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Motivating genetics problem

Inference of population structure

A classic problem in biology and genetics is to study population
structure.

(1) Does genetic variation in populations follow geography ?

(2) Can we infer population histories from genetic variation ?

(3) When we associate genetic loci (locations) to disease we need
to correct for population structure.
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Motivating genetics problem

Genetic data

For each individual we have two letters from {A,C ,T ,G} at each
polymorphic (SNP) site which is coded as an integer {0, 1, 2}

Ci =


AC

...
GG

...
TT

 =⇒


1
...
0
...
2

 ∈ R500,000,

C = [C1, ....,Cm].
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Motivating genetics problem

Genetic data encodes population history
From Novembre et al 2008 (Nature)
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Current approach

Dominant method for inference of population

Eigenstrat: Patterson et al 2006 (PLoS Genetics)
Combines principal components analysis and Tracy-Widom theory
to infer population structure.

(1) Mij =
Cij−µ̂jq
µ̂j
2

(1−
µ̂j
2

)
∀i , j .

(2) X = 1
nMM ′

(3) Order λ1, ...., λm and test for significant eigenvalues using TW
statistics

(4) Compute

n′ =
(m + 1) (

∑
i λi )

2(
(m − 1)

∑
i λ

2
i

)
− (
∑

i λi )
2
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Current approach

The challenge

We will be getting genetic data with
n ≥ 500, 000
m ≥ 30, 000.

Can we extend Eigenstrat to this data to be run on a standard
desktop ?

Yes ! But....
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Factor models

Probabilistic view of PCA

X ∈ Rp is charterized by a multivariate normal

X ∼ No(µ+ Aν,∆),

ν ∼ No(0, Id)

µ ∈ Rp

A ∈ Rp×d

∆ ∈ Rp×p

ν ∈ Rd .

ν is a latent variable, what is d .
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Factor models

A genetic example

We obtain genetic data from Yorba (African) and Japanese people.

(1) Run Eignestrat: obtain 4 pcs

(2) Run a factor model constrained to two factors. Observe the
principal components are the mean allele frequencies of the
two populations.

What is right ?
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Factor models

Both

Let us decompose the covariance of the genetic variation Σ

(1) µ1: mean allele frequency in Yorba

(2) µ2: mean allele frequency in Japanese

(3) Σ = g(µ1µ
′
1 + µ2µ

′
2 + µ1µ

′
2)

So the covariance is rank 4 even if two factors capture the allele
structure in the two populations.
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Factor models

Frisch problem (1934)

Given m observations of n variables, what are the linear relations
between the variables and how many linear relations are there ?

minimize rank(Σ−Ψ)

subject to Σ−Ψ � 0

ψj > 0,
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Factor models

Possible way out

The important quantity we should worry about is the subspace we
project onto.

Infer B = span(v1, ..., vd).
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Supervised dimension reduction

Supervised dimension reduction (SDR)

Given response variables Y1, ...,Ym ∈ IR and explanatory variables
or covariates X1, ...,Xm ∈ X ⊂ Rp

Yi = f (Xi ) + εi , εi
iid∼ No(0, σ2).

Is there a subspace S ≡ SY |X such that Y ⊥⊥ X | PS(X ) with

PS(X ) = B ′X , B = (b1, ..., bd).
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Supervised dimension reduction

Distribution theory for SDR

Sliced inverse regression: K.C. Li 1991, (JASA):

(1) Define the following quantities

Ω ≡ cov (E[X | Y ]), Σ
X

= cov (X ).

(2) Solve the following generalized eigen-decomposition problem

Ωb = λΣb.

(3) B = span(b1, ..., bd) for all i = 1, ..., d such that λi ≥ ε.
(4) This idea works if p(X | Y ) is elliptical (unimodal).
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Supervised dimension reduction

An algorithm

The data is {x1, ..., xm} and {y1, ..., ym}

(1) Compute sample covariance matrix Σ̂X

(2) Bin the {yi}mi=1 values into S bins.

(3) For each bin s = 1, ...,S compute the mean, xi∈s

µ̂s =
1

ns

∑
i∈s

xi .

(4) Compute Ω̂

Ω̂ =
1

S

∑
s

µ̂s µ̂
′
s .

(4) Solve Ω̂b = λΣ̂b.
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Supervised dimension reduction

Subgroups or multimodal
n = 7129 dimensions, m = 38 samples,
19: Acute Myeloid Leukemia (AML)
19 are Acute Lymphoblastic Leukemia – B-cell and T-cell

−5 0 5 10
x 104

−10

−5

0

5
x 104
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Supervised dimension reduction

Localization

Local sliced inverse regression: Wu et al 2010, (JCGS)

(1) Define the following quantities

Ωloc ≡ cov (E[Xloc | Y ]), Σ
X

= cov (X ).

(2) Solve the following generalized eigen-decomposition problem

Ωlocb = λΣb.

(3) B = span(b1, ..., bd) for all i = 1, ..., d such that λi ≥ ε.
(4) This idea works if p(Xloc | Y ) is elliptical (unimodal).
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Supervised dimension reduction

Metrics for subspace estimates
Given two subspaces B̂ and B we will look at two metrics to
compute the similarity of B̂ to B

(1) Qiang: Projection onto

1

d

d∑
i=1

||PB b̂i ||2 =
1

d

d∑
i=1

||(BBT )b̂i ||2

(2) Golub: Angle between

dist(B̂,B) =
√

1− cos(θd)2,

where the principle angles θ1, ..., θd are computed recursively

cos(θi ) = max
u∈B

max
v∈B̂

u′v = u′ivi

subject to
‖u‖ = ‖v‖ = 1, u ⊥ {u1, .., ui−1}, v ⊥ {v1, .., vi−1}.
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Supervised dimension reduction

Digits

5 10 15 20 25

5
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15
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25
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Supervised dimension reduction

All ten digits

digit Nonlinear Linear

0 0.04(± 0.01) 0.05 (± 0.01)
1 0.01(± 0.003) 0.03 (± 0.01)
2 0.14(± 0.02) 0.19 (± 0.02)
3 0.11(± 0.01) 0.17 (± 0.03)
4 0.13(± 0.02) 0.13 (± 0.03)
5 0.12(± 0.02) 0.21 (± 0.03)
6 0.04(± 0.01) 0.0816 (± 0.02)
7 0.11(± 0.01) 0.14 (± 0.02)
8 0.14(± 0.02) 0.20 (± 0.03)
9 0.11(± 0.02) 0.15 (± 0.02)

average 0.09 0.14

Table: Average classification error rate and standard deviation on the
digits data.
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Efficient subspace inference

Randomized methods

By combining (block) Lanzcos and random projections Rhoklin et
al 2009 (SIAM J Mat Anal Appl) came up with a fast, provable,
randomized method.

The matrix is m × n it is of rank k and t is the number of
iterations in a power method. With high probability
approximations of the top k eigenvalues and eigenvectors can be
well approximated in time

O(mnkt).
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Efficient subspace inference

Randomized PCA
data: A ∈ Rm×n, number of eigenvalues: 2k ≤ m, number of
iterations i

(A) Find orthonormal basis for the range of A

0.1 G ∼ U[−1, 1] ∈ Rm×`

0.2 R0 = ATG
0.3 ∀j = 1, ...i Rj = (ATA)Rj−1

0.4 R = [R0 . . . Ri ]
0.5 R = QS , Q orthonormal, S upper triangular

(B) Project data and do SVD

0.1 B = AQ
0.2 Factorize B = UΣW T (using SVD)
0.3 Set Û = U(:, 1 : k)

Set Σ̂ = Σ(1 : k)
Set V̂ = AT ÛΣ̂−1
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Efficient subspace inference

Our method

Iterate random PCA on the gram matrix A = XX ′ ∈ Rn×n until
subspace converge.

Main differences

(1) Work with gram matrix to avoid storing in memory matrices
the size of the data.

(2) Implemented packing/unpacking into bytes and 2-bit fields for
SNP data.
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Empirical results

Wishart
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Empirical results

Reuters data
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Conclusion

Conclusion

(1) Can inference of population structure in large data using
eigen-decomposition.

(2) Interpretation of subspace is easier than factors.

(3) Method can be applied to generalzed eigen-decomposition.

(4) Loss of numerical precision ?

(5) Fast computation of Tracy-Widom statistics using Fredholm
determinants, Bourneman 2009, (ArchivX).



Efficient dimension reduction on massive data

Conclusion

Conclusion

(1) Can inference of population structure in large data using
eigen-decomposition.

(2) Interpretation of subspace is easier than factors.

(3) Method can be applied to generalzed eigen-decomposition.

(4) Loss of numerical precision ?

(5) Fast computation of Tracy-Widom statistics using Fredholm
determinants, Bourneman 2009, (ArchivX).



Efficient dimension reduction on massive data

Conclusion

Conclusion

(1) Can inference of population structure in large data using
eigen-decomposition.

(2) Interpretation of subspace is easier than factors.

(3) Method can be applied to generalzed eigen-decomposition.

(4) Loss of numerical precision ?

(5) Fast computation of Tracy-Widom statistics using Fredholm
determinants, Bourneman 2009, (ArchivX).



Efficient dimension reduction on massive data

Conclusion

Conclusion

(1) Can inference of population structure in large data using
eigen-decomposition.

(2) Interpretation of subspace is easier than factors.

(3) Method can be applied to generalzed eigen-decomposition.

(4) Loss of numerical precision ?

(5) Fast computation of Tracy-Widom statistics using Fredholm
determinants, Bourneman 2009, (ArchivX).



Efficient dimension reduction on massive data

Conclusion

Conclusion

(1) Can inference of population structure in large data using
eigen-decomposition.

(2) Interpretation of subspace is easier than factors.

(3) Method can be applied to generalzed eigen-decomposition.

(4) Loss of numerical precision ?

(5) Fast computation of Tracy-Widom statistics using Fredholm
determinants, Bourneman 2009, (ArchivX).



Efficient dimension reduction on massive data

Acknowledgements

Acknowledgements

Funding:

I Center for Systems Biology at Duke

I NSF

I NIH


	Overview
	Motivating genetics problem
	Current approach
	Factor models
	Supervised dimension reduction
	Efficient subspace inference
	Empirical results
	Wishart
	Reuters data

	Conclusion
	Acknowledgements

