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Y = X0 + &, standard normal &.
dim § = M > n = sample size.
The Lasso estimator 0y, w.p. close to 1 satisfies:

X (0, — 0)[3/n < C|0]o"EM, assumptions onX.

- log M
X0, — 0)|5/n < Cl0]14/ 08 , assumption on X.
n

Here | - |,,p > 1 is the £, norm, |@|g = number of
non-zero components of 6.

Question:



Regression with design.

We observe
where:
n : X — IR is the unknown regression function,
xz;,1 =1,...,n are known deterministic points in X,

&,i=1,...,nareiid N(0,0?), 0% known.
Performance of an estimator 7
. 1~ 2
I =nl* =~ [i(@:) = n(@)]”  (MSE)

i=1



Given a H={f,....fu} [j : ¥ =R,
we are interested in finding the of
the f;'s:

M
fo=> 0;f;, 0eRM
j=1
More precisely we want to find 7 such that
N 2 . 2
B[l —nl|” — min [|fo —n|

is as small as possible.



Upper bounds for the risk of (linear) aggregation are
presented as oracle inequalities of the form

~ 2 : 2
Bl —nlI” < (1 +¢) min [{fy ="+ Anar,
We are interested specifically in the case ¢ = 0

The smallest possible remainder term A,, 5, (optimal rate
of linear aggregation)

e
n

and is attained by least squares. ?



For good approximation properties: M > n so the rate

— is useless.
n

Solution: assume :
Sparse Oracle Inequality (SOI):

A 2 . 2
Ell7 —nl* < min {If —nl* + Anar(0)}

where A,, 1/(0) is smaller for “sparser” 6.

Notice that the oracle 6* = argminy ||fs — 7||* need not
be sparse. Only the best between the two terms
(approximation and remainder) matters.



Outline

Sparse oracle inequalities when M > n
Sparsity pattern aggregation

Exponential screening
Optimality
Universal aggregation

Implementation and numerical illustration
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A sparsity pattern is a vector p € {0, 1},

Define the set IRP of vectors with sparsity pattern p as
RP={0-p:0cR”} cRM,

where 0 - p € RM denotes the Hadamard product.

For any p € {0, 1} define the least squares estimator

0, € argmin [Y — X062,
9eRP

where
Y, filw) oo fu(z)
Y = : , X = : :



A first simple oracle inequality gives

) lpli AR
Ellf, —ll* < min [ - |} + o2 PSS

where R = rank(X).
Pl AR

M
M > n: — is useless but can be good ~~
n
which p to choose?

Define the by

G5 = Z épl/p,

pe{0,1}M

where v = (1), is a probability measure on {0, 1}.



To choose v, we should downweight sparsity patterns
with large SSE and large |p];.

Define the probability measure

n

Vp X €XP (—é Z(Yi_fép(xi))Q—%) (%) p[1(|p|1 < R)

=1

The SPA with this v: 6.

George (86), Leung & Barron (06), Giraud (08), Alquier

& Lounici (10): exponential weighting with other initial
estimators or other discrete priors. Dalalyan &

Tsybakov. (07,08,09): exponential weigthing with

continuous priors. ?
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Several methods based on ¢; penalization (Lasso,
Dantzig) are very efficient.

SOI for those measure sparsity in terms of ¢; norm (as
opposed to {y-norm).

Becomes an advantage if |0]; < |0|o (many small
coefficients, power decay, ... ).

Exponential screening adapts to measures of sparsity.
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Sparsity oracle inequality for ES

Theorem 1

Moreover, if 7 = fy«, we can take o, 1/(0%)/07|] in the ?
remainder term.
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Moreover, if 7 = fy«, we can take o, 1/(0%)/07|] in the
remainder term.




One and the same estimator takes advantage of three types of
sparsity:

small number of non-zero entries of 6 (¢, norm)
small global weight (¢; norm)

small rank of the matrix X
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SOI have been obtained by Bickel et al. (09), Bunea et
al. (07, 07), Candes & Tao (07), Koltchinskii (08, 09,
09), van de Geer (08), Zhang & Huang (08), Zhang (09),
... (other references in those papers).

Most of those results have the term (1 +¢),e > 0 in
front of RHS.

They deal with only one measure of sparsity (either ||
or |0];) at a time.

The rates there are slower than in Theorem 1.
SOl of Theorem 1 holds with



We want to prove that v, 1/(0) = @na(0) A 167 is
optimal in a minimax sense.

Define the rate function

2
Cunr(S.8) = —Slog (1+— \/mg 1+€M” AG?

Cont(S,8) = 1 (0) with M(6) = S and |0]; = 6.
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Minimax lower bound on the intersection of ¢,

and /1 balls

Theorem 3

Least favorable dictionaries satisfy a weak version of restricted
isometry (RI) property.

16/32



Donoho and Johnstone (92, 94), Abramovich et al. (06)
M =n, XTX/n:I,
as n — oo of the minimax risk on £, ball
By(a) with radius a.

Cases: p=0and p=1. minimax rate

inf sup E[X(0—0)2/n ~ 202§10g<ﬁ)
0 6eBy(S) n S

R oo oyvn
inf sup E|X(@—-0)%*/n ~ —/2lo <—)/\(52
o sup X0 - 0)fi/n ~ ST f210n (2

Raskutti et al. (09): M # n, rates glog (%)

and 0 IOgM Non-asymptotic effects wiped out.

v
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© C IRM, the goal of aggregation is to construct 7
such that

Bl — P < minlfy — 5l + CA,u(6), C>0,

Different choices of © have been proposed and studied by
Nemirovskii (00), Tsybakov (03), Bunea et al. (07) and
Lounici (07).

Optimal rates of aggregations were obtained by Bunea et
al. (07) where they showed that the BIC estimator
satisfies

1+a
2 . 2
B[|fgue — )" < (1 + a)min [[fo —nl]" + C—=Ann
We call this (one estimator for all ?

problems).
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B[l —nl* < min [l — 9l + CA, (), C>0,

Problem © Description
(MS) | ©Owms) = {e1,-..,em} Best in dictionary
() Oy = Bi(1) Best convex comb.
(L) Ow) =R Best linear comb.
(Lp) Ow,) = Bo(D) Best D-sparse linear comb.
(Cp) | Oy = Bo(D) N Bi(1) | Best D-sparse convex comb.

[Bunea et al. (07)] v
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ES solves all aggregation problems

Theorem 3

optimal
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A refinement of the rates with R and o gives

Problem A (0)
(MS) o?log M
(©) \/"7 log (1 + e%") A UQ(JZ )
(L) e
(Lp) 702(2 ) log (1+ £1%)
(Cp) \/"—: log <1 + e%") A UQ(Z ) log (1+ £M1) o
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Recall that the ES estimator §%5 is:

6" = Z épyp

pe{0,1}M

Virtually 2™ least squares estimators to compute.

Overcome by finding a Markov chain on the vertices
{0, 1} and with stationary distribution

oo exp (o 006y ) (22) Tl <

=1

We use the uniform proposal but can be improved for
faster convergence.
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Convergence of the Metroplis-Hastings algorithm
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Figure: Typical realization for (M,n,S) = (500,200,20). Left:
Value of the 5%5 T =17,000, Ty = 3,000. Right: Value of iterate
for t =1,...,5000. Only the first 50 coordinates are shown for
each vector.
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Compare our results in a sparse recovery setting, i.e.,
when RI property is satisfied.

Consider the model Y = X6* + o& where

X is an n x M matrix with independent Rademacher
entries

& € IR™ is a vector of independent standard Gaussian
random variables and is independent of X

07 = 1(j < S) for some fixed S so that M(0*) = S
o2 =25/9

We consider the

2

IX(6 —67)[3/n = |Ifg —fo-

(Setup of Candes & Tao (07)) ?
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Boxplots of [X (6 — 6*)|3/n over 500 realizations for the
ES, Lasso, cross-validated Lasso (LassoCV), Lasso-Gauss (Lasso-G)

and cross-validated Lasso-Gauss (LassoCV-G) estimators. Left:
(n, M, S) = (100,200, 10), right: (n, M, S) = (200, 500, 20).
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Reconstruction of the digit “6"

o Difficult to actually find X which does not satisfy Rl
condition and with M > n.

» Solution: handwritten digit dataset of LeCun et al.
(90). Consists of 256 pixels grayscale images.

o ldea: take one image + noise to be Y in IR*® and the
dictionary to be the remaining 7,290 images.

e Formally
& o BB
Nagasall Nt aagaiat S
Y 7 43

o We try to approximate p with linear combinations of the -
other images in the dataset.
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Histogram of the M (M — 1)/2 correlation coefficients
between different images in the database.
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Left: Boxplots of the predictive performance | — X603 of

the ES, Lasso and Lasso-Gauss (Lasso-G) estimators computed

from 250 replications. Left: 0 = 0.5. Right: o = 1.
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Reconstruction of the digit “6" with ¢ = 0.5

o0& 6 & 6

) True ) Noisy ) Lasso ) Lasso-G

Reconstruction of the digit “6" with ¢ = 1.0 ?
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Interpretations of the coefficients in 9%

0.6

05t 6

04

) b
02} Oé
¢ 9 A

01k

-0.1

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

30/32



Set

n

Vp OX €XP < - %‘2 Z(Yz - fép(xi))2>7rp, peP.

1=

This Gibbs-type distribution can be expressed as the stationary
distribution of the Markov chain generated by a Metropolis
-Hastings algorithm. Consider the M-hypercube graph G with
vertices given by P. For any p € P, define the instrumental
distribution ¢(:|p) as the uniform distribution on the neighbors

of ping.
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Fix pp =0 € RM. For any t > 0, given p; € P,

Generate a random variable @); with distribution g(-|p;).

Generate a random variable

P Q; with probability r(ps, Q)
1T pe with probability 1 — r(p;, Qy)

r(p,q) = min (ﬁ, 1) :
Vp

Compute the least squares estimator épm.
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