A
 Combinatorial Framework for
 Nonlinear Dynamics

Konstantin Mischaikow
Dept. of Mathematics/BioMaPS Institute
Rutgers
mischaik@math.rutgers.edu

I. WHY?

Assume: there exists a multiparameter deterministic model for the dynamics $\quad f: X \times \Lambda \rightarrow X \quad$ (X is compact) Phase Space Parameter Space
$f_{\lambda}(\cdot)=f(\cdot, \lambda): X \rightarrow X \quad$ Iterations define the dynamics

Assume: there exists a multiparameter deterministic model for the dynamics $\quad f: X \times \Lambda \rightarrow X \quad$ (X is compact) Phase Space Parameter Space
$f_{\lambda}(\cdot)=f(\cdot, \lambda): X \rightarrow X \quad$ Iterations define the dynamics
Objects of Interest: Invariant sets
Bounded subsets $S_{\lambda} \subset X$ such that $f_{\lambda}\left(S_{\lambda}\right)=S_{\lambda}$

Assume: there exists a multiparameter deterministic model for the dynamics $\quad f: X \times \Lambda \rightarrow X \quad$ (X is compact) Phase Space Parameter Space
$f_{\lambda}(\cdot)=f(\cdot, \lambda): X \rightarrow X \quad$ Iterations define the dynamics
Objects of Interest: Invariant sets
Bounded subsets $S_{\lambda} \subset X$ such that $f_{\lambda}\left(S_{\lambda}\right)=S_{\lambda}$ Invariant sets are associated to asymptotic dynamics

Example: If $f(x)=\frac{1}{2} x$ then $S=\{0\}$

Three Problems associated with Invariant Sets.

Three Problems associated with Invariant Sets.

I. Time series data is transient.

Three Problems associated with Invariant Sets.

I. Time series data is transient.

Three Problems associated with Invariant Sets.

I. Time series data is transient.

2. Nonlinear systems exhibit chaos: for each parameter value there can be uncountably many topologically distinct orbits.

Three Problems associated with Invariant Sets.

I. Time series data is transient.

2. Nonlinear systems exhibit chaos: for each parameter value there can be uncountably many topologically distinct orbits.
3. Bifurcations can occur on Cantor sets of positive measure

II. Rigorous Computational Results

 for
Multiparameter Systems

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices $q<p$ in P such that the forward orbit of x limits to $\mathrm{M}(q)$ and the backward orbit of x limits to $\mathrm{M}(p)$

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices $q<p$ in P such that the forward orbit of x limits to $\mathrm{M}(q)$ and the backward orbit of x limits to $\mathrm{M}(p)$

The labelling by P implies that a Morse decomposition can be represented as an acyclic directed graph $\mathcal{M G}$ called the Morse graph.

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices $q<p$ in P such that the forward orbit of x limits to $\mathrm{M}(q)$ and the backward orbit of x limits to $\mathrm{M}(p)$

The labelling by P implies that a Morse decomposition can be represented as an acyclic directed graph $\mathcal{M G}$ called the Morse graph.

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices $q<p$ in P such that the forward orbit of x limits to $\mathrm{M}(q)$ and the backward orbit of x limits to $\mathrm{M}(p)$

The labelling by P implies that a Morse decomposition can be represented as an acyclic directed graph $\mathcal{M G}$ called the Morse graph.

Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset (P, \leq) that labels a collection of compact disjoint invariant sets of $M(p) \subset S$, called Morse sets, such that for every $x \notin \bigcup_{p \in \mathcal{P}} M(p)$ there are indices $q<p$ in P such that the forward orbit of x limits to $\mathrm{M}(q)$ and the backward orbit of x limits to $\mathrm{M}(p)$

The labelling by P implies that a Morse decomposition can be represented as an acyclic directed graph $\mathcal{M G}$ called the Morse graph.

An Example

A density dependent Leslie model:

An Example

A density dependent Leslie model:
1st year pop. $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1(x+y)} \\ 0.7 x\end{array}\right] \begin{aligned} & f: \mathbb{R}^{2} \times \mathbb{R}^{2} \\ & \left(x, y ; \theta_{1}, \theta_{2}\right)\end{aligned} \rightarrow \quad \mathbb{R}^{2}$
We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space

$$
[0, \infty) \times[0, \infty)
$$

and for all parameters

$$
\theta=\left(\theta_{1}, \theta_{2}\right) \in[8,37] \times[3,50]
$$

An Example

A density dependent Leslie model:
1st year pop. $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1(x+y)} \\ 0.7 x\end{array}\right] \begin{aligned} & f: \mathbb{R}^{2} \times \mathbb{R}^{2} \\ & \left(x, y ; \theta_{1}, \theta_{2}\right)\end{aligned} \rightarrow \quad \mathbb{R}^{2}$
We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space

$$
[0, \infty) \times[0, \infty)
$$

and for all parameters

$$
\theta=\left(\theta_{1}, \theta_{2}\right) \in[8,37] \times[3,50]
$$

Input: Nonlinear map, Phase space, Parameter space Resolution in phase space Resolution in parameter space

An Example

A density dependent Leslie model:
1st year pop. $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1(x+y)} \\ 0.7 x\end{array}\right] \begin{aligned} & f: \mathbb{R}^{2} \times \mathbb{R}^{2} \\ & \left(x, y ; \theta_{1}, \theta_{2}\right)\end{aligned} \rightarrow \quad \mathbb{R}^{2}$
We can construct a mathematically rigorous, queryable database for the global dynamics on the phase space

$$
[0, \infty) \times[0, \infty)
$$

and for all parameters

$$
\theta=\left(\theta_{1}, \theta_{2}\right) \in[8,37] \times[3,50]
$$

Input: Nonlinear map, Phase space, Parameter space Resolution in phase space Resolution in parameter space

The Data Base

The Continuation Graph

The Data Base

The Continuation Graph
Nodes represent Conley-Morse Graphs

The Data Base

The Continuation Graph
Nodes represent Conley-Morse Graphs

The Data Base

The Continuation Graph
Nodes represent Conley-Morse Graphs
Edges indicate connectivity in parameter space

Different colors

represent
different continuation
classes

Database results are never wrong, BUT they depend on the resolution!

finer resolution

Appropriate resolution is problem dependent!

Querying the Database: Are there multiple basins of attraction?

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Querying the Database: Are there multiple basins of attraction?

 Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction
Can we characterize the attracting dynamics?

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction
Can we characterize the attracting dynamics?
Query the Conley index:

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction
Can we characterize the attracting dynamics?
Query the Conley index:
"3 cycle" "1 cycle"

Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure: Is there a Morse graph with multiple minimal elements?

2 observable basins of attraction
Can we characterize the attracting dynamics?
Query the Conley index:
"3 cycle" "1 cycle"

III. Theoretical Framework

What is geometrically observable?
We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error
2. Model error

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error
2. Model error $\lambda_{1} \approx \lambda_{0}$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error
2. Model error $\lambda_{1} \approx \lambda_{0}$

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:

I. Measurement error
2. Model error $\lambda_{1} \approx \lambda_{0}$

Remarks: I.The set of attractor blocks defines a (large) lattice under \cap and \cup.

What is geometrically observable?

We assume existence (not knowledge) of a model $f: X \times \Lambda \rightarrow X$
Attractor block: A compact subset $N \subset X$ such that

$$
f_{\lambda_{0}}(N) \subset \operatorname{int}(N)
$$

Robust with respect to:
I. Measurement error
2. Model error $\lambda_{1} \approx \lambda_{0}$

Remarks: I. The set of attractor blocks defines a (large) lattice under \cap and \cup.
2. The separatrix dynamics is not explicit in the lattice of attractor blocks.

What about the dynamics?

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

> Attractor

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in N

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \mathrm{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$
The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

 $\operatorname{int}(N)$The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \operatorname{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
\begin{gathered}
\text { Maxima7 } \\
\text { Invariant } \\
\text { Set }
\end{gathered}
$$

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \mathrm{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
\begin{array}{c|}
\hline \\
\text { Maximal } \\
\text { Invariant } \\
\text { Set }
\end{array}
$$

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \mathrm{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

What about the dynamics?

The Omega limit set $\omega\left(N, f_{\lambda_{0}}\right):=\bigcap_{n=0}^{\infty} \mathrm{cl}\left(\bigcup_{k=n}^{\infty} f_{\lambda_{0}}(N)\right)$
is a compact invariant set:

Attractor

$\operatorname{int}(N)$

The maximal invariant set $\operatorname{Inv}\left(N, F_{\Lambda_{0}}\right)$ in \mathbb{N}
We can generalize this.
A compact set $N \subset X$ is an isolating neighborhood for $f_{\lambda_{0}}$ if the maximal invariant set in N lies in the interior of N.

$$
S=\operatorname{Inv}\left(N, f_{\lambda_{0}}\right) \subset \operatorname{int}(N)
$$

A Morse covering of X consists of a finite poset (P, \leq) that labels a collection of disjoint non-empty isolating neighborhoods $\mathrm{B}=\{B(p) \mid p \in(\mathrm{P}, \leq)\}$ with the property that given an orbit $\gamma:=\left\{x_{n} \in X \mid n \in \mathbb{Z}, x_{n+1}=f\left(x_{n}\right)\right\}$ either

- there exists $p \in \mathrm{P}$ such that $\gamma \subset B(p)$, or
- there exists $q, p \in \mathrm{P}$ and $t_{q}, t_{p} \in \mathbb{Z}$ such that $q<p$ and $t_{q}>t_{p}$ for which

$$
\begin{aligned}
&\left\{x_{n} \mid n \leq t_{p}\right\} \subset B(p) \\
&\left\{x_{n} \mid n \geq t_{q}\right\} \subset B(q) \\
&\left\{x_{n} \mid t_{p}<n<t_{q}\right\} \cap \\
&(B(p) \cup B(q))=\emptyset
\end{aligned}
$$

A Morse covering of X consists of a finite poset (P, \leq) that labels a collection of disjoint non-empty isolating neighborhoods $\mathrm{B}=\{B(p) \mid p \in(\mathrm{P}, \leq)\}$ with the property that given an orbit $\gamma:=\left\{x_{n} \in X \mid n \in \mathbb{Z}, x_{n+1}=f\left(x_{n}\right)\right\}$ either

- there exists $p \in \mathrm{P}$ such that $\gamma \subset B(p)$, or
- there exists $q, p \in \mathrm{P}$ and $t_{q}, t_{p} \in \mathbb{Z}$ such that $q<p$ and $t_{q}>t_{p}$ for which

$$
\begin{aligned}
&\left\{x_{n} \mid n \leq t_{p}\right\} \subset B(p) \\
&\left\{x_{n} \mid n \geq t_{q}\right\} \subset B(q) \\
&\left\{x_{n} \mid t_{p}<n<t_{q}\right\} \cap \\
&(B(p) \cup B(q))=\emptyset
\end{aligned}
$$

Prop: $\mathrm{M}:=\{(p, M(p)) \mid p \in(\mathrm{P}, \leq), M(p)=\operatorname{Inv}(B(p))\}$ is a Morse decomposition

A Discrete Representation of the Dynamics

A Discrete Representation of the Dynamics
Choose a compact region in parameter space: $Q \subset \Lambda$

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$
Numerical/Experimental Error

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$
Numerical/Experimental Error

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$ Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$
Numerical/Experimental Error

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$

Numerical/Experimental Error
\mathcal{F}_{Q} is a directed graph: Vertices $G \in \mathcal{X}$
Edges $H \in \mathcal{F}_{Q}(G) \Rightarrow G \rightarrow H$

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$
Numerical/Experimental Error
\mathcal{F}_{Q} is a directed graph: Vertices $G \in \mathcal{X}$
Edges $H \in \mathcal{F}_{Q}(G) \Rightarrow G \rightarrow H$
Recurrence in a Directed Graph
I
Strongly Connected Path Components

A Discrete Representation of the Dynamics

Choose a compact region in parameter space: $Q \subset \Lambda$
Choose a (cubical) grid \mathcal{X} that covers X

Define a multivalued map: $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$
Numerical/Experimental Error
\mathcal{F}_{Q} is a directed graph: Vertices $G \in \mathcal{X}$
Edges $H \in \mathcal{F}_{Q}(G) \Rightarrow G \rightarrow H$
Recurrence in a Directed Graph
I
Strongly Connected Path Components
I. Can be computed in linear time
2. Define a Morse Cover

Birkhoff's Representation Theorem

Birkhoff's Representation Theorem

Finite Poset

Birkhoff's Representation Theorem

Category

Finite Poset

Posets

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower setsP

Posets

Birkhoff's Representation Theorem

Category

Finite Poset

Finite Distributive Lattice $\mathrm{O}(\mathrm{P})$
(U, n)

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower sets

Finite Distributive Lattice (\cup, \cap)

Posets

$\mathrm{O}(\mathrm{P})$

contravariant
functor
Lattices

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower sets

Finite Distributive Lattice (U, n)
choose the join irreducible elements

Posets

contravariant
functor
Lattices

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower sets

Finite Distributive Lattice
(U, n)
choose the join irreducible elements

Finite Poset
$\cong \mid$
P

Posets

Lattices

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower sets

Finite Distributive Lattice
(U, n)
choose the join irreducible elements

Finite Poset

$J^{\vee}(\mathrm{O}(\mathrm{P}))$ $\cong \mid$
P

Posets

Posets

Birkhoff's Representation Theorem

Category

Finite Poset
construct the collection of lower sets

Finite Distributive Lattice
(U, n)

Finite Poset
Birkhoff proved the existence of a poset isomorphism

$J^{\vee}(O(P))$

P

Posets

contravariant
functor

Lattices
contravariant functor

Posets
poset
isomorphism
Posets

Birkhoff's Representation Theorem

Category

Finite Poset

Finite Distributive Lattice
(U, n)
choose the join irreducible elements

contravariant functor
contravariant functor

Finite Poset
Birkhoff proved the existence of a poset isomorphism

$J^{\vee}(O(P)) J^{\vee}(O(M))$ Posets

P

\cong	\cong	\downarrow	poset isomorphism
P	M	Posets	

Morse Decomposition

Combinatorial
Theory
Morse
Decomposition
M
0
\downarrow
$\mathrm{O}(\mathrm{M})$
$\left.J^{\vee}\right|^{\downarrow}{ }^{\vee}$

In the Computer
Combinatorial
Theory Structures of
Nonlinear Dynamics

Morse
Decomposition
M
0
$0(M)$

In the Computer

Morse
Covering B

Combinatorial
Theory
Morse
Decomposition
$\rightarrow \mathrm{M}$

In the Computer

Morse
Covering
$B \longrightarrow$ Inv

Combinatorial
Theory
Morse
Decomposition
$\longrightarrow \mathrm{M}$

Structures of
Nonlinear Dynamics
Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Decomposition
Inv
Morse
Covering

Structures of
Nonlinear Dynamics B

Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Decomposition
Inv
Morse
Covering

Structures of Nonlinear Dynamics B

Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Decomposition
Inv
Morse
Covering

Structures of Nonlinear Dynamics

B

Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Decomposition
Inv
Morse
Covering

Structures of Nonlinear Dynamics

B

Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Decomposition
Covering

Structures of
Nonlinear Dynamics

Morse	Morse	Nonempty
Covering	Decomposition	Morse sets

In the Computer
Combinatorial
Theory
Morse
Covering
Inv
Cosersers)

$$
\longrightarrow \mathrm{M}
$$

$$
\mathrm{O}(\mathrm{~B})
$$

$$
\stackrel{\mathrm{O}(\text { Inv })}{ }
$$

Morse
Decomposition

Structures of
Nonlinear Dynamics

Nonempty
Morse sets

In the Computer
Combinatorial
Theory
Morse
Covering

Structures of

Nonlinear Dynamics

Nonempty
Morse sets

Thank-you for your attention hitp://chomp.rutgers.edu/

A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems SIADS, 8 (2009)
Z. Arai, Hokkaide
W. Kalies, Florida Atlantic
R. Vandervorst, Amsterdam
W. Kalies Florida Atlantic
H. Kokubu, Kyoto
H. Oka, Ryukoku=
P. Pilarczyk, Minho

-
8.Bush, Rutgers

TATES OS

