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• LAW (Laboratory for Web Algorithmics)  @ Università 

degli Studi di Milano

• We provide crawls for people interested in 
experimenting with the web as a physical object

• Crawls are accessible in compressed form using 
WebGraph (Java) or WebGraph++ (C++)

• Some Matlab stuff by David Gleich

• Stanford Matrix Considered Harmful [V.]
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A Historical Talk
• This talk is about spectral ranking

• PageRank is just the currently trendy incarnation 
of spectral ranking

• The main ideas were developed in the late forties 
and in the early fifties

• However, the connection between these ideas 
emerged during the study of PageRank



Perspective



Perspective
• PageRank is probably the most talked-about 

algorithm ever



Perspective
• PageRank is probably the most talked-about 

algorithm ever

• Nonetheless, we have no scientific, reproducible 
proof that it works (quite the opposite)...



Perspective
• PageRank is probably the most talked-about 

algorithm ever

• Nonetheless, we have no scientific, reproducible 
proof that it works (quite the opposite)...

• ...and it’s likely to be of minuscule importance in 
today’s ranking



Perspective
• PageRank is probably the most talked-about 

algorithm ever

• Nonetheless, we have no scientific, reproducible 
proof that it works (quite the opposite)...

• ...and it’s likely to be of minuscule importance in 
today’s ranking

• Nonetheless, the idea is useful in several 
applications
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Basic Setup
• M is a matrix representing relations between 

entities

• M might contain “contradictory” 
information, as in...

• i likes j, j likes k, but i does not like k, or...

• i is better than j, j is better than k, but i is not 
better than k
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The Basic Solution
• John R. Seeley (1949) wants to rank children

• Given M containing 0 or 1 depending on whether i 
likes j...

• Seeley argues that the rank of a child should be 
the sum of the ranks of the children that like him...

• ...and here we are! Seeley computes the dominant 
left eigenvector of M (normalised by row)



How it works
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=

⅓ x3+ ½ x4 ⅓ x0+ ⅓ x3 ⅓ x0+ ½ x2+ ⅓ x3 x1+ ½ x2+ ½ x4 ⅓ x0
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The Markovian View
• We normalise M by row, getting P

• P express the probability that we try to meet child 
j after meeting child i...

• ...or, if you want, that we visit page j after visiting 
page i.

• The dominant left eigenvector is the stable state or 
stationary distribution
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Perron–Frobenius
• If M is nonnegative, the spectral radius is a 

dominant eigenvalue and there’s a nonnegative 
dominant eigenvector

• If M is irreducible iff it is unique and strictly positive

• If M is unichain iff it is unique

• Otherwise, many possible solutions (Markovianly 
speaking, depending on the initial distribution)
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The Dual View
•  T.H. Wei (1952) wants to rank teams

• Given M containing 0, 1/2 or 1 depending on whether i 
defeated j, i tied with j, or i lost with j...

• Wei argues that the score of a team should be the sum 
of the scores of the teams it defeated, plus half the sum 
of the scores of the teams with which there was a tie...

• ...and here we are! Wei computes the dominant right 
eigenvector of M (no normalisation!)
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Spectral Ranking
• Given a matrix M with a real, positive, strictly 

dominant eigenvalue

• The (left) spectral ranking of M is its (left) dominant 
eigenvector

• Left eigenvectors are good for endorsement; right 
eigenvectors for “better than” relationships (or you 
can just transpose your matrix, of course)
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Damping
• In 1953, Leo Katz introduces his famous index

• Given M containing 0 or 1 depending on whether i 
chooses/endorses/votes for j...

• Katz claims that the importance of i depends not 
only on the number of the voters, but on the number 
of the voters’ voters, etc., with suitable attenuation α

• He computes 1
∞�

n=0

αnMn = 1(1− αM)−1
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Preference
• In 1965, Hubbell discusses clique identification 

(sociologists’s clustering) on a relationship matrix M 
using 1+M+M2+M3+…

• He comes up with the equation r = r M + v

• v is called a “border condition”

• He proposes the status index 

v
∞�

n=0

Mn = v(1−M)−1
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Back and Forth
• We can perturb M to obtain a better separation 

between the first two eigenvalues using Brauer’s 
results (1952)

• We consider αM + (1 – α)xTv, where xT is a right 
dominant eigenvector (0 ≤ α ≤ 1) and vxT= λ0

• This matrix has the same dominant eigenvalue of M, 
but the separation is at least α
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Back and Forth (2)

• If we impose rxT= 1/λ0 ...

• ...and look at λ0 r = r(αM + (1 – α)xTv) 

• ...we get r = (1–α)v(1–αM/λ0)–1 = (1–λ0β)v(1–βM)–1

• Katz–Hubbell’s index! It’s the spectral ranking of a 
perturbed matrix
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Back and Forth (3)
• We can ask what happens when α goes to λ0 in (our 

version of) Katz–Hubbell’s index

• Functional analysis (resolvent theory) has the 
answer: it goes to v(M/λ0)*, where X* denotes 
Cesàro’s limit of Xn

• But v(M/λ0)*M/λ0 = v(M/λ0)*, so v(M/λ0)* is a left 
dominant eigenvector of M. Spectral ranking, again!
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We Learned Something
• We started with an arbitrary dominant eigenvector

• We now get a specific eigenvector v(M/λ0)* 
depending on a border condition

• The border condition is of course irrelevant if λ0 was 
already strictly dominant

• However, it is always relevant in the damped case
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All In All
• The (left) spectral ranking of M with border condition v 

is  v(M/λ0)* [Wei]

• The damped spectral ranking of M with border condition 
v is (1 – λ0α)v(1 – αM)–1 [Katz; Hubbell]

• Let S be the row-normalised (stochastic) version of M

• The Markovian spectral ranking of M with border 
condition v is vS* [Seeley]

• The damped Markovian spectral ranking of M with border 
condition v is (1 – α)v(1 – αS)–1 [PageRank]
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There’s More
• These ideas have re-emerged frequently in several 

different areas

• Pinski and Narin [1976] use spectral ranking on the 
journal citation matrix (with weird normalisation)

• Saaty [‘70s] uses right spectral ranking on a matrix 
indexed by alternative decisions to identify the best 
alternatives
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There’s Even More
• Bonacich [1972] proposes left spectral ranking to 

identify best individuals in a group given its 0-1 
relationship matrix

• Bonacich [1987] proposes to extend Katz’s index to 
negative α’s

• Kandola et al. [2003] propose a von Neumann kernel 
for learning semantic similarity; given an original 
kernel matrix K, the new kernel is K(1 – αK)–1
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Note
• On one side, we have linear algebra (no damping)

• On the other side, we have weighted walks (damping)

• The fact that the two beasts are really the same 
beast seem to have eluded people studying social 
networks (first proof for symmetric matrices case in 
[Bonacich & Lloyd 2001])

• (maybe also a few computer scientists...)

• See Spectral Ranking [V.] (at vigna.dsi.unimi.it)

http://vigna.dsi.unimi.it
http://vigna.dsi.unimi.it
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The Problem

• We can derive gazillions of small variants

• Which ones are meaningful?

• Justify your existence!

• But nobody does :(

• Note: the same happens for the web


