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NASA Data Systems

• Earth and Space Science

– Earth Observing System generates ~21 TB of data 
per week.

– NASA Ames simulations generating 1-5 TB per day

• Aeronautical Systems

– Distributed archive growing at 100K flights per 
month with 2M flights already.

• Exploration Systems

– Space Shuttle and International Space station 
downlinks about 1.5GB per day.



Developing Virtual Sensors
• Virtual Sensors predict the value of one sensor measurement by learning the 

nonlinear correlations between its values and potentially hundreds of other 
sensor measurements.

Space Shuttle Example:  Detecting Anomalies in the Main Propulsion System

Broken
Valve

B. Matthews, A. N. Srivastava, et. al., “Multidimensional Anomaly Detection on the Space Shuttle Main Propulsion 
System:  A Case Study”, submitted to AIAA Journal on Aerospace Computing, Information, and Communication, 2010.



Virtual Sensors for Estimating the 
Large Scale Structure of the Universe

z≈1.10

• M. Way, and A. N. Srivastava, “Novel Methods for Predicting Photometric Redshifts,” 
Astrophysical Journal, 2006.
• L. Foster, A, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, 
P. Gazis, and A. N. Srivastava, “Stable and Efficient Gaussian Process Calculations,”  
Journal of Machine Learning Research, 10(Apr):857--882, 2009.
• M. Way, L. Foster, P. Gazis, and A. N. Srivastava, “New Approaches to Photometric 
Redshift Prediction,”  Astrophysical Journal, 2009.



1980 1985 1990 1995 2000 2005

year

Virtual Sensors in the Earth Sciences
• Detecting change in cloud cover

• New sensors on the MODIS system can detect clouds over snow and ice in the 1.6mm band (circa 1999).

• Difficult over snow and ice-covered surfaces because of low contrast in visible and thermal infrared wavelengths.

• Older sensors from the AVHRR system do not detect cloud cover over snow and ice because of poor contrast.

• Predict 1.6mm channel using a Virtual Sensor

•Detecting land cover change using surface reflectance measurement
• Predict missing surface reflectance data in one sensor channel using observations from a combination of other 
channels.

• Create a high quality complete data record for use in new Earth science analysis and explorations.

• Study the residual pattern of the prediction algorithm across years in order to make significant conclusions 
regarding change in land cover across the globe.
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A. N. Srivastava, N. C. Oza, and J. Stroeve, “Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra,” Special Issue on 
Advanced Data Analysis, IEEE Transactions on Geoscience and Remote Sensing, March 2005.



Prediction Methods for Virtual Sensors

• Build a prediction model that offers
– Interpretability

– Confidence in the prediction

– Scalability

• Choices of Regression Functions
– Linear regression

– Generalized Linear Models such as Elastic Nets* (perform Lasso and 
Ridge Regression simultaneously)

– Neural networks

– Support vector machines & Gaussian Process Regression

*  J. Friedman, T. Hastie, R. Tibshirani, “Regularization Paths for Generalized Linear Models via Coordinate Descent”, Journal of 
Statistical Software, 2010.



Gaussian Process Regression

Training data
• data matrix of observations – n x d
• y vector of target data – n x 1

Test data
• X* matrix of new observations – n* x d

Covariance function

Goal
• Predict y* corresponding to X*

Model building
• Train hyperparameters on a sample of X
• Compute covariance matrix K (n x n)

Prediction
• Compute cross covariance matrix K* (n* x n)
• Compute mean prediction on y* using

• Compute variance of prediction using

Algorithm Analysis

• Storage Complexity: Storing covariance matrix O(n2) 

• Time Complexity: Computing matrix inversion O(n3) 



Computational Challenges

•Subset of Regressors (Wahba, 1990)

where,

•Memory: Storing covariance matrix – O(nm)

•Time: Solving linear systems – O(nm2)

• Can be numerically unstable



Cures for Numerical Instability
Approach

1. Select columns to make 
K1 well conditioned

2. Use stable technique for 
least squares problem 
such as

• QR factorization

• V method

3.  Requirement: maintain 
O(nm) memory use and 

O(nm2) efficiency.

Column Selection

1. Use Cholesky factorization 
with pivoting to partially 
factor K

2. selects appropriate columns 
for K1

3. K1 will be well conditioned if 
cond(K1) is O(condition of 
optimal low rank 
approximation).



•Inverting               instead of             matrix

Stable GP

mm

•Approximate                     by Cholesky factorization where     is 
is             and      is mn

V

11V mm

•Predicted mean can be rewritten as

nn

•Method is numerically stable

•Method can be faster and needs less memory

L. Foster,  A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P. Gazis, and A. N. Srivastava, “Stable and Efficient Gaussian Process 
Calculations,”  Journal of Machine Learning Research, 10(Apr):857--882, 2009.
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GP–V:  Scaling to 3 million points

Analysis on simulated data

Input data dimension =5
Number of sample points = 3 million 
Run time = time to build the model + time to evaluate 500 test points
Maximum rank = 25 (used for GP-V)
Hyper parameters are trained on 100 sample points
Accuracy does not degrade with approximation



Stable GP Results

With low-rank matrix inversion approximation using pivoting Stable GP 
performed close to standard GP.

A. N. Srivastava,  S. Das. (2009).“Detection and prognostics on low-dimensional systems,” Transactions of Systems, Man and Cybernetics Part C 39, 1, 2009.

Based on 100 runs on NH3 laser data

d = 34, n = 1166, maximum rank = 340

Samples for hyperparameter training = 300 



Conclusion

• New Gaussian Process regression algorithm for Virtual 
Sensors in Earth Science data.

• Have shown a method to scale from 102 points to 106 points

• Scalability dependent on
– Number of dimensions of input data

– Number of modes in input  data

– Choice of clustering algorithm

• Accuracy dependent on
– Choice of covariance function

– Choice of number of clusters and entropy threshold

– Sparsity in the covariance matrix constructed from the data

For more information please see: dashlink.arc.nasa.gov/member/ashok



APPENDIX



Gaussian Process Regression

• Gaussian Process regression uses Bayesian inference under additive 
Gaussian noise assumption to learn a function on a given data set with a 
confidence measure*:

,                               ,   where 

• Likelihood function: 

• Gaussian prior over parameters:

• Inference is the posterior distribution over the weights     given by

• Predictive distribution is:

,  where 

*  C. E. Rasmussen and C. K. I. Williams, “Gaussian Processes for Machine Learning,” MIT Press, 2006.



Low-rank Approximations

• Numerical approximation techniques exist such as Subset 
of Regressors, Q-R decomposition, V method
– Numerical instability can be a problem

• Solution:  Stable GP (V formulation using Cholesky 
decomposition with pivoting)

• The V-Formulation provides an extremely scalable and 
numerically stable method to compute Gaussian Process 
Regression for arbitrary kernels.


