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Prologue: sparsity in linear model

• Y = Xθ + ξ, standard normal ξ.

• dim θ = M ≫ n = sample size.

• The Lasso estimator θ̂L w.p. close to 1 satisfies:

|X(θ̂L − θ)|22/n ≤ C|θ|0 log M

n
, restrictive assumptions onX.

|X(θ̂L − θ)|22/n ≤ C|θ|1
√

logM

n
, NO assumption on X.

Here | · |p, p ≥ 1 is the ℓp norm, |θ|0 = number of
non-zero components of θ.

• Question: How optimal are these bounds?
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Setup

• Regression with fixed design.

• We observe

Yi = η(xi) + ξi, i = 1, . . . , n

• where:

• η : X → IR is the unknown regression function,
• xi, i = 1, . . . , n are known deterministic points in X ,
• ξi, i = 1, . . . , n are i.i.d N (0, σ2), σ2 known.

• Performance of an estimator η̂

‖η̂ − η‖2 =
1

n

n∑

i=1

[
η̂(xi) − η(xi)

]2
(MSE)
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Aggregation

• Given a dictionary H = {f1, . . . , fM}, fj : X → IR,

• we are interested in finding the best linear combination of
the fj ’s:

fθ =
M∑

j=1

θjfj , θ ∈ IRM

• More precisely we want to find η̂ such that

IE‖η̂ − η‖2 − min
θ∈IRM

‖fθ − η‖2

is as small as possible.
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Oracle inequalities

• Upper bounds for the risk of (linear) aggregation are
presented as oracle inequalities of the form

IE‖η̂ − η‖2 ≤ (1 + ε) min
θ∈IRM

‖fθ − η‖2 + ∆n,M ,

• We are interested specifically in the case ε = 0 (exact
oracle inequalities).

• The smallest possible remainder term ∆n,M (optimal rate
of linear aggregation)

∆M,n = O
(
M

n

)

and is attained by least squares.
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Sparse oracle inequalities

• For good approximation properties: M ≫ n so the rate
M

n
is useless.

• Solution: assume sparsity.

• Sparse Oracle Inequality (SOI):

IE‖η̂ − η‖2 ≤ min
θ∈IRM

{
‖fθ − η‖2 + ∆n,M(θ)

}
,

where ∆n,M(θ) is smaller for “sparser” θ.

• Notice that the oracle θ∗ = argminθ ‖fθ − η‖2 need not
be sparse. Only the best balance between the two terms
(approximation and remainder) matters.
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Outline

Sparse oracle inequalities when M ≫ n

Sparsity pattern aggregation

Exponential screening

Optimality

Universal aggregation

Implementation and numerical illustration
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Sparsity patterns

• A sparsity pattern is a vector p ∈ {0, 1}M .

• Define the set IRp of vectors with sparsity pattern p as

IRp = {θ · p : θ ∈ IRM} ⊂ IRM ,

where θ · p ∈ IRM denotes the Hadamard product.

• For any p ∈ {0, 1}M define the least squares estimator

θ̂p ∈ argmin
θ∈IRp

|Y −Xθ|22 ,

where

Y =




Y1
...
Yn


 , X =




f1(x1) . . . fM(x1)
...

...
f1(xn) . . . fM(xn)
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Sparsity pattern aggregation

• A first simple oracle inequality gives

IE‖fθ̂p
− η‖2 ≤ min

θ∈IRp
‖fθ − η‖2 + σ2 |p|1 ∧R

n

where R = rank(X).

• M ≫ n:
M

n
is useless but

|p|1 ∧ R
n

can be good  

which p to choose?

• Define the sparsity pattern aggregate θ̃spa by

θ̃spa :=
∑

p∈{0,1}M

θ̂pνp ,

where ν = (νp)p is a probability measure on {0, 1}M .
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Exponential screening

• To choose ν, we should downweight sparsity patterns
with large SSE and large |p|1.

• Define the probability measure

νp ∝ exp
(
− 1

4σ2

n∑

i=1

(Yi−fθ̂p
(xi))

2−|p|
2

)( |p|1
2eM

)|p|1
I(|p|1 ≤ R)

• The spa with this ν: Exponential screening θ̃es.

• George (86), Leung & Barron (06), Giraud (08), Alquier
& Lounici (10): exponential weighting with other initial
estimators or other discrete priors. Dalalyan &
Tsybakov. (07,08,09): exponential weigthing with
continuous priors.
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Sparsity in terms of ℓ1 norm

• Several methods based on ℓ1 penalization (Lasso,
Dantzig) are very efficient.

• SOI for those measure sparsity in terms of ℓ1 norm (as
opposed to ℓ0-norm).

• Becomes an advantage if |θ|1 ≪ |θ|0 (many small
coefficients, power decay, . . . ).

• Exponential screening adapts to both measures of sparsity.
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Sparsity oracle inequality for ES

Theorem 1
For any M ≥ 1, n ≥ 1, if maxj ‖fj‖ ≤ 1,

IE‖fθ̃es − η‖2≤ min
θ∈IRM

{
‖fθ − η‖2+ ϕn,M(θ)

}

+
σ2

n
(9 log(1 + eM) + 4 log 2)

where the remainder term ϕn,M(θ) is equal to

9σ2M̃(θ)

n
log

(
eM

M̃(θ) ∨ 1

)
∧ 11σ|θ|1√

n

√
log

(
1 +

3eMσ

|θ|1
√
n

)
.

where M̃(θ) := min(|θ|0, R).

Moreover, if η = fθ∗ , we can take ϕn,M(θ∗)∧|θ∗|21 in the
remainder term. 12 / 32
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Discussion

One and the same estimator takes advantage of three types of
sparsity:

• small number of non-zero entries of θ (ℓ0 norm)

• small global weight (ℓ1 norm)

• small rank of the matrix X
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Related results

• SOI have been obtained by Bickel et al. (09), Bunea et

al. (07, 07), Candes & Tao (07), Koltchinskii (08, 09,
09), van de Geer (08), Zhang & Huang (08), Zhang (09),
. . . (other references in those papers).

• Most of those results have the term (1 + ε), ε > 0 in
front of RHS.

• They deal with only one measure of sparsity (either |θ|0
or |θ|1) at a time.

• The rates there are slower than in Theorem 1.

• SOI of Theorem 1 holds with no assumption on the
dictionary.
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Minimax lower bounds

• We want to prove that ψn,M(θ) = ϕn,M(θ) ∧ |θ|21 is
optimal in a minimax sense.

• Define the rate function

ζn,M(S, δ) =
σ2S

n
log

(
1 +

eM

S

)
∧ σδ√

n

√
log

(
1 +

eMσ

δ
√
n

)
∧δ2

 ζn,M(S, δ) = ψn,M(θ) with M̃(θ) = S and |θ|1 = δ.
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Minimax lower bound on the intersection of ℓ0
and ℓ1 balls

Theorem 3
There exists a large class of dictionaries such that for any
estimator Tn, possibly depending on δ, S, n,M,R and H,
there exists a numerical constant c∗ > 0, such that

sup
η

sup
θ∈IRM

+
\{0}

M(θ)≤S
|θ|1≤δ

{
Eη‖Tn − η‖2 − ‖fθ − η‖2

}
≥ c∗κζn,M(S∧R, δ) ,

where IRM
+ is the positive cone of IRM .

Least favorable dictionaries satisfy a weak version of restricted
isometry (RI) property.
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Comparison with asymptotic bounds

• Donoho and Johnstone (92, 94), Abramovich et al. (06)

• diagonal model: M = n, X
⊤
X/n = I,

• asymptotics as n → ∞ of the minimax risk on ℓp ball
Bp(a) with radius a.

• Cases: p = 0 and p = 1. Asymptotic minimax rate

inf
θ̂

sup
θ∈B0(S)

IE|X(θ̂ − θ)|22/n ∼ 2σ2S

n
log
(n
S

)

inf
θ̂

sup
θ∈B1(δ)

IE|X(θ̂ − θ)|22/n ∼ δσ√
n

√
2 log

(
σ
√
n

δ

)
∧δ2

• Raskutti et al. (09): M 6= n, asymptotic rates S
n

log
(

M
S

)

and δ
√

log M

n
. Non-asymptotic effects wiped out.
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Universal aggregation

• Given Θ ⊂ IRM , the goal of aggregation is to construct η̂
such that

IE‖η̂ − η‖2 ≤ min
θ∈Θ

‖fθ − η‖2 + C∆n,M(Θ) , C > 0 ,

• Different choices of Θ have been proposed and studied by
Nemirovskii (00), Tsybakov (03), Bunea et al. (07) and
Lounici (07).

• Optimal rates of aggregations were obtained by Bunea et

al. (07) where they showed that the bic estimator
satisfies

IE‖fθ̂bic − η‖2 ≤ (1 + a) min
θ∈Θ

‖fθ − η‖2 + C
1 + a

a2
∆n,M

• We call this universal aggregation (one estimator for all
problems).
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Different types of aggregation

IE‖η̂ − η‖2 ≤ min
θ∈Θ

‖fθ − η‖2 + C∆n,M(Θ) , C > 0 ,

Problem Θ Description

(MS) Θ(MS) = {e1, . . . , eM} Best in dictionary

(C) Θ(C) = B1(1) Best convex comb.

(L) Θ(L) = IRM Best linear comb.

(LD) Θ(L
D

) = B0(D) Best D-sparse linear comb.

(CD) Θ(C
D

) = B0(D) ∩ B1(1) Best D-sparse convex comb.

[Bunea et al. (07)]
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ES solves all aggregation problems

Theorem 3
Assume that max1≤j≤M ‖fj‖ ≤ 1. Then for any
M ≥ 2, n ≥ 1, D ≤M , and
Θ ∈ {Θ(MS),Θ(C),Θ(L),Θ(L

D
),Θ(C

D
)} the Exponential

Screening estimator satisfies the following oracle inequality

IE‖fθ̃ES − η‖2 ≤ min
θ∈Θ

‖fθ − η‖2 + C∆∗
n,M(Θ) ,

where C > 0 is a numerical constant and ∆∗
n,M(Θ) is the

optimal rate of aggregation on Θ given on the next slide.
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Optimal rates of aggregation ∆∗
n,M(Θ)

A refinement of the rates with R and σ gives

Problem ∆∗
n,M(Θ)

(MS) σ2 log M

n

(C)

√
σ2

n
log
(
1 + eMσ√

n

)
∧ σ2(M∧R)

n
log
(
1 + eM

M∧R

)

(L) σ2(M∧R)
n

log
(
1 + eM

M∧R

)

(LD) σ2(D∧R)
n

log
(
1 + eM

D∧R

)

(CD)

√
σ2

n
log
(
1 + eMσ√

n

)
∧ σ2(D∧R)

n
log
(
1 + eM

D∧R

)
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Metropolis-Hastings algorithm

• Recall that the es estimator θ̃es is:

θ̃es =
∑

p∈{0,1}M

θ̂pνp

• Virtually 2M least squares estimators to compute.

• Overcome by finding a Markov chain on the vertices
{0, 1}M and with stationary distribution

νp ∝ exp
(
− 1

4σ2

n∑

i=1

(Yi−fθ̂p
(xi))

2
)( |p|1

2eM

)|p|1
I(|p|1 ≤ R)

• We use the uniform proposal but can be improved for
faster convergence.
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Convergence of the Metroplis-Hastings algorithm
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Figure: Typical realization for (M,n, S) = (500, 200, 20). Left:

Value of the ˜̃θes
T , T = 7, 000, T0 = 3, 000. Right: Value of iterate

for t = 1, . . . , 5000. Only the first 50 coordinates are shown for
each vector.
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Prediction under restricted isometry

• Compare our results in a sparse recovery setting, i.e.,
when RI property is satisfied.

• Consider the model Y = Xθ∗ + σξ where

1. X is an n × M matrix with independent Rademacher
entries

2. ξ ∈ IRn is a vector of independent standard Gaussian
random variables and is independent of X

3. θ∗j = 1I(j ≤ S) for some fixed S so that M(θ∗) = S

4. σ2 = S/9

• We consider the prediction error

|X(θ̂ − θ∗)|22/n = ‖fθ̂ − fθ∗‖2.

(Setup of Candes & Tao (07))
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Results
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Figure: Boxplots of |X(θ̂ − θ∗)|22/n over 500 realizations for the
es, Lasso, cross-validated Lasso (LassoCV), Lasso-Gauss (Lasso-G)
and cross-validated Lasso-Gauss (LassoCV-G) estimators. Left:

(n,M,S) = (100, 200, 10), right: (n,M,S) = (200, 500, 20).
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Reconstruction of the digit “6”

• Difficult to actually find X which does not satisfy RI
condition and with M ≫ n.

• Solution: handwritten digit dataset of LeCun et al.

(90). Consists of 256 pixels grayscale images.

• Idea: take one image + noise to be Y in IR256 and the
dictionary to be the remaining 7,290 images.

• Formally

2 4 6 8 10 12 14 16
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σξ

• We try to approximate µ with linear combinations of the
other images in the dataset.

26 / 32



Correlated dictionary
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Figure: Histogram of the M(M − 1)/2 correlation coefficients
between different images in the database.
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Prediction performance
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Figure: Left: Boxplots of the predictive performance |µ − Xθ̂|22 of
the es, Lasso and Lasso-Gauss (Lasso-G) estimators computed
from 250 replications. Left: σ = 0.5. Right: σ = 1.
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Examples of reconstructions

(a) True (b) Noisy (c) es (d) Lasso (e) Lasso-G

Figure: Reconstruction of the digit “6” with σ = 0.5

(a) True (b) Noisy (c) es (d) Lasso (e) Lasso-G

Figure: Reconstruction of the digit “6” with σ = 1.0
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Interpretations of the coefficients in θ̃es
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Metropolis-Hastings on the cube

Set

νp ∝ exp
(
− 1

4σ2

n∑

i=1

(Yi − fθ̂p
(xi))

2
)
πp , p ∈ P .

This Gibbs-type distribution can be expressed as the stationary
distribution of the Markov chain generated by a Metropolis
-Hastings algorithm. Consider the M-hypercube graph G with
vertices given by P. For any p ∈ P, define the instrumental
distribution q(·|p) as the uniform distribution on the neighbors
of p in G.
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Metropolis-Hastings on the cube

Fix p0 = 0 ∈ IRM . For any t ≥ 0, given pt ∈ P,

1. Generate a random variable Qt with distribution q(·|pt).

2. Generate a random variable

Pt+1 =

{
Qt with probability r(pt, Qt)
pt with probability 1 − r(pt, Qt)

where

r(p, q) = min

(
νq

νp

, 1

)
.

3. Compute the least squares estimator θ̂Pt+1
.
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