## Optimal rates of sparse estimation and universal aggregation

#### Philippe Rigollet



with A. Tsybakov (Paris VI and CREST)



## Prologue: sparsity in linear model

- $\mathbf{Y} = \mathbf{X}\theta + \xi$ , standard normal  $\xi$ .
- dim  $\theta = M \gg n$  = sample size.
- The Lasso estimator  $\hat{\theta}_L$  w.p. close to 1 satisfies:

$$\begin{split} |\mathbf{X}(\hat{\theta}_L - \theta)|_2^2/n &\leq C |\theta|_0 \frac{\log M}{n}, \\ |\mathbf{X}(\hat{\theta}_L - \theta)|_2^2/n &\leq C |\theta|_1 \sqrt{\frac{\log M}{n}}, \end{split} \quad \begin{array}{l} \text{restrictive assumptions on} \mathbf{X}. \\ \text{NO assumption on } \mathbf{X}. \end{split}$$

Here  $|\cdot|_p, p \ge 1$  is the  $\ell_p$  norm,  $|\theta|_0 =$  number of non-zero components of  $\theta$ .

• Question: How optimal are these bounds?





- Regression with fixed design.
- We observe

$$Y_i = \eta(x_i) + \xi_i, \quad i = 1, \dots, n$$

• where:

- $\eta:\mathcal{X}\to {\rm I\!R}$  is the unknown regression function,
- $x_i, i = 1, \ldots, n$  are known deterministic points in  $\mathcal{X}$ ,
- $\xi_i, i = 1, \dots, n$  are i.i.d  $\mathcal{N}(0, \sigma^2)$ ,  $\sigma^2$  known.

• Performance of an estimator  $\hat{\eta}$ 

$$\|\hat{\eta} - \eta\|^2 = \frac{1}{n} \sum_{i=1}^n \left[\hat{\eta}(x_i) - \eta(x_i)\right]^2$$
 (MSE)





- Given a dictionary  $\mathcal{H} = \{f_1, \dots, f_M\}$ ,  $f_j : \mathcal{X} \to \mathbb{R}$ ,
- we are interested in finding the best linear combination of the f<sub>j</sub>'s:

$$\mathsf{f}_{\theta} = \sum_{j=1}^{M} \theta_j f_j, \quad \theta \in \mathbb{R}^M$$

• More precisely we want to find  $\hat{\eta}$  such that

$$\mathbb{E}\|\hat{\eta} - \eta\|^2 - \min_{\theta \in \mathbb{R}^M} \|\mathbf{f}_{\theta} - \eta\|^2$$

is as small as possible.



• Upper bounds for the risk of (linear) aggregation are presented as oracle inequalities of the form

$$\mathbb{E}\|\hat{\eta} - \eta\|^2 \le (1+\varepsilon) \min_{\theta \in \mathbb{R}^M} \|\mathbf{f}_{\theta} - \eta\|^2 + \Delta_{n,M},$$

- We are interested specifically in the case  $\varepsilon = 0$  (exact oracle inequalities).
- The smallest possible remainder term  $\Delta_{n,M}$  (optimal rate of linear aggregation)

$$\Delta_{M,n} = \mathcal{O}\left(\frac{M}{n}\right)$$

and is attained by least squares.



- For good approximation properties:  $M \gg n$  so the rate  $\frac{M}{-}$  is useless.
  - n
- Solution: assume sparsity.
- Sparse Oracle Inequality (SOI):

$$\mathbb{E}\|\hat{\eta} - \eta\|^2 \le \min_{\theta \in \mathbb{R}^M} \left\{ \|\mathbf{f}_{\theta} - \eta\|^2 + \Delta_{n,M}(\theta) \right\}$$

where  $\Delta_{n,M}(\theta)$  is smaller for "sparser"  $\theta$ .

 Notice that the oracle θ<sup>\*</sup> = argmin<sub>θ</sub> ||f<sub>θ</sub> − η||<sup>2</sup> need not be sparse. Only the best balance between the two terms (approximation and remainder) matters.



Sparse oracle inequalities when  $M\gg n$ 

Sparsity pattern aggregation Exponential screening

Optimality

Universal aggregation

Implementation and numerical illustration



## Sparsity patterns

- A sparsity pattern is a vector  $\mathbf{p} \in \{0, 1\}^M$ .
- Define the set  ${\rm I\!R}^p$  of vectors with sparsity pattern p as

$$\mathbb{R}^{\mathsf{p}} = \{\theta \cdot \mathsf{p} \, : \, \theta \in \mathbb{R}^{M}\} \subset \mathbb{R}^{M} \, ,$$

where  $\theta \cdot \mathbf{p} \in \mathrm{I\!R}^M$  denotes the Hadamard product.

• For any  $\mathbf{p} \in \{0,1\}^M$  define the least squares estimator

$$\hat{\theta}_{\mathsf{p}} \in \operatorname*{argmin}_{\theta \in \mathbf{R}^{\mathsf{p}}} |\mathbf{Y} - \mathbf{X}\theta|_2^2 \,,$$

where

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} f_1(x_1) & \dots & f_M(x_1) \\ \vdots & & \vdots \\ f_1(x_n) & \dots & f_M(x_n) \end{pmatrix}$$



## Sparsity pattern aggregation

• A first simple oracle inequality gives

$$\mathbb{E} \|\mathbf{f}_{\hat{\theta}_{\mathsf{p}}} - \eta\|^2 \le \min_{\theta \in \mathbb{R}^{\mathsf{p}}} \|\mathbf{f}_{\theta} - \eta\|^2 + \sigma^2 \frac{|\mathbf{p}|_1 \wedge R}{n}$$

where  $R = \operatorname{rank}(\mathbf{X})$ .

- $M \gg n$ :  $\frac{M}{n}$  is useless but  $\frac{|\mathbf{p}|_1 \wedge R}{n}$  can be good  $\rightsquigarrow$  which p to choose?
- Define the sparsity pattern aggregate  $\tilde{\theta}^{\scriptscriptstyle\rm SPA}$  by

$$ilde{ heta}^{ ext{SPA}} := \sum_{\mathbf{p} \in \{0,1\}^M} \hat{ heta}_{\mathbf{p}} 
u_{\mathbf{p}} \, ,$$

where  $\nu = (\nu_p)_p$  is a probability measure on  $\{0, 1\}^M$ .



## Exponential screening

- To choose ν, we should downweight sparsity patterns with large SSE and large |p|<sub>1</sub>.
- Define the probability measure

$$\nu_{\mathsf{p}} \propto \exp\left(-\frac{1}{4\sigma^2} \sum_{i=1}^n (Y_i - \mathsf{f}_{\hat{\theta}_{\mathsf{p}}}(x_i))^2 - \frac{|\mathsf{p}|}{2}\right) \left(\frac{|\mathsf{p}|_1}{2eM}\right)^{|\mathsf{p}|_1} I(|\mathsf{p}|_1 \le R)$$

- The SPA with this  $\nu$ : Exponential screening  $\tilde{\theta}^{\text{ES}}$ .
- George (86), Leung & Barron (06), Giraud (08), Alquier & Lounici (10): exponential weighting with other initial estimators or other discrete priors. Dalalyan & Tsybakov. (07,08,09): exponential weigthing with continuous priors.



- Several methods based on  $\ell_1$  penalization (Lasso, Dantzig) are very efficient.
- SOI for those measure sparsity in terms of  $\ell_1$  norm (as opposed to  $\ell_0$ -norm).
- Becomes an advantage if |θ|<sub>1</sub> ≪ |θ|<sub>0</sub> (many small coefficients, power decay, ...).
- Exponential screening adapts to both measures of sparsity.



## Sparsity oracle inequality for $\operatorname{ES}$

#### Theorem 1

For any  $M \ge 1, n \ge 1$ , if  $\max_j ||f_j|| \le 1$ ,

$$\mathbb{E} \|\mathbf{f}_{\tilde{\theta}^{\text{ES}}} - \eta\|^2 \leq \min_{\theta \in \mathbb{R}^M} \left\{ \|\mathbf{f}_{\theta} - \eta\|^2 + \varphi_{n,M}(\theta) \right\} \\ + \frac{\sigma^2}{n} (9\log(1 + eM) + 4\log 2)$$

where the remainder term  $\varphi_{n,M}(\theta)$  is equal to

$$\frac{9\sigma^2 \widetilde{M}(\theta)}{n} \log\left(\frac{eM}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11\sigma |\theta|_1}{\sqrt{n}} \sqrt{\log\left(1 + \frac{3eM\sigma}{|\theta|_1\sqrt{n}}\right)}.$$

where  $M(\theta) := \min(|\theta|_0, R)$ .

Moreover, if  $\eta = f_{\theta^*}$ , we can take  $\varphi_{n,M}(\theta^*) \wedge |\theta^*|_1^2$  in the remainder term.



## Sparsity oracle inequality for $\operatorname{ES}$

#### Theorem 1

For any  $M \ge 1, n \ge 1$ , if  $\max_j ||f_j|| \le 1$ ,

$$\mathbb{E} \|\mathbf{f}_{\tilde{\theta}^{\text{ES}}} - \eta\|^2 \leq \min_{\theta \in \mathbb{R}^M} \left\{ \|\mathbf{f}_{\theta} - \eta\|^2 + \varphi_{n,M}(\theta) \right\} \\ + \frac{\sigma^2}{n} (9\log(1 + eM) + 4\log 2)$$

where the remainder term  $\varphi_{n,M}(\theta)$  is equal to

$$\frac{9\sigma^2 \widetilde{M}(\theta)}{n} \log\left(\frac{eM}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11\sigma |\theta|_1}{\sqrt{n}} \sqrt{\log\left(1 + \frac{3eM\sigma}{|\theta|_1\sqrt{n}}\right)}.$$

where  $M(\theta) := \min(|\theta|_0, R)$ .

Moreover, if  $\eta = f_{\theta^*}$ , we can take  $\varphi_{n,M}(\theta^*) \wedge |\theta^*|_1^2$  in the remainder term.



## Sparsity oracle inequality for $\operatorname{ES}$

#### Theorem 1

For any  $M \ge 1, n \ge 1$ , if  $\max_j ||f_j|| \le 1$ ,

$$\mathbb{E} \|\mathbf{f}_{\tilde{\theta}^{\text{ES}}} - \eta\|^2 \leq \min_{\theta \in \mathbb{R}^M} \left\{ \|\mathbf{f}_{\theta} - \eta\|^2 + \varphi_{n,M}(\theta) \right\} \\ + \frac{\sigma^2}{n} (9\log(1 + eM) + 4\log 2)$$

where the remainder term  $\varphi_{n,M}(\theta)$  is equal to

$$\frac{9\sigma^2 \widetilde{M}(\theta)}{n} \log\left(\frac{eM}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11\sigma |\theta|_1}{\sqrt{n}} \sqrt{\log\left(1 + \frac{3eM\sigma}{|\theta|_1\sqrt{n}}\right)}$$

where  $M(\theta) := \min(|\theta|_0, R)$ .

Moreover, if  $\eta = f_{\theta^*}$ , we can take  $\varphi_{n,M}(\theta^*) \wedge |\theta^*|_1^2$  in the remainder term.



One and the same estimator takes advantage of three types of sparsity:

- small number of non-zero entries of  $\theta$  ( $\ell_0$  norm)
- small global weight ( $\ell_1$  norm)
- ${\scriptstyle \bullet}\,$  small rank of the matrix  ${\bf X}$



- SOI have been obtained by Bickel et al. (09), Bunea et al. (07, 07), Candes & Tao (07), Koltchinskii (08, 09, 09), van de Geer (08), Zhang & Huang (08), Zhang (09), ... (other references in those papers).
- Most of those results have the term  $(1+\varepsilon), \varepsilon>0$  in front of RHS.
- They deal with only one measure of sparsity (either |θ|<sub>0</sub> or |θ|<sub>1</sub>) at a time.
- The rates there are slower than in Theorem 1.
- SOI of Theorem 1 holds with no assumption on the dictionary.



- We want to prove that  $\psi_{n,M}(\theta) = \varphi_{n,M}(\theta) \wedge |\theta|_1^2$  is optimal in a minimax sense.
- Define the rate function

$$\begin{aligned} \zeta_{n,M}(S,\delta) &= \frac{\sigma^2 S}{n} \log\left(1 + \frac{eM}{S}\right) \wedge \frac{\sigma\delta}{\sqrt{n}} \sqrt{\log\left(1 + \frac{eM\sigma}{\delta\sqrt{n}}\right)} \wedge \delta^2 \\ & \rightsquigarrow \zeta_{n,M}(S,\delta) = \psi_{n,M}(\theta) \text{ with } \widetilde{M}(\theta) = S \text{ and } |\theta|_1 = \delta. \end{aligned}$$



# Minimax lower bound on the intersection of $\ell_0$ and $\ell_1$ balls

#### Theorem 3

There exists a large class of dictionaries such that for any estimator  $T_n$ , possibly depending on  $\delta$ , S, n, M, R and  $\mathcal{H}$ , there exists a numerical constant  $c^* > 0$ , such that

$$\sup_{\substack{\eta \\ \theta \in \mathbb{R}^{M}_{+} \setminus \{0\} \\ M(\theta) \leq S \\ |\theta|_{1} \leq \delta}} \sup_{\substack{\xi \in \mathbb{R}^{M}_{+} \setminus \{0\} \\ \theta \in \mathbb{R}^{M}_{+} \setminus \{0\} \\ \xi \in \mathbb$$

where  $\mathbb{R}^M_+$  is the positive cone of  $\mathbb{R}^M$ .

Least favorable dictionaries satisfy a weak version of restricted isometry (RI) property.



## Comparison with asymptotic bounds

- Donoho and Johnstone (92, 94), Abramovich et al. (06)
  - diagonal model: M = n,  $\mathbf{X}^{\top}\mathbf{X}/n = I$ ,
  - asymptotics as  $n \to \infty$  of the minimax risk on  $\ell_p$  ball  $B_p(a)$  with radius a.
- Cases: p = 0 and p = 1. Asymptotic minimax rate

$$\inf_{\hat{\theta}} \sup_{\theta \in B_{0}(S)} \mathbb{E} |\mathbf{X}(\hat{\theta} - \theta)|_{2}^{2}/n \sim 2\sigma^{2} \frac{S}{n} \log\left(\frac{n}{S}\right)$$
$$\inf_{\hat{\theta}} \sup_{\theta \in B_{1}(\delta)} \mathbb{E} |\mathbf{X}(\hat{\theta} - \theta)|_{2}^{2}/n \sim \frac{\delta\sigma}{\sqrt{n}} \sqrt{2\log\left(\frac{\sigma\sqrt{n}}{\delta}\right)} \wedge \delta^{2}$$

 $\alpha$ 

• Raskutti et al. (09):  $M \neq n$ , asymptotic rates  $\frac{S}{n} \log \left(\frac{M}{S}\right)$ and  $\delta \sqrt{\frac{\log M}{n}}$ . Non-asymptotic effects wiped out.

## Universal aggregation

• Given  $\Theta \subset {\rm I\!R}^M,$  the goal of aggregation is to construct  $\hat{\eta}$  such that

$$\mathbb{E}\|\hat{\eta} - \eta\|^2 \le \min_{\theta \in \Theta} \|\mathbf{f}_{\theta} - \eta\|^2 + C\Delta_{n,M}(\Theta), \quad C > 0,$$

- Different choices of Θ have been proposed and studied by Nemirovskii (00), Tsybakov (03), Bunea *et al.* (07) and Lounici (07).
- Optimal rates of aggregations were obtained by Bunea *et al.* (07) where they showed that the BIC estimator satisfies

$$\mathbb{E} \| \mathbf{f}_{\hat{\theta}^{\text{BIC}}} - \eta \|^2 \le (1+a) \min_{\theta \in \Theta} \| \mathbf{f}_{\theta} - \eta \|^2 + C \frac{1+a}{a^2} \Delta_{n,M}$$

• We call this universal aggregation (one estimator for all problems).



$$\mathbb{E}\|\hat{\eta} - \eta\|^2 \le \min_{\theta \in \Theta} \|\mathbf{f}_{\theta} - \eta\|^2 + C\Delta_{n,M}(\Theta), \quad C > 0,$$

| Problem          | Θ                                               | Description                   |
|------------------|-------------------------------------------------|-------------------------------|
| (MS)             | $\Theta_{(\mathrm{MS})} = \{e_1, \dots, e_M\}$  | Best in dictionary            |
| (C)              | $\Theta_{\rm (C)} = B_1(1)$                     | Best convex comb.             |
| (L)              | $\Theta_{(\mathrm{L})} = \mathrm{I\!R}^M$       | Best linear comb.             |
| $(L_D)$          | $\Theta_{(\mathbf{L}_D)} = B_0(D)$              | Best $D$ -sparse linear comb. |
| $(\mathbf{C}_D)$ | $\Theta_{(\mathcal{C}_D)} = B_0(D) \cap B_1(1)$ | Best D-sparse convex comb.    |



[Bunea et al. (07)]

#### Theorem 3

Assume that  $\max_{1 \le j \le M} ||f_j|| \le 1$ . Then for any  $M \ge 2, n \ge 1, D \le M$ , and  $\Theta \in \{\Theta_{(MS)}, \Theta_{(C)}, \Theta_{(L)}, \Theta_{(L_D)}, \Theta_{(C_D)}\}$  the Exponential Screening estimator satisfies the following oracle inequality

$$\mathbb{E} \|\mathbf{f}_{\tilde{\theta}^{\mathrm{ES}}} - \eta\|^2 \le \min_{\theta \in \Theta} \|\mathbf{f}_{\theta} - \eta\|^2 + C\Delta_{n,M}^*(\Theta) \,,$$

where C > 0 is a numerical constant and  $\Delta_{n,M}^*(\Theta)$  is the optimal rate of aggregation on  $\Theta$  given on the next slide.



## Optimal rates of aggregation $\Delta_{n,M}^*(\Theta)$

A refinement of the rates with R and  $\sigma$  gives





## Metropolis-Hastings algorithm

• Recall that the  ${
m ES}$  estimator  ${ ilde heta}^{{
m ES}}$  is:

$$\tilde{\theta}^{\mathrm{ES}} = \sum_{\mathbf{p} \in \{0,1\}^M} \hat{\theta}_{\mathbf{p}} \nu_{\mathbf{p}}$$

- Virtually  $2^M$  least squares estimators to compute.
- Overcome by finding a Markov chain on the vertices  $\{0,1\}^M$  and with stationary distribution

$$\nu_{\mathsf{p}} \propto \exp\left(-\frac{1}{4\sigma^2}\sum_{i=1}^{n}(Y_i - \mathsf{f}_{\hat{\theta}_{\mathsf{p}}}(x_i))^2\right)\left(\frac{|\mathsf{p}|_1}{2eM}\right)^{|\mathsf{p}|_1} I(|\mathsf{p}|_1 \le R)$$

• We use the uniform proposal but can be improved for faster convergence.



## Convergence of the Metroplis-Hastings algorithm



Figure: Typical realization for (M, n, S) = (500, 200, 20). Left: Value of the  $\tilde{\tilde{\theta}}_T^{\text{ES}}$ , T = 7,000,  $T_0 = 3,000$ . Right: Value of iterate for  $t = 1, \ldots, 5000$ . Only the first 50 coordinates are shown for each vector.



## Prediction under restricted isometry

- Compare our results in a sparse recovery setting, i.e., when RI property is satisfied.
- Consider the model  $\mathbf{Y} = \mathbf{X}\theta^* + \sigma\xi$  where
  - 1.  ${\bf X}$  is an  $n\times M$  matrix with independent Rademacher entries
  - 2.  $\xi\in {\rm I\!R}^n$  is a vector of independent standard Gaussian random variables and is independent of  ${\bf X}$

3. 
$$\theta_j^* = 1 (j \le S)$$
 for some fixed  $S$  so that  $M(\theta^*) = S$   
4.  $\sigma^2 = S/9$ 

• We consider the prediction error

$$|\mathbf{X}(\hat{\theta} - \theta^*)|_2^2/n = \|\mathbf{f}_{\hat{\theta}} - \mathbf{f}_{\theta^*}\|^2.$$

(Setup of Candes & Tao (07))



### Results



Figure: Boxplots of  $|\mathbf{X}(\hat{\theta} - \theta^*)|_2^2/n$  over 500 realizations for the ES, Lasso, cross-validated Lasso (LassoCV), Lasso-Gauss (Lasso-G) and cross-validated Lasso-Gauss (LassoCV-G) estimators. *Left:* (n, M, S) = (100, 200, 10), *right:* (n, M, S) = (200, 500, 20).



## Reconstruction of the digit "6"

- Difficult to actually find X which does not satisfy RI condition and with  $M \gg n$ .
- Solution: handwritten digit dataset of LeCun *et al.* (90). Consists of 256 pixels grayscale images.
- Idea: take one image + noise to be  ${\bf Y}$  in  ${\rm I\!R}^{256}$  and the dictionary to be the remaining 7,290 images.
- Formally



 We try to approximate μ with linear combinations of the other images in the dataset.



## Correlated dictionary



Figure: Histogram of the M(M-1)/2 correlation coefficients between different images in the database.



## Prediction performance





## Examples of reconstructions



(a) True (b) Noisy (c)  $\operatorname{Es}$  (d) Lasso (e) Lasso-G

Figure: Reconstruction of the digit "6" with  $\sigma = 0.5$ 



Figure: Reconstruction of the digit "6" with  $\sigma=1.0$ 



## Interpretations of the coefficients in $\tilde{\theta}^{\mbox{\tiny ES}}$





## Metropolis-Hastings on the cube

#### Set

$$\nu_{\mathsf{p}} \propto \exp\left(-\frac{1}{4\sigma^2}\sum_{i=1}^n (Y_i - \mathsf{f}_{\hat{\theta}_{\mathsf{p}}}(x_i))^2\right) \pi_{\mathsf{p}}, \quad \mathsf{p} \in \mathcal{P}.$$

This Gibbs-type distribution can be expressed as the stationary distribution of the Markov chain generated by a Metropolis -Hastings algorithm. Consider the *M*-hypercube graph  $\mathcal{G}$  with vertices given by  $\mathcal{P}$ . For any  $p \in \mathcal{P}$ , define the instrumental distribution  $q(\cdot|p)$  as the uniform distribution on the neighbors of p in  $\mathcal{G}$ .



## Metropolis-Hastings on the cube

Fix  $p_0 = 0 \in \mathbb{R}^M$ . For any  $t \ge 0$ , given  $p_t \in \mathcal{P}$ ,

Generate a random variable Q<sub>t</sub> with distribution q(·|p<sub>t</sub>).
 Generate a random variable

$$P_{t+1} = \begin{cases} Q_t & \text{with probability} \quad r(\mathbf{p}_t, Q_t) \\ \mathbf{p}_t & \text{with probability} \quad 1 - r(\mathbf{p}_t, Q_t) \end{cases}$$

where

$$r(\mathbf{p}, \mathbf{q}) = \min\left(rac{
u_{\mathbf{q}}}{
u_{\mathbf{p}}}, 1
ight)$$

3. Compute the least squares estimator  $\hat{\theta}_{P_{t+1}}$ .

