

Combinatorial Framework for Nonlinear Dynamics

Konstantin Mischaikow

Dept. of Mathematics/BioMaPS Institute Rutgers <u>mischaik@math.rutgers.edu</u>

I. WHY?

Assume: there exists a multiparameter deterministic model for the dynamics $f: X \times \bigwedge \to X$ (X is compact)

Phase Space Parameter Space

 $f_{\lambda}(\cdot) = f(\cdot, \lambda) \colon X \to X$ Iterations define the dynamics

Assume: there exists a multiparameter deterministic model for the dynamics $f: X \times \Lambda \to X$ (X is compact) $f: X \times \Lambda \to X$ (X is compact) Phase Space Parameter Space

 $f_{\lambda}(\cdot) = f(\cdot, \lambda) \colon X \to X$ Iterations define the dynamics

Objects of Interest: Invariant sets

Bounded subsets $S_{\lambda} \subset X$ such that $f_{\lambda}(S_{\lambda}) = S_{\lambda}$

Assume: there exists a multiparameter deterministic model for the dynamics $f: X \times \Lambda \to X$ (X is compact) $f: X \times \Lambda \to X$ (X is compact) Phase Space

 $f_{\lambda}(\cdot) = f(\cdot, \lambda) \colon X \to X$ Iterations define the dynamics

Objects of Interest: Invariant sets Bounded subsets $S_{\lambda} \subset X$ such that $f_{\lambda}(S_{\lambda}) = S_{\lambda}$ **Invariant sets are associated to asymptotic dynamics**

Example: If $f(x) = \frac{1}{2}x$ then $S = \{0\}$

I. Time series data is transient.

2. Nonlinear
systems exhibit
chaos: for each
parameter value
there can be
uncountably many
topologically
distinct orbits.

I. Time series data is transient.

2. Nonlinear systems exhibit chaos: for each parameter value there can be uncountably many topologically distinct orbits.

3. Bifurcations can occur on Cantor sets of positive measure

II. Rigorous Computational Results for Multiparameter Systems

Recurrent Dynamics vs. Gradient-like Dynamics

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \not\in \bigcup_{p \in \mathcal{P}} M(p)$ there are indices q < p in P such that the forward orbit of x limits to $\mathsf{M}(q)$ and the backward orbit of x limits to $\mathsf{M}(p)$

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \not\in \bigcup_{p \in \mathcal{P}} M(p)$ there are indices q < p in P such that the forward orbit of x limits to $\mathsf{M}(q)$ and the backward orbit of x limits to $\mathsf{M}(p)$

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices q < p in P such that the forward orbit of x limits to $\mathsf{M}(q)$ and the backward orbit of x limits to $\mathsf{M}(p)$

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \not\in \bigcup_{p \in \mathcal{P}} M(p)$ there are indices q < p in P such that the forward orbit of x limits to $\mathsf{M}(q)$ and the backward orbit of x limits to $\mathsf{M}(p)$

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices q < p in P such that the forward orbit of x limits to $\mathsf{M}(q)$ and the backward orbit of x limits to $\mathsf{M}(p)$

A density dependent Leslie model:

1st year pop. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-0.1(x+y)} \\ 0.7x \end{bmatrix} \quad \begin{array}{c} f: \mathbb{R}^2 \times \mathbb{R}^2 \\ (x, y; \theta_1, \theta_2) \end{array} \rightarrow \quad \mathbb{R}^2$

A density dependent Leslie model:

1st year pop. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-0.1(x+y)} \\ 0.7x \end{bmatrix} \quad \begin{array}{c} f: \mathbb{R}^2 \times \mathbb{R}^2 \\ (x, y; \theta_1, \theta_2) \end{array} \rightarrow \quad \mathbb{R}^2$

We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space $[0, \infty) \times [0, \infty)$

 $[0,\infty) \times [0,\infty)$

and for all parameters

 $\theta = (\theta_1, \theta_2) \in [8, 37] \times [3, 50]$

A density dependent Leslie model:

1st year pop. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-0.1(x+y)} \\ 0.7x \end{bmatrix} \quad \begin{array}{c} f: \mathbb{R}^2 \times \mathbb{R}^2 \\ (x, y; \theta_1, \theta_2) \end{array} \rightarrow \quad \mathbb{R}^2$

We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space

 $[0,\infty) \times [0,\infty)$

and for all parameters

 $\theta = (\theta_1, \theta_2) \in [8, 37] \times [3, 50]$

Input: Nonlinear map, Phase space, Parameter space Resolution in phase space Resolution in parameter space

A density dependent Leslie model:

1st year pop. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-0.1(x+y)} \\ 0.7x \end{bmatrix} \quad \begin{array}{c} f: \mathbb{R}^2 \times \mathbb{R}^2 \\ (x, y; \theta_1, \theta_2) \end{array} \rightarrow \quad \mathbb{R}^2$

We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space

 $[0,\infty) \times [0,\infty)$

and for all parameters

 $\theta = (\theta_1, \theta_2) \in [8, 37] \times [3, 50]$

Input: Nonlinear map, Phase space, Parameter space Resolution in phase space Resolution in parameter space

The Data Base

The Continuation Graph

The Data Base

The Continuation Graph

Nodes represent Conley-Morse Graphs

Saturday, July 3, 2010

The Data Base

The Continuation Graph

Nodes represent Conley-Morse Graphs

The Data Base

The Continuation Graph

Nodes represent Conley-Morse Graphs

Edges indicate connectivity in parameter space

The Continuation Diagram

Different colors represent different continuation classes

Saturday, July 3, 2010

Database results are never wrong, BUT they depend on the resolution!

finer resolution

Appropriate resolution is problem dependent!

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Saturday, July 3, 2010

Querying the Database: Are there multiple basins of attraction?

III. Theoretical Framework

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

$$f_{\lambda_0}(N) \subset \operatorname{int}(N)$$

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

Saturday, July 3, 2010

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

Saturday, July 3, 2010

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

2. Model error

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

2. Model error $\lambda_1 \approx \lambda_0$

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

2. Model error $\lambda_1 \approx \lambda_0$

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

2. Model error $\lambda_1 \approx \lambda_0$

Remarks: I. The set of attractor blocks defines a (large) lattice under \cap and \cup .

We assume existence (not knowledge) of a model $f: X \times \Lambda \to X$

Attractor block: A compact subset $N \subset X$ such that

 $f_{\lambda_0}(N) \subset \operatorname{int}(N)$

Robust with respect to:

I. Measurement error

2. Model error $\lambda_1 \approx \lambda_0$

Remarks: I. The set of attractor blocks defines a (large) lattice under \cap and \cup .

2. The separatrix dynamics is not explicit in the lattice of attractor blocks.

The Omega limit set $\omega(N, f_{\lambda_0}) := \bigcap_{n=0}^{\infty} \operatorname{cl} \left(\bigcup_{k=n}^{\infty} f_{\lambda_0}(N) \right)$ is a compact invariant set:

The Omega limit set $\omega(N, f_{\lambda_0}) := \bigcap_{n=0}^{\infty} \operatorname{cl} \left(\bigcup_{k=n}^{\infty} f_{\lambda_0}(N) \right)$ is a compact invariant set:

Attractor

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

 $S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

 $S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

$$S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$$

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

 $S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

$$S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$$

The Omega limit set $\omega(N, f_{\lambda_0}) := \bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_0}(N)\right)$ is a compact invariant set: Attractor $\operatorname{int}(N)$ The maximal invariant set $\operatorname{Inv}(N, F_{\Lambda_0})$ in \mathbb{N}

We can generalize this.

A compact set $N \subset X$ is an isolating neighborhood for f_{λ_0} if the maximal invariant set in N lies in the interior of N.

 $S = \operatorname{Inv}(N, f_{\lambda_0}) \subset \operatorname{int}(N)$

 $x_{-3} \bullet$

A Morse covering of X consists of a finite poset (P, \leq) that labels a collection of disjoint non-empty isolating neighborhoods $\mathsf{B} = \{B(p) \mid p \in (\mathsf{P}, \leq)\}$ with the property that given an orbit $\gamma := \{x_n \in X \mid n \in \mathbb{Z}, x_{n+1} = f(x_n)\}$ either

- there exists $p \in \mathsf{P}$ such that $\gamma \subset B(p)$, or
- there exists $q, p \in \mathsf{P}$ and $t_q, t_p \in \mathbb{Z}$ such that q < pand $t_q > t_p$ for which

$$\{x_n \mid n \leq t_p\} \subset B(p) \{x_n \mid n \geq t_q\} \subset B(q) \{x_n \mid t_p < n < t_q\} \cap (B(p) \cup B(q)) = \emptyset$$

A Morse covering of X consists of a finite poset (P, \leq) that labels a collection of disjoint non-empty isolating neighborhoods $\mathsf{B} = \{B(p) \mid p \in (\mathsf{P}, \leq)\}$ with the property that given an orbit $\gamma := \{x_n \in X \mid n \in \mathbb{Z}, x_{n+1} = f(x_n)\}$ either

- there exists $p \in \mathsf{P}$ such that $\gamma \subset B(p)$, or
- there exists $q, p \in \mathsf{P}$ and $t_q, t_p \in \mathbb{Z}$ such that q < pand $t_q > t_p$ for which

$$\{x_n \mid n \leq t_p\} \subset B(p) \{x_n \mid n \geq t_q\} \subset B(q) \{x_n \mid t_p < n < t_q\} \cap (B(p) \cup B(q)) = \emptyset$$

Prop: $M := \{(p, M(p)) \mid p \in (\mathsf{P}, \leq), M(p) = \operatorname{Inv}(B(p))\}$ is a Morse decomposition

Choose a compact region in parameter space: $Q \subset \Lambda$

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Recurrence in a Directed Graph Strongly Connected Path Components

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

- I. Can be computed in linear time
- 2. Define a Morse Cover

Ρ

Finite Poset

Posets

Posets

Morse Decomposition

Saturday, July 3, 2010

Thank-you for your attention

