Optimal rates of sparse estimation and universal aggregation

Philippe Rigollet

둠
Princeton University

Prologue: sparsity in linear model

- $\mathbf{Y}=\mathbf{X} \theta+\xi$, standard normal ξ.
- $\operatorname{dim} \theta=M \gg n=$ sample size.
- The Lasso estimator $\hat{\theta}_{L}$ w.p. close to 1 satisfies:
$\left|\mathbf{X}\left(\hat{\theta}_{L}-\theta\right)\right|_{2}^{2} / n \leq C|\theta|_{0} \frac{\log M}{n}, \quad$ restrictive assumptions on \mathbf{X}.
$\left|\mathbf{X}\left(\hat{\theta}_{L}-\theta\right)\right|_{2}^{2} / n \leq C|\theta|_{1} \sqrt{\frac{\log M}{n}}, \quad$ NO assumption on \mathbf{X}.

Here $|\cdot|_{p}, p \geq 1$ is the ℓ_{p} norm, $|\theta|_{0}=$ number of non-zero components of θ.

- Question: How optimal are these bounds?

Setup

- Regression with fixed design.
- We observe

$$
Y_{i}=\eta\left(x_{i}\right)+\xi_{i}, \quad i=1, \ldots, n
$$

- where:
- $\eta: \mathcal{X} \rightarrow \mathbb{R}$ is the unknown regression function,
- $x_{i}, i=1, \ldots, n$ are known deterministic points in \mathcal{X},
- $\xi_{i}, i=1, \ldots, n$ are i.i.d $\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known.
- Performance of an estimator $\hat{\eta}$

$$
\begin{equation*}
\|\hat{\eta}-\eta\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[\hat{\eta}\left(x_{i}\right)-\eta\left(x_{i}\right)\right]^{2} \tag{MSE}
\end{equation*}
$$

Aggregation

- Given a dictionary $\mathcal{H}=\left\{f_{1}, \ldots, f_{M}\right\}, f_{j}: \mathcal{X} \rightarrow \mathbb{R}$,
- we are interested in finding the best linear combination of the f_{j} 's:

$$
\mathrm{f}_{\theta}=\sum_{j=1}^{M} \theta_{j} f_{j}, \quad \theta \in \mathbb{R}^{M}
$$

- More precisely we want to find $\hat{\eta}$ such that

$$
\mathbb{E}\|\hat{\eta}-\eta\|^{2}-\min _{\theta \in \mathbb{R}^{M}}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}
$$

is as small as possible.

Oracle inequalities

- Upper bounds for the risk of (linear) aggregation are presented as oracle inequalities of the form

$$
\mathbb{E}\|\hat{\eta}-\eta\|^{2} \leq(1+\varepsilon) \min _{\theta \in \mathbb{R}^{M}}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+\Delta_{n, M}
$$

- We are interested specifically in the case $\varepsilon=0$ (exact oracle inequalities).
- The smallest possible remainder term $\Delta_{n, M}$ (optimal rate of linear aggregation)

$$
\Delta_{M, n}=\mathcal{O}\left(\frac{M}{n}\right)
$$

and is attained by least squares.

Sparse oracle inequalities

- For good approximation properties: $M \gg n$ so the rate $\frac{M}{n}$ is useless.
- Solution: assume sparsity.
- Sparse Oracle Inequality (SOI):

$$
\mathbb{E}\|\hat{\eta}-\eta\|^{2} \leq \min _{\theta \in \mathbb{R}^{M}}\left\{\left\|\mathbf{f}_{\theta}-\eta\right\|^{2}+\Delta_{n, M}(\theta)\right\}
$$

where $\Delta_{n, M}(\theta)$ is smaller for "sparser" θ.

- Notice that the oracle $\theta^{*}=\operatorname{argmin}_{\theta}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}$ need not be sparse. Only the best balance between the two terms (approximation and remainder) matters.

Outline

Sparse oracle inequalities when $M \gg n$

Sparsity pattern aggregation

Exponential screening

Optimality

Universal aggregation

Implementation and numerical illustration

Sparsity patterns

- A sparsity pattern is a vector $\mathrm{p} \in\{0,1\}^{M}$.
- Define the set \mathbb{R}^{p} of vectors with sparsity pattern p as

$$
\mathbb{R}^{\mathrm{p}}=\left\{\theta \cdot \mathrm{p}: \theta \in \mathbb{R}^{M}\right\} \subset \mathbb{R}^{M}
$$

where $\theta \cdot \mathrm{p} \in \mathbb{R}^{M}$ denotes the Hadamard product.

- For any $\mathrm{p} \in\{0,1\}^{M}$ define the least squares estimator

$$
\hat{\theta}_{\mathrm{p}} \in \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}}|\mathbf{Y}-\mathbf{X} \theta|_{2}^{2}
$$

where

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \ldots & f_{M}\left(x_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(x_{n}\right) & \ldots & f_{M}\left(x_{n}\right)
\end{array}\right)
$$

Sparsity pattern aggregation

- A first simple oracle inequality gives

$$
\mathbb{E}\left\|\mathrm{f}_{\hat{\theta}_{\mathfrak{p}}}-\eta\right\|^{2} \leq \min _{\theta \in \mathbb{R}^{\mathfrak{p}}}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+\sigma^{2} \frac{|\mathrm{p}|_{1} \wedge R}{n}
$$

where $R=\operatorname{rank}(\mathbf{X})$.

- $M \gg n: \frac{M}{n}$ is useless but $\frac{|\mathrm{p}|_{1} \wedge R}{n}$ can be good \rightsquigarrow which p to choose?
- Define the sparsity pattern aggregate $\tilde{\theta}^{\text {SPA }}$ by

$$
\tilde{\theta}^{\text {SPA }}:=\sum_{\mathrm{p} \in\{0,1\}^{M}} \hat{\theta}_{\mathrm{p}} \nu_{\mathrm{p}}
$$

where $\nu=\left(\nu_{\mathrm{p}}\right)_{\mathrm{p}}$ is a probability measure on $\{0,1\}^{M}$.

Exponential screening

- To choose ν, we should downweight sparsity patterns with large SSE and large $|\mathrm{p}|_{1}$.
- Define the probability measure
$\nu_{\mathrm{p}} \propto \exp \left(-\frac{1}{4 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathrm{f}_{\hat{\theta}_{\mathrm{p}}}\left(x_{i}\right)\right)^{2}-\frac{|\mathrm{p}|}{2}\right)\left(\frac{|\mathrm{p}|_{1}}{2 e M}\right)^{|\mathrm{p}|_{1}} I\left(|\mathrm{p}|_{1} \leq R\right)$
- The SPA with this ν : Exponential screening $\tilde{\theta}^{\text {ES }}$.
- George (86), Leung \& Barron (06), Giraud (08), Alquier \& Lounici (10): exponential weighting with other initial estimators or other discrete priors. Dalalyan \& Tsybakov. $(07,08,09)$: exponential weigthing with continuous priors.

Sparsity in terms of ℓ_{1} norm

- Several methods based on ℓ_{1} penalization (Lasso, Dantzig) are very efficient.
- SOI for those measure sparsity in terms of ℓ_{1} norm (as opposed to ℓ_{0}-norm).
- Becomes an advantage if $|\theta|_{1} \ll|\theta|_{0}$ (many small coefficients, power decay, ...).
- Exponential screening adapts to both measures of sparsity.

Sparsity oracle inequality for ES

Theorem 1

For any $M \geq 1, n \geq 1$, if $\max _{j}\left\|f_{j}\right\| \leq 1$,

$$
\begin{aligned}
& \mathbb{E}\left\|\mathrm{f}_{\hat{\theta}_{\mathrm{ES}}^{\mathrm{ES}}}-\eta\right\|^{2} \leq \min _{\theta \in \mathbb{R}^{M}}\left\{\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+\varphi_{n, M}(\theta)\right\} \\
&+\frac{\sigma^{2}}{n}(9 \log (1+e M)+4 \log 2)
\end{aligned}
$$

where the remainder term $\varphi_{n, M}(\theta)$ is equal to

$$
\frac{9 \sigma^{2} \widetilde{M}(\theta)}{n} \log \left(\frac{e M}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11 \sigma|\theta|_{1}}{\sqrt{n}} \sqrt{\log \left(1+\frac{3 e M \sigma}{|\theta|_{1} \sqrt{n}}\right)} .
$$

where $\widetilde{M}(\theta):=\min \left(|\theta|_{0}, R\right)$.
Moreover, if $\eta=\mathrm{f}_{\theta^{*}}$, we can take $\varphi_{n, M}\left(\theta^{*}\right) \wedge\left|\theta^{*}\right|_{1}^{2}$ in the remainder term.

Sparsity oracle inequality for ES

Theorem 1

For any $M \geq 1, n \geq 1$, if $\max _{j}\left\|f_{j}\right\| \leq 1$,

$$
\begin{aligned}
& \mathbb{E}\left\|\mathrm{f}_{\tilde{\theta}^{\mathrm{ES}}}-\eta\right\|^{2} \leq \min _{\theta \in \mathbb{R}^{M}}\left\{\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+\varphi_{n, M}(\theta)\right\} \\
&+\frac{\sigma^{2}}{n}(9 \log (1+e M)+4 \log 2)
\end{aligned}
$$

where the remainder term $\varphi_{n, M}(\theta)$ is equal to

$$
\frac{9 \sigma^{2} \widetilde{M}(\theta)}{n} \log \left(\frac{e M}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11 \sigma|\theta|_{1}}{\sqrt{n}} \sqrt{\log \left(1+\frac{3 e M \sigma}{|\theta|_{1} \sqrt{n}}\right)} .
$$

where $\widetilde{M}(\theta):=\min \left(|\theta|_{0}, R\right)$.
Moreover, if $\eta=\mathrm{f}_{\theta^{*}}$, we can take $\varphi_{n, M}\left(\theta^{*}\right) \wedge\left|\theta^{*}\right|_{1}^{2}$ in the remainder term.

Sparsity oracle inequality for ES

Theorem 1

For any $M \geq 1, n \geq 1$, if $\max _{j}\left\|f_{j}\right\| \leq 1$,

$$
\begin{aligned}
& \mathbb{E}\left\|\mathrm{f}_{\tilde{\theta}^{\mathrm{ES}}}-\eta\right\|^{2} \leq \min _{\theta \in \mathbb{R}^{M}}\left\{\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+\varphi_{n, M}(\theta)\right\} \\
&+\frac{\sigma^{2}}{n}(9 \log (1+e M)+4 \log 2)
\end{aligned}
$$

where the remainder term $\varphi_{n, M}(\theta)$ is equal to

$$
\frac{9 \sigma^{2} \widetilde{M}(\theta)}{n} \log \left(\frac{e M}{\widetilde{M}(\theta) \vee 1}\right) \wedge \frac{11 \sigma|\theta|_{1}}{\sqrt{n}} \sqrt{\log \left(1+\frac{3 e M \sigma}{|\theta|_{1 \sqrt{n}}}\right) .}
$$

where $\widetilde{M}(\theta):=\min \left(|\theta|_{0}, R\right)$.
Moreover, if $\eta=\mathrm{f}_{\theta^{*}}$, we can take $\varphi_{n, M}\left(\theta^{*}\right) \wedge\left|\theta^{*}\right|_{1}^{2}$ in the remainder term.

Discussion

One and the same estimator takes advantage of three types of sparsity:

- small number of non-zero entries of θ (ℓ_{0} norm)
- small global weight (ℓ_{1} norm)
- small rank of the matrix \mathbf{X}

Related results

- SOI have been obtained by Bickel et al. (09), Bunea et al. (07, 07), Candes \& Tao (07), Koltchinskii (08, 09, 09), van de Geer (08), Zhang \& Huang (08), Zhang (09), ... (other references in those papers).
- Most of those results have the term $(1+\varepsilon), \varepsilon>0$ in front of RHS.
- They deal with only one measure of sparsity (either $|\theta|_{0}$ or $\left.|\theta|_{1}\right)$ at a time.
- The rates there are slower than in Theorem 1.
- SOI of Theorem 1 holds with no assumption on the dictionary.

Minimax lower bounds

- We want to prove that $\psi_{n, M}(\theta)=\varphi_{n, M}(\theta) \wedge|\theta|_{1}^{2}$ is optimal in a minimax sense.
- Define the rate function
$\zeta_{n, M}(S, \delta)=\frac{\sigma^{2} S}{n} \log \left(1+\frac{e M}{S}\right) \wedge \frac{\sigma \delta}{\sqrt{n}} \sqrt{\log \left(1+\frac{e M \sigma}{\delta \sqrt{n}}\right)} \wedge \delta^{2}$
$\rightsquigarrow \zeta_{n, M}(S, \delta)=\psi_{n, M}(\theta)$ with $\widetilde{M}(\theta)=S$ and $|\theta|_{1}=\delta$.

Minimax lower bound on the intersection of ℓ_{0} and ℓ_{1} balls

Theorem 3

There exists a large class of dictionaries such that for any estimator T_{n}, possibly depending on δ, S, n, M, R and \mathcal{H}, there exists a numerical constant $c^{*}>0$, such that

$$
\sup _{\eta}^{\eta} \sup _{\substack{\theta \in \mathbb{R}_{+}^{M} \backslash\{0\} \\ M(\theta) \leq S \\|\theta|_{1} \leq \delta}}\left\{E_{\eta}\left\|T_{n}-\eta\right\|^{2}-\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}\right\} \geq c^{*} \kappa \zeta_{n, M}(S \wedge R, \delta),
$$

where \mathbb{R}_{+}^{M} is the positive cone of \mathbb{R}^{M}.
Least favorable dictionaries satisfy a weak version of restricted isometry (RI) property.

Comparison with asymptotic bounds

- Donoho and Johnstone (92, 94), Abramovich et al. (06)
- diagonal model: $M=n, \mathbf{X}^{\top} \mathbf{X} / n=I$,
- asymptotics as $n \rightarrow \infty$ of the minimax risk on ℓ_{p} ball $B_{p}(a)$ with radius a.
- Cases: $p=0$ and $p=1$. Asymptotic minimax rate $\inf _{\hat{\theta}} \sup _{\theta \in B_{0}(S)} \mathbb{E}|\mathbf{X}(\hat{\theta}-\theta)|_{2}^{2} / n \sim 2 \sigma^{2} \frac{S}{n} \log \left(\frac{n}{S}\right)$ $\inf _{\hat{\theta}} \sup _{\theta \in B_{1}(\delta)} \mathbb{E}|\mathbf{X}(\hat{\theta}-\theta)|_{2}^{2} / n \sim \frac{\delta \sigma}{\sqrt{n}} \sqrt{2 \log \left(\frac{\sigma \sqrt{n}}{\delta}\right)} \wedge \delta^{2}$
- Raskutti et al. (09): $M \neq n$, asymptotic rates $\frac{S}{n} \log \left(\frac{M}{S}\right)$ and $\delta \sqrt{\frac{\log M}{n}}$. Non-asymptotic effects wiped out.

Universal aggregation

- Given $\Theta \subset \mathbb{R}^{M}$, the goal of aggregation is to construct $\hat{\eta}$ such that

$$
\mathbb{E}\|\hat{\eta}-\eta\|^{2} \leq \min _{\theta \in \Theta}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+C \Delta_{n, M}(\Theta), \quad C>0
$$

- Different choices of Θ have been proposed and studied by Nemirovskii (00), Tsybakov (03), Bunea et al. (07) and Lounici (07).
- Optimal rates of aggregations were obtained by Bunea et al. (07) where they showed that the BIC estimator satisfies

$$
\mathbb{E}\left\|\mathrm{f}_{\hat{\theta} \text { віс }}-\eta\right\|^{2} \leq(1+a) \min _{\theta \in \Theta}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+C \frac{1+a}{a^{2}} \Delta_{n, M}
$$

- We call this universal aggregation (one estimator for all problems).

Different types of aggregation

$$
\mathbb{E}\|\hat{\eta}-\eta\|^{2} \leq \min _{\theta \in \Theta}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+C \Delta_{n, M}(\Theta), \quad C>0
$$

Problem	Θ	Description
(MS)	$\Theta_{(\mathrm{MS})}=\left\{e_{1}, \ldots, e_{M}\right\}$	Best in dictionary
(C)	$\Theta_{(\mathrm{C})}=B_{1}(1)$	Best convex comb.
(L)	$\Theta_{(\mathrm{L})}=\mathbb{R}^{M}$	Best linear comb.
$\left(\mathrm{L}_{D}\right)$	$\Theta_{\left(\mathrm{L}_{D}\right)}=B_{0}(D)$	Best D-sparse linear comb.
$\left(\mathrm{C}_{D}\right)$	$\Theta_{\left(\mathrm{C}_{D}\right)}=B_{0}(D) \cap B_{1}(1)$	Best D-sparse convex comb.

[Bunea et al. (07)]

ES solves all aggregation problems

Theorem 3

Assume that $\max _{1 \leq j \leq M}\left\|f_{j}\right\| \leq 1$. Then for any
$M \geq 2, n \geq 1, D \leq M$, and
$\Theta \in\left\{\Theta_{(\mathrm{MS})}, \Theta_{(\mathrm{C})}, \Theta_{(\mathrm{L})}, \Theta_{\left(\mathrm{L}_{D}\right)}, \Theta_{\left(\mathrm{C}_{D}\right)}\right\}$ the Exponential
Screening estimator satisfies the following oracle inequality

$$
\mathbb{E}\left\|\mathfrak{f}_{\hat{\theta} \mathrm{ES}}-\eta\right\|^{2} \leq \min _{\theta \in \Theta}\left\|\mathrm{f}_{\theta}-\eta\right\|^{2}+C \Delta_{n, M}^{*}(\Theta),
$$

where $C>0$ is a numerical constant and $\Delta_{n, M}^{*}(\Theta)$ is the optimal rate of aggregation on Θ given on the next slide.

Optimal rates of aggregation $\Delta_{n, M}^{*}(\Theta)$

A refinement of the rates with R and σ gives

Problem	$\Delta_{n, M}^{*}(\Theta)$
(MS)	$\frac{\sigma^{2} \log M}{n}$
(C)	$\sqrt{\frac{\sigma^{2}}{n} \log \left(1+\frac{e M \sigma}{\sqrt{n}}\right)} \wedge \frac{\sigma^{2}(M \wedge R)}{n} \log \left(1+\frac{e M}{M \wedge R}\right)$
(L)	$\frac{\sigma^{2}(M \wedge R)}{n} \log \left(1+\frac{e M}{M \wedge R}\right)$
$\left(\mathrm{L}_{D}\right)$	$\frac{\sigma^{2}(D \wedge R)}{n} \log \left(1+\frac{e M}{D \wedge R}\right)$
$\left(\mathrm{C}_{D}\right)$	$\sqrt{\frac{\sigma^{2}}{n} \log \left(1+\frac{e M \sigma}{\sqrt{n}}\right)} \wedge \frac{\sigma^{2}(D \wedge R)}{n} \log \left(1+\frac{e M}{D \wedge R}\right)$

Metropolis-Hastings algorithm

- Recall that the ES estimator $\tilde{\theta^{E S}}$ is:

$$
\tilde{\theta}^{\mathrm{ES}}=\sum_{\mathrm{p} \in\{0,1\}^{M}} \hat{\theta}_{\mathrm{p}} \nu_{\mathrm{p}}
$$

- Virtually 2^{M} least squares estimators to compute.
- Overcome by finding a Markov chain on the vertices $\{0,1\}^{M}$ and with stationary distribution

$$
\nu_{\mathrm{p}} \propto \exp \left(-\frac{1}{4 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{f}_{\hat{\theta}_{\mathrm{p}}}\left(x_{i}\right)\right)^{2}\right)\left(\frac{|\mathbf{p}|_{1}}{2 e M}\right)^{|\mathrm{p}|_{1}} I\left(|\mathbf{p}|_{1} \leq R\right)
$$

- We use the uniform proposal but can be improved for faster convergence.

Convergence of the Metroplis-Hastings algorithm

Figure: Typical realization for $(M, n, S)=(500,200,20)$. Left:
Value of the $\tilde{\tilde{\theta}}_{T}^{\text {ES }}, T=7,000, T_{0}=3,000$. Right: Value of iterate for $t=1, \ldots, 5000$. Only the first 50 coordinates are shown for each vector.

Prediction under restricted isometry

- Compare our results in a sparse recovery setting, i.e., when RI property is satisfied.
- Consider the model $\mathbf{Y}=\mathbf{X} \theta^{*}+\sigma \xi$ where

1. \mathbf{X} is an $n \times M$ matrix with independent Rademacher entries
2. $\xi \in \mathbb{R}^{n}$ is a vector of independent standard Gaussian random variables and is independent of \mathbf{X}
3. $\theta_{j}^{*}=\mathbb{I}(j \leq S)$ for some fixed S so that $M\left(\theta^{*}\right)=S$
4. $\sigma^{2}=S / 9$

- We consider the prediction error

$$
\left|\mathbf{X}\left(\hat{\theta}-\theta^{*}\right)\right|_{2}^{2} / n=\left\|\mathrm{f}_{\hat{\theta}}-\mathrm{f}_{\theta^{*}}\right\|^{2}
$$

(Setup of Candes \& Tao (07))

Results

Figure: Boxplots of $\left|\mathbf{X}\left(\hat{\theta}-\theta^{*}\right)\right|_{2}^{2} / n$ over 500 realizations for the es, Lasso, cross-validated Lasso (LassoCV), Lasso-Gauss (Lasso-G) and cross-validated Lasso-Gauss (LassoCV-G) estimators. Left: $(n, M, S)=(100,200,10)$, right: $(n, M, S)=(200,500,20)$.

Reconstruction of the digit " 6 "

- Difficult to actually find X which does not satisfy RI condition and with $M \gg n$.
- Solution: handwritten digit dataset of LeCun et al. (90). Consists of 256 pixels grayscale images.
- Idea: take one image + noise to be \mathbf{Y} in \mathbb{R}^{256} and the dictionary to be the remaining 7,290 images.
- Formally

- We try to approximate μ with linear combinations of the other images in the dataset.

Correlated dictionary

Figure: Histogram of the $M(M-1) / 2$ correlation coefficients between different images in the database.

Prediction performance

Figure: Left: Boxplots of the predictive performance $|\mu-\mathbf{X} \hat{\theta}|_{2}^{2}$ of the es, Lasso and Lasso-Gauss (Lasso-G) estimators computed from 250 replications. Left: $\sigma=0.5$. Right: $\sigma=1$.

Examples of reconstructions

(a) True
(b) Noisy
(c) ES
(d) Lasso
(e) Lasso-G

Figure: Reconstruction of the digit " 6 " with $\sigma=0.5$

(a) True
(b) Noisy
(c) ES
(d) Lasso
(e) Lasso-G

Figure: Reconstruction of the digit " 6 " with $\sigma=1.0$

Interpretations of the coefficients in $\tilde{\theta}$ ES

Metropolis-Hastings on the cube

Set

$$
\nu_{\mathrm{p}} \propto \exp \left(-\frac{1}{4 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathrm{f}_{\hat{\theta}_{\mathrm{p}}}\left(x_{i}\right)\right)^{2}\right) \pi_{\mathrm{p}}, \quad \mathrm{p} \in \mathcal{P} .
$$

This Gibbs-type distribution can be expressed as the stationary distribution of the Markov chain generated by a Metropolis -Hastings algorithm. Consider the M-hypercube graph \mathcal{G} with vertices given by \mathcal{P}. For any $\mathrm{p} \in \mathcal{P}$, define the instrumental distribution $q(\cdot \mid \mathbf{p})$ as the uniform distribution on the neighbors of p in \mathcal{G}.

Metropolis-Hastings on the cube

Fix $\mathrm{p}_{0}=0 \in \mathbb{R}^{M}$. For any $t \geq 0$, given $\mathrm{p}_{t} \in \mathcal{P}$,

1. Generate a random variable Q_{t} with distribution $q\left(\cdot \mid \mathrm{p}_{t}\right)$.
2. Generate a random variable

$$
P_{t+1}=\left\{\begin{array}{lll}
Q_{t} & \text { with probability } & r\left(\mathrm{p}_{t}, Q_{t}\right) \\
\mathrm{p}_{t} & \text { with probability } & 1-r\left(\mathrm{p}_{t}, Q_{t}\right)
\end{array}\right.
$$

where

$$
r(\mathrm{p}, \mathrm{q})=\min \left(\frac{\nu_{\mathrm{q}}}{\nu_{\mathrm{p}}}, 1\right)
$$

3. Compute the least squares estimator $\hat{\theta}_{P_{t+1}}$.
