} 1 / 3 x_{0}+1 / 2 x_{2}+1 / 3 x_{3} x_{1}+1 / 2 x_{2}+1 / 2 x_{4} 1 / 3 x_{0}$

The Markovian View

The Markovian View

- We normalise M by row, getting P

The Markovian View

- We normalise M by row, getting P
- P express the probability that we try to meet child j after meeting child i...

The Markovian View

- We normalise M by row, getting P
- P express the probability that we try to meet child j after meeting child i...
- ...or, if you want, that we visit page j after visiting page i.

The Markovian View

- We normalise M by row, getting P
- P express the probability that we try to meet child j after meeting child $i . .$.
- ...or, if you want, that we visit page j after visiting page i.
- The dominant left eigenvector is the stable state or stationary distribution

Perron-Frobenius

Perron-Frobenius

- If M is nonnegative, the spectral radius is a dominant eigenvalue and there's a nonnegative dominant eigenvector

Perron-Frobenius

- If M is nonnegative, the spectral radius is a dominant eigenvalue and there's a nonnegative dominant eigenvector
- If M is irreducible iff it is unique and strictly positive

Perron-Frobenius

- If M is nonnegative, the spectral radius is a dominant eigenvalue and there's a nonnegative dominant eigenvector
- If M is irreducible iff it is unique and strictly positive
- If M is unichain iff it is unique

Perron-Frobenius

- If M is nonnegative, the spectral radius is a dominant eigenvalue and there's a nonnegative dominant eigenvector
- If M is irreducible iff it is unique and strictly positive
- If M is unichain iff it is unique
- Otherwise, many possible solutions (Markovianly speaking, depending on the initial distribution)

The Dual View

The Dual View

T.H.Wei (I952) wants to rank teams

The

- T.H.Wei (1952) wants to rank teams
- Given M containing $0, I / 2$ or I depending on whether i defeated j, i tied with j, or i lost with j...

The

- T.H.Wei (1952) wants to rank teams
- Given M containing $0, I / 2$ or I depending on whether i defeated j, i tied with j, or i lost with j...
- Wei argues that the score of a team should be the sum of the scores of the teams it defeated, plus half the sum of the scores of the teams with which there was a tie...

The

- T.H.Wei (I952) wants to rank teams
- Given M containing $0, \mathrm{I} / 2$ or I depending on whether i defeated j, i tied with j, or i lost with j...
- Wei argues that the score of a team should be the sum of the scores of the teams it defeated, plus half the sum of the scores of the teams with which there was a tie...
- ...and here we are! Wei computes the dominant right eigenvector of M (no normalisation!)

Spectral Ranking

Spectral Ranking

- Given a matrix M with a real, positive, strictly dominant eigenvalue

Spectral Ranking

- Given a matrix M with a real, positive, strictly dominant eigenvalue
- The (left) spectral ranking of M is its (left) dominant eigenvector

Spectral Ranking

- Given a matrix M with a real, positive, strictly dominant eigenvalue
- The (left) spectral ranking of M is its (left) dominant eigenvector
- Left eigenvectors are good for endorsement; right eigenvectors for "better than" relationships (or you can just transpose your matrix, of course)

Damping

Damping

- In I953, Leo Katz introduces his famous index

Damping

- In I953, Leo Katz introduces his famous index
- Given M containing 0 or I depending on whether i chooses/endorses/votes for j...

Damping

- In I953, Leo Katz introduces his famous index
- Given M containing 0 or I depending on whether i chooses/endorses/votes for j...
- Katz claims that the importance of i depends not only on the number of the voters, but on the number of the voters' voters, etc., with suitable attenuation α

Damping

- In I953, Leo Katz introduces his famous index
- Given M containing 0 or I depending on whether i chooses/endorses/votes for j...
- Katz claims that the importance of i depends not only on the number of the voters, but on the number of the voters' voters, etc., with suitable attenuation α
- He computes

Damping

- In I953, Leo Katz introduces his famous index
- Given M containing 0 or I depending on whether i chooses/endorses/votes for j...
- Katz claims that the importance of i depends not only on the number of the voters, but on the number of the voters' voters, etc., with suitable attenuation α
- He computes $1 \sum_{n=0}^{\infty} \alpha^{n} M^{n}=\mathbf{1}(1-\alpha M)^{-1}$

How it works

How it works

How it works

0	1	1	0	1										
0	0	0	1	0	0	1	1	0	1					
0	0	0	1	0	0	0	1	0						
0	0	0	1	0										
1	1	0	0	1	1	1	0	0	1					
1	0	1	1	0	1	0	1	1	0	$=$				
:---	:---	:---	:---	:---										

How it works

0	1	1	0	1										
0	0	0	1	0	0	1	1	0	1					
0	0	0	1	0	0	0	1	0						
0	0	0	1	0										
1	1	0	0	1	1	1	0	0	1					
1	0	1	1	0	1	0	1	1	0	$=$				
:---	:---	:---	:---	:---										

How it works

0	1	1	0	1											
0	0	0	1	0	0	1	1	0	1						
0	0	0	1	0	0	0	1	0							
0	0	0	1	0											
1	1	0	0	1	1	1	0	0	1						
1	0	1	1	0	1	0	1	1	0	$=$					
:---	:---	:---	:---	:---											
		1													

How it works

0	1	1	0	1											
0	0	0	1	0	0	1	1	0	1						
0	0	0	1	0	0	0	1	0							
0	0	0	1	0											
1	1	0	0	1	1	1	0	0	1						
1	0	1	1	0	1	0	1	1	0	$=$					
:---	:---	:---	:---	:---											
		1													

How it works

How it works

How it works

How it works

How it works

0	1	1	0	1										
0	0	0	1	0										
0	0	0	1	0	0	1	1	0	1					
0	0	0	1	0										
	0	0	0	1	0									
	1	0	0	1	1	1	0	0	1					
1	0	1	1	0	1	0	1	1	0	$=$				
:---	:---	:---	:---	:---										
		1												

How it works

0	1	1	0	1											
0	0	0	1	0	0	1	1	0	1						
0	0	0	1	0											
0	0	0	1	0	0	0	0	1	0						
1	1	0	0	1	1	1	0	0	1						
1	0	1	1	0	1	0	1	1	0	$=$					
:---	:---	:---	:---	:---											
		1													

How it works

Preference

Preference

- In 1965, Hubbell discusses clique identification (sociologists's clustering) on a relationship matrix M using $I+M+M^{2}+M^{3}+\cdots$

Preference

- In 1965, Hubbell discusses clique identification (sociologists's clustering) on a relationship matrix M using $I+M+M^{2}+M^{3}+\cdots$
- He comes up with the equation $\boldsymbol{r}=\boldsymbol{r} M+\boldsymbol{v}$

Preference

- In I965, Hubbell discusses clique identification (sociologists's clustering) on a relationship matrix M using $I+M+M^{2}+M^{3}+\cdots$
- He comes up with the equation $\boldsymbol{r}=\boldsymbol{r} M+\boldsymbol{v}$
- \boldsymbol{v} is called a "border condition"

Preference

- In 1965, Hubbell discusses clique identification (sociologists's clustering) on a relationship matrix M using $I+M+M^{2}+M^{3}+\cdots$
- He comes up with the equation $\boldsymbol{r}=\boldsymbol{r} M+\boldsymbol{v}$
- \mathbf{v} is called a "border condition"
- He proposes the status index

Preference

- In 1965, Hubbell discusses clique identification (sociologists's clustering) on a relationship matrix M using $I+M+M^{2}+M^{3}+\cdots$
- He comes up with the equation $\boldsymbol{r}=\boldsymbol{r} M+\boldsymbol{v}$
- \boldsymbol{v} is called a "border condition"
- He proposes the status index

$$
\boldsymbol{v} \sum_{n=0}^{\infty} M^{n}=\boldsymbol{v}(1-M)^{-1}
$$

Back and Forth

Back and Forth

- We can perturb M to obtain a better separation between the first two eigenvalues using Brauer's results (1952)

Back and Forth

- We can perturb M to obtain a better separation between the first two eigenvalues using Brauer's results (1952)
- We consider $\alpha M+(I-\alpha) \mathbf{x}^{\top} \boldsymbol{v}$, where \mathbf{x}^{\top} is a right dominant eigenvector ($0 \leq \alpha \leq \mathrm{I}$) and $\mathbf{v} \boldsymbol{x}^{\top}=\lambda_{0}$

Back and Forth

- We can perturb M to obtain a better separation between the first two eigenvalues using Brauer's results (1952)
- We consider $\alpha M+(I-\alpha) \mathbf{x}^{\top} \boldsymbol{v}$, where \mathbf{x}^{\top} is a right dominant eigenvector ($0 \leq \alpha \leq \mathrm{I}$) and $\boldsymbol{v} \boldsymbol{x}^{\top}=\lambda_{0}$
- This matrix has the same dominant eigenvalue of M, but the separation is at least α

Back and Forth (2)

Back and Forth (2)

- If we impose $\boldsymbol{r} \boldsymbol{x}^{\top}=I / \lambda_{0} \ldots$

Back and Forth (2)

- If we impose $\boldsymbol{r} \boldsymbol{x}^{\top}=I / \lambda_{0} \ldots$
- ...and look at $\lambda_{0} \boldsymbol{r}=\boldsymbol{r}\left(\alpha M+(\mathrm{I}-\alpha) \mathbf{x}^{\top} \mathbf{v}\right)$

Back and Forth (2)

- If we impose $\boldsymbol{r} \boldsymbol{X}^{\top}=\mathrm{I} / \lambda_{0}$...
- ...and look at $\lambda_{0} \boldsymbol{r}=\boldsymbol{r}\left(\alpha M+(I-\alpha) \boldsymbol{x}^{\top} \mathbf{v}\right)$
- ...we get $\boldsymbol{r}=(I-\alpha) \mathbf{v}\left(I-\alpha M / \lambda_{0}\right)^{-1}=\left(I-\lambda_{0} \beta\right) \mathbf{v}(I-\beta M)^{-1}$

Back and Forth (2)

- If we impose $\boldsymbol{r} \boldsymbol{X}^{\top}=\mathrm{I} / \lambda_{0} \ldots$
- ...and look at $\lambda_{0} \boldsymbol{r}=\boldsymbol{r}\left(\alpha M+(\mathrm{I}-\alpha) \mathbf{x}^{\top} \mathbf{v}\right)$
- ...we get $\boldsymbol{r}=(I-\alpha) \mathbf{v}\left(I-\alpha M / \lambda_{0}\right)^{-1}=\left(I-\lambda_{0} \beta\right) \mathbf{v}(I-\beta M)^{-1}$
- Katz-Hubbell's index! It's the spectral ranking of a perturbed matrix

Back and Forth (3)

Back and Forth (3)

- We can ask what happens when α goes to λ_{0} in (our version of) Katz-Hubbell's index

Back and Forth (3)

- We can ask what happens when α goes to λ_{0} in (our version of) Katz-Hubbell's index
- Functional analysis (resolvent theory) has the answer: it goes to $\mathbf{v}\left(M / \lambda_{0}\right)^{*}$, where X^{*} denotes Cesàro's limit of X^{n}

Back and Forth (3)

- We can ask what happens when α goes to λ_{0} in (our version of) Katz-Hubbell's index
- Functional analysis (resolvent theory) has the answer: it goes to $\mathbf{v}\left(M / \lambda_{0}\right)^{*}$, where X^{*} denotes Cesàro's limit of X^{n}
- But $\boldsymbol{v}\left(M / \lambda_{0}\right)^{*} M / \lambda_{0}=\boldsymbol{v}\left(M / \lambda_{0}\right)^{*}$, so $\boldsymbol{v}\left(M / \lambda_{0}\right)^{*}$ is a left dominant eigenvector of M. Spectral ranking, again!

We Learned Something

We Learned Something

- We started with an arbitrary dominant eigenvector

We Learned Something

- We started with an arbitrary dominant eigenvector
- We now get a specific eigenvector $\mathbf{v}\left(M / \lambda_{0}\right)^{*}$ depending on a border condition

We Learned Something

- We started with an arbitrary dominant eigenvector
- We now get a specific eigenvector $\mathbf{v}\left(M / \lambda_{0}\right)^{*}$ depending on a border condition
- The border condition is of course irrelevant if λ_{0} was already strictly dominant

We Learned Something

- We started with an arbitrary dominant eigenvector
- We now get a specific eigenvector $\mathbf{v}\left(M / \lambda_{0}\right)^{*}$ depending on a border condition
- The border condition is of course irrelevant if λ_{0} was already strictly dominant
- However, it is always relevant in the damped case

All In All

All In All

- The (left) spectral ranking of M with border condition \mathbf{v} is $\mathbf{v}\left(M / \lambda_{0}\right)^{*}[\mathrm{Wei}]$

All \ln All

- The (left) spectral ranking of M with border condition \mathbf{v} is $\mathbf{v}\left(M / \lambda_{0}\right)^{*}[\mathrm{Wei}]$
- The damped spectral ranking of M with border condition \boldsymbol{v} is $\left(I-\lambda_{0} \alpha\right) \mathbf{v}(I-\alpha M)^{-1}[$ Katz; Hubbell]

All In All

- The (left) spectral ranking of M with border condition \mathbf{v} is $\mathbf{v}\left(M / \lambda_{0}\right)^{*}[\mathrm{Wei}]$
- The damped spectral ranking of M with border condition \boldsymbol{v} is $\left(I-\lambda_{0} \alpha\right) \mathbf{v}(I-\alpha M)^{-1}[$ Katz; Hubbell]
- Let S be the row-normalised (stochastic) version of M

All \ln All

- The (left) spectral ranking of M with border condition \mathbf{v} is $\mathbf{v}\left(M / \lambda_{0}\right)^{*}[\mathrm{Wei}]$
- The damped spectral ranking of M with border condition \boldsymbol{v} is $\left(I-\lambda_{0} \alpha\right) \mathbf{v}(I-\alpha M)^{-1}[$ Katz; Hubbell]
- Let S be the row-normalised (stochastic) version of M
- The Markovian spectral ranking of M with border condition \boldsymbol{v} is $\boldsymbol{v} \boldsymbol{S}^{*}$ [Seeley]

All \ln All

- The (left) spectral ranking of M with border condition \mathbf{v} is $\mathbf{v}\left(M / \lambda_{0}\right)^{*}[\mathrm{Wei}]$
- The damped spectral ranking of M with border condition \boldsymbol{v} is $\left(I-\lambda_{0} \alpha\right) \mathbf{v}(I-\alpha M)^{-1}[$ Katz; Hubbell]
- Let S be the row-normalised (stochastic) version of M
- The Markovian spectral ranking of M with border condition \boldsymbol{v} is $\mathbf{v} \mathbf{S}^{*}$ [Seeley]
- The damped Markovian spectral ranking of M with border condition \boldsymbol{v} is $(I-\alpha) \boldsymbol{v}(I-\alpha S)^{-1}$ [PageRank]

There's More

There's More

- These ideas have re-emerged frequently in several different areas

There's More

- These ideas have re-emerged frequently in several different areas
- Pinski and Narin [1976] use spectral ranking on the journal citation matrix (with weird normalisation)

There's More

- These ideas have re-emerged frequently in several different areas
- Pinski and Narin [1976] use spectral ranking on the journal citation matrix (with weird normalisation)
- Saaty ['70s] uses right spectral ranking on a matrix indexed by alternative decisions to identify the best alternatives

There's Even More

There's Even More

- Bonacich [1972] proposes left spectral ranking to identify best individuals in a group given its 0 -I relationship matrix

There's Even More

- Bonacich [1972] proposes left spectral ranking to identify best individuals in a group given its 0 -I relationship matrix
- Bonacich [1987] proposes to extend Katz's index to negative α 's

There's Even More

- Bonacich [1972] proposes left spectral ranking to identify best individuals in a group given its 0 -I relationship matrix
- Bonacich [1987] proposes to extend Katz's index to negative α 's
- Kandola et al. [2003] propose a von Neumann kernel for learning semantic similarity; given an original kernel matrix K, the new kernel is $K(I-\alpha K)^{-1}$

Note

Note

- On one side, we have linear algebra (no damping)

Note

- On one side, we have linear algebra (no damping)
- On the other side, we have weighted walks (damping)

Note

- On one side, we have linear algebra (no damping)
- On the other side, we have weighted walks (damping)
- The fact that the two beasts are really the same beast seem to have eluded people studying social networks (first proof for symmetric matrices case in [Bonacich \& Lloyd 200I])

Note

- On one side, we have linear algebra (no damping)
- On the other side, we have weighted walks (damping)
- The fact that the two beasts are really the same beast seem to have eluded people studying social networks (first proof for symmetric matrices case in [Bonacich \& Lloyd 200I])
- (maybe also a few computer scientists...)

Note

- On one side, we have linear algebra (no damping)
- On the other side, we have weighted walks (damping)
- The fact that the two beasts are really the same beast seem to have eluded people studying social networks (first proof for symmetric matrices case in [Bonacich \& Lloyd 200I])
- (maybe also a few computer scientists...)
- See Spectral Ranking [V.] (at vigna.dsi.unimi.it)

The Problem

The Problem

- We can derive gazillions of small variants

The Problem

- We can derive gazillions of small variants
- Which ones are meaningful?

The Problem

- We can derive gazillions of small variants
- Which ones are meaningful?
- Justify your existence!

The Problem

- We can derive gazillions of small variants
- Which ones are meaningful?
- Justify your existence!
- But nobody does :(

The Problem

- We can derive gazillions of small variants
- Which ones are meaningful?
- Justify your existence!
- But nobody does :(
- Note: the same happens for the web

