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I. WHY?
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Assume: there exists a multiparameter deterministic
model for the dynamics f : X × Λ→ X

Phase Space Parameter Space

(X is compact)

fλ(·) = f(·, λ) : X → X Iterations define the dynamics
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Assume: there exists a multiparameter deterministic
model for the dynamics f : X × Λ→ X

Phase Space Parameter Space

(X is compact)

fλ(·) = f(·, λ) : X → X Iterations define the dynamics

Objects of Interest:  Invariant sets

Bounded subsets Sλ ⊂ X such that fλ(Sλ) = Sλ

Invariant sets are associated to asymptotic dynamics

Example: If f(x) = 1
2x then S = {0}
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Three Problems associated with Invariant Sets.
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Three Problems associated with Invariant Sets.

1.  Time series data is transient.
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Three Problems associated with Invariant Sets.

1.  Time series data is transient.

f(x) = rx(1− x)

2.  Nonlinear
systems exhibit
chaos: for each 
parameter value
there can be 
uncountably many
topologically 
distinct orbits.
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Three Problems associated with Invariant Sets.

1.  Time series data is transient.

f(x) = rx(1− x)

2.  Nonlinear
systems exhibit
chaos: for each 
parameter value
there can be 
uncountably many
topologically 
distinct orbits.

3. Bifurcations can occur on Cantor sets of
positive measure
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II. Rigorous Computational Results 
for 

Multiparameter Systems
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

Saturday, July 3, 2010



Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset
(P,≤) that labels a collection of compact disjoint invariant
sets of M(p) ⊂ S, called Morse sets, such that for every
x �∈

�
p∈P M(p) there are indices q < p in P such that the

forward orbit of x limits to M(q) and the backward orbit
of x limits to M(p)
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

The labelling by P implies that a
Morse decomposition can be rep-
resented as an acyclic directed graph
MG called the Morse graph.

A Morse decomposition M of X consists of a finite poset
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

The labelling by P implies that a
Morse decomposition can be rep-
resented as an acyclic directed graph
MG called the Morse graph.

gradient-like
dynamics

A Morse decomposition M of X consists of a finite poset
(P,≤) that labels a collection of compact disjoint invariant
sets of M(p) ⊂ S, called Morse sets, such that for every
x �∈

�
p∈P M(p) there are indices q < p in P such that the

forward orbit of x limits to M(q) and the backward orbit
of x limits to M(p)
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

The labelling by P implies that a
Morse decomposition can be rep-
resented as an acyclic directed graph
MG called the Morse graph.

gradient-like
dynamics

recurrent
dynamics

A Morse decomposition M of X consists of a finite poset
(P,≤) that labels a collection of compact disjoint invariant
sets of M(p) ⊂ S, called Morse sets, such that for every
x �∈
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of x limits to M(p)
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

The labelling by P implies that a
Morse decomposition can be rep-
resented as an acyclic directed graph
MG called the Morse graph.

gradient-like
dynamics

recurrent
dynamics

A Morse decomposition M of X consists of a finite poset
(P,≤) that labels a collection of compact disjoint invariant
sets of M(p) ⊂ S, called Morse sets, such that for every
x �∈

�
p∈P M(p) there are indices q < p in P such that the

forward orbit of x limits to M(q) and the backward orbit
of x limits to M(p)
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An Example
A density dependent Leslie model:

1st year pop.
2nd year pop.

�
x
y

�
�→

�
(θ1x + θ2y)e−0.1(x+y)

0.7x

�
f : R2 × R2 → R2

(x, y; θ1, θ2)
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An Example
A density dependent Leslie model:

1st year pop.
2nd year pop.

�
x
y

�
�→

�
(θ1x + θ2y)e−0.1(x+y)

0.7x

�
f : R2 × R2 → R2

(x, y; θ1, θ2)

We can construct a mathematically rigorous, 
queryable database for the global dynamics on the
phase space

and for all parameters

[0,∞)× [0,∞)

θ = (θ1, θ2) ∈ [8, 37]× [3, 50]
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Input:  Nonlinear map, Phase space, Parameter space
 Resolution in phase space
 Resolution in parameter space
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The Data Base

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

The Continuation Graph
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The Data Base

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

The Continuation Graph
Nodes represent Conley-Morse Graphs

Saturday, July 3, 2010



p3 : origin

p1 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 2 {1}

p0 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : origin

p1 : 1 {-0.5-0.866i, -0.5+0.866i}

p0 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : origin

p1 : 0

p0 : 0 {1}

p3 : origin

p2 : 0 

p1 : 0 

p0 : 0 {1} 

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

p2 : origin

p0 : 1 {1}, 0 {1}

p1 : 2 {1}

p1 : origin

p0 : 0 {1}

p1 : 2 {1}

p0 : NO ISOLATION

p2 : origin

p1 : 1 {-1}

p0 : 0 {-1, 1}

p1 : origin

p0 : 0 {1}

p2 : origin

p1 : 0

p0 : 0 {1}

p4 : origin

p3 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 

p0 : 0 {1} 

Conley-Morse Graphs
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The Data Base

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

The Continuation Graph
Nodes represent Conley-Morse Graphs
Edges indicate connectivity in parameter space
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Different 
colors 
represent 
different 
continuation 
classes

θ1

θ2

50

8 37
3

The 
Continuation

Diagram

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]
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Database results are never wrong,
BUT they depend on the resolution!

finer resolution

Appropriate resolution is problem dependent!
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Querying the Database:  Are there multiple basins of attraction?

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]
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Querying the Database:  Are there multiple basins of attraction?
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[890 boxes]
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Class 13
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Class 14
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Class 16
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Class 17
[1 box]

Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?
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Querying the Database:  Are there multiple basins of attraction?
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Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 
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Querying the Database:  Are there multiple basins of attraction?

Class 1
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minimal elements?
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2 observable basins of attraction
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Querying the Database:  Are there multiple basins of attraction?

Class 1
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2 observable basins of attraction
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Querying the Database:  Are there multiple basins of attraction?

Class 1
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Can we characterize the attracting dynamics?

Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

θ1

θ2

2 observable basins of attraction
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Querying the Database:  Are there multiple basins of attraction?

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
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Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

θ1

θ2

Query the Conley index:

2 observable basins of attraction
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Querying the Database:  Are there multiple basins of attraction?

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

Can we characterize the attracting dynamics?

Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

θ1

θ2

Query the Conley index:

“3 cycle”        “1 cycle”

2 observable basins of attraction
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Querying the Database:  Are there multiple basins of attraction?

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

Can we characterize the attracting dynamics?

Query the gradient-like structure:
Is there a Morse graph with multiple
minimal elements?

p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

θ1

θ2

Query the Conley index:

“3 cycle”        “1 cycle”

2 observable basins of attraction

“Critical
transition
Dynamics”
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III. Theoretical Framework
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)

N

fλ0(N)
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)

N

Robust with respect to:

1.  Measurement error

fλ0(N)
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We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that
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N

Robust with respect to:

1.  Measurement error

2.  Model error

fλ0(N)
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)

N

Robust with respect to:

1.  Measurement error

2.  Model error

fλ0(N)

λ1 ≈ λ0
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)

N

Robust with respect to:

1.  Measurement error

2.  Model error

fλ0(N)

fλ1(N)
λ1 ≈ λ0

Remarks:  1. The set of attractor blocks defines a
(large) lattice under ∩ and ∪.
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What is geometrically observable?

We assume existence (not knowledge) of a model f : X × Λ→ X

Attractor block: A compact subset N ⊂ X such that

fλ0(N) ⊂ int(N)

N

Robust with respect to:

1.  Measurement error

2.  Model error

fλ0(N)

fλ1(N)
λ1 ≈ λ0

Remarks:  1. The set of attractor blocks defines a
(large) lattice under ∩ and ∪.

2.  The separatrix dynamics is not explicit in the lattice
of attractor blocks.
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What about the dynamics?
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What about the dynamics?

The Omega limit set
is a compact invariant set:

ω(N, fλ0) :=
∞�

n=0

cl

� ∞�

k=n

fλ0(N)

�
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What about the dynamics?

Attractor

The Omega limit set
is a compact invariant set:

ω(N, fλ0) :=
∞�

n=0
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� ∞�

k=n

fλ0(N)

�
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What about the dynamics?

The maximal invariant set Inv(N,FΛ0) in N
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What about the dynamics?

The maximal invariant set Inv(N,FΛ0) in N
int(N)Attractor
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What about the dynamics?

The maximal invariant set Inv(N,FΛ0) in N
int(N)Attractor

The Omega limit set
is a compact invariant set:

ω(N, fλ0) :=
∞�

n=0

cl

� ∞�

k=n

fλ0(N)

�

We can generalize this.

A compact set N ⊂ X is an iso-
lating neighborhood for fλ0 if the
maximal invariant set in N lies in
the interior of N .

S = Inv(N, fλ0) ⊂ int(N)
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What about the dynamics?

The maximal invariant set Inv(N,FΛ0) in N
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A Morse covering of X consists of a finite poset (P,≤) that
labels a collection of disjoint non-empty isolating neigh-
borhoods B = {B(p) | p ∈ (P,≤)} with the property that
given an orbit γ := {xn ∈ X | n ∈ Z, xn+1 = f(xn)} either

• there exists p ∈ P such that γ ⊂ B(p), or

• there exists q, p ∈ P and tq, tp ∈ Z such that q < p
and tq > tp for which

{xn | n ≤ tp} ⊂ B(p)
{xn | n ≥ tq} ⊂ B(q)

{xn | tp < n < tq} ∩ (B(p) ∪B(q)) = ∅
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A Morse covering of X consists of a finite poset (P,≤) that
labels a collection of disjoint non-empty isolating neigh-
borhoods B = {B(p) | p ∈ (P,≤)} with the property that
given an orbit γ := {xn ∈ X | n ∈ Z, xn+1 = f(xn)} either

• there exists p ∈ P such that γ ⊂ B(p), or

• there exists q, p ∈ P and tq, tp ∈ Z such that q < p
and tq > tp for which

{xn | n ≤ tp} ⊂ B(p)
{xn | n ≥ tq} ⊂ B(q)

{xn | tp < n < tq} ∩ (B(p) ∪B(q)) = ∅

Prop: M := {(p, M(p)) | p ∈ (P,≤), M(p) = Inv(B(p))} is
a Morse decomposition
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Choose a (cubical) grid X that covers X
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)
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Recurrence in a Directed Graph
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Strongly Connected Path Components
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FQ(G)

Numerical/Experimental Error

G

A Discrete Representation of the Dynamics
Choose a compact region in parameter space: Q ⊂ Λ
Choose a (cubical) grid X that covers X

f(G,Q
)

f(G, Q) ⊂ int(|FQ(G)|)
Define a multivalued
map: FQ : X −→→X

FQ is a directed graph:
G ∈ XVertices

H ∈ FQ(G) ⇒ G→ HEdges

Recurrence in a Directed Graph

⇔

Strongly Connected Path Components

1.  Can be computed in linear time
2.  Define a Morse Cover
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Class 1
[80265 boxes]

Class 2
[68433 boxes]

Class 3
[25038 boxes]

Class 4
[19598 boxes]

Class 5
[18203 boxes]

Class 6
[17256 boxes]

Class 7
[16686 boxes]

Class 8
[4981 boxes]

Class 9
[2476 boxes]

Class 10
[1370 boxes]

Class 11
[477 boxes]

Class 12
[289 boxes]

Class 13
[217 boxes]

Class 14
[199 boxes]

Class 15
[137 boxes]

Class 16
[96 boxes]

Class 17
[84 boxes]

Class 18
[42 boxes]

Class 19
[27 boxes]

Class 20
[21 boxes]

Class 21
[10 boxes]

Class 22
[5 boxes]

Class 23
[4 boxes]

Class 24
[3 boxes]

Class 25
[3 boxes]

Class 26
[3 boxes]

Class 27
[3 boxes]

Class 28
[2 boxes]

Class 29
[2 boxes]

Class 30
[2 boxes]

Class 31
[2 boxes]

Class 32
[2 boxes]

Class 33
[2 boxes]

Class 34
[2 boxes]

Class 35
[2 boxes]

Class 36
[2 boxes]

Class 37
[1 box]

Class 38
[1 box]

Class 39
[1 box]

Class 40
[1 box]

Class 41
[1 box]

Class 42
[1 box]

Class 43
[1 box]

Class 44
[1 box]

Class 45
[1 box]

Class 46
[1 box]

Class 47
[1 box]

Class 48
[1 box]

Class 49
[1 box]

Class 50
[1 box]

Class 51
[1 box]

Class 52
[1 box]

Class 53
[1 box]

Class 54
[1 box]

Class 55
[1 box]

Class 56
[1 box]

Class 57
[1 box]

Class 58
[1 box]

Class 59
[1 box]

Class 60
[1 box]

Class 61
[1 box]

Class 62
[1 box]

Class 63
[1 box]

Class 64
[1 box]

Class 65
[1 box]

Class 66
[1 box]

Class 67
[1 box]

Class 68
[1 box]

Class 69
[1 box]

Class 70
[1 box]

Class 71
[1 box]

Class 72
[1 box]

Class 73
[1 box]

Class 74
[1 box]

Class 75
[1 box]

Class 76
[1 box]

Class 77
[1 box]

Class 78
[1 box]

Class 79
[1 box]

Class 80
[1 box]

Class 81
[1 box]

Class 82
[1 box]

Class 83
[1 box]

Class 84
[1 box]

Class 85
[1 box]

Class 86
[1 box]

Class 87
[1 box]

Class 88
[1 box]

Class 89
[1 box]

Class 90
[1 box]

Class 91
[1 box]

Class 92
[1 box]

Thank-you for your attention
http://chomp.rutgers.edu/
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