
Intro SDD Apps Iterative Trees Code Open

Specialized System Solvers for very large
Systems; Theory and Practice

Gary Miller

Carnegie Mellon University
join work with Yiannis Koutis, Richard Peng, Ali Sinop, and David Tolliver

Workshops on Algorithms for Modern Massive Data Sets
June 18, 2010

Intro SDD Apps Iterative Trees Code Open

Outline

1 Introduction

2 Symmetric Diagonally Dominate Systems
Graph Laplacians

3 Applications of SDD/Laplacians

4 Iterative Methods for Graph Laplacians
Combinatorial Preconditioners

5 Low Stretch Spanning Trees

6 Solver Code

7 Open Questions

Intro SDD Apps Iterative Trees Code Open

Solving Linear Systems, a fundamental Problem

 3 2 −1
2 −5 4
−1 1/2 2

 x
y
z

 =

 3
7
2

Intro SDD Apps Iterative Trees Code Open

An Easy Case

1 Upper and Lower Triangular Systems

2 O(m) time where m = number of nonzeros
entries.

3 Goal: Find more easy cases that have
applications.

Intro SDD Apps Iterative Trees Code Open

An Easy Case

1 Upper and Lower Triangular Systems
2 O(m) time where m = number of nonzeros

entries.

3 Goal: Find more easy cases that have
applications.

Intro SDD Apps Iterative Trees Code Open

An Easy Case

1 Upper and Lower Triangular Systems
2 O(m) time where m = number of nonzeros

entries.
3 Goal: Find more easy cases that have

applications.

Intro SDD Apps Iterative Trees Code Open

Symmetric Matrices and Positive Definite

Assume A is symmetric, A = AT .

Assume A is positive definite, xT Ax > 0 for
x 6= 0.
Open: Can we solve spd systems in near
linear time?
Two approaches to solving: direct and
iterative methods.

Intro SDD Apps Iterative Trees Code Open

Symmetric Matrices and Positive Definite

Assume A is symmetric, A = AT .
Assume A is positive definite, xT Ax > 0 for
x 6= 0.

Open: Can we solve spd systems in near
linear time?
Two approaches to solving: direct and
iterative methods.

Intro SDD Apps Iterative Trees Code Open

Symmetric Matrices and Positive Definite

Assume A is symmetric, A = AT .
Assume A is positive definite, xT Ax > 0 for
x 6= 0.
Open: Can we solve spd systems in near
linear time?

Two approaches to solving: direct and
iterative methods.

Intro SDD Apps Iterative Trees Code Open

Symmetric Matrices and Positive Definite

Assume A is symmetric, A = AT .
Assume A is positive definite, xT Ax > 0 for
x 6= 0.
Open: Can we solve spd systems in near
linear time?
Two approaches to solving: direct and
iterative methods.

Intro SDD Apps Iterative Trees Code Open

Direct Methods
Gaussian Elimination Matrices

Goal: algorithms that minimize work and
space.

Trick: View nonzero entries as an undirected
graph and view pivoting as a graph
operation.

Intro SDD Apps Iterative Trees Code Open

Direct Methods
Gaussian Elimination Matrices

Goal: algorithms that minimize work and
space.
Trick: View nonzero entries as an undirected
graph and view pivoting as a graph
operation.

Intro SDD Apps Iterative Trees Code Open

Good Pivot Strategies

1970s and 1980s
Planar systems: O(n3/2) work and O(n log n)
fill/space, [Lipton, Rose, Tarjan].

3D Systems: O(n2) work and O(n3/2)
fill/space, [M, Teng, Thurston, Vavasis]
(EG: 3D images and 3D finite element).
O(n3/2) space is too big for 3D Image
problems.

Intro SDD Apps Iterative Trees Code Open

Good Pivot Strategies

1970s and 1980s
Planar systems: O(n3/2) work and O(n log n)
fill/space, [Lipton, Rose, Tarjan].
3D Systems: O(n2) work and O(n3/2)
fill/space, [M, Teng, Thurston, Vavasis]
(EG: 3D images and 3D finite element).

O(n3/2) space is too big for 3D Image
problems.

Intro SDD Apps Iterative Trees Code Open

Good Pivot Strategies

1970s and 1980s
Planar systems: O(n3/2) work and O(n log n)
fill/space, [Lipton, Rose, Tarjan].
3D Systems: O(n2) work and O(n3/2)
fill/space, [M, Teng, Thurston, Vavasis]
(EG: 3D images and 3D finite element).
O(n3/2) space is too big for 3D Image
problems.

Intro SDD Apps Iterative Trees Code Open

Pure Iterative Methods

Solving Ax = b.
Basic method: x (i+1) = (I − A)x (i) + b

Convergence/Rate is determined by ||I − A||.
Accelerated Methods: Chebyshev Iteration,
Conjugate Gradient.
CG: O(nm), [Magnus, Eduard 52].

Intro SDD Apps Iterative Trees Code Open

Pure Iterative Methods

Solving Ax = b.
Basic method: x (i+1) = (I − A)x (i) + b
Convergence/Rate is determined by ||I − A||.

Accelerated Methods: Chebyshev Iteration,
Conjugate Gradient.
CG: O(nm), [Magnus, Eduard 52].

Intro SDD Apps Iterative Trees Code Open

Pure Iterative Methods

Solving Ax = b.
Basic method: x (i+1) = (I − A)x (i) + b
Convergence/Rate is determined by ||I − A||.
Accelerated Methods: Chebyshev Iteration,
Conjugate Gradient.

CG: O(nm), [Magnus, Eduard 52].

Intro SDD Apps Iterative Trees Code Open

Pure Iterative Methods

Solving Ax = b.
Basic method: x (i+1) = (I − A)x (i) + b
Convergence/Rate is determined by ||I − A||.
Accelerated Methods: Chebyshev Iteration,
Conjugate Gradient.
CG: O(nm), [Magnus, Eduard 52].

Intro SDD Apps Iterative Trees Code Open

Preconditioned Iterative Methods

Solving B−1Ax = B−1b.
Basic method: x (i+1) = x (i) + B−1(b − Ax (i))

Computing x (i+1)

r = b − Ax (i) Forward Multiply and
addition.
Bz = r Solve the preconditioner system
return x (i+1) = x (i) + z

Goal: Minimize the number of iteration while
minimizing the cost of the solve.

Intro SDD Apps Iterative Trees Code Open

Preconditioned Iterative Methods

Solving B−1Ax = B−1b.
Basic method: x (i+1) = x (i) + B−1(b − Ax (i))

Computing x (i+1)

r = b − Ax (i) Forward Multiply and
addition.
Bz = r Solve the preconditioner system
return x (i+1) = x (i) + z

Goal: Minimize the number of iteration while
minimizing the cost of the solve.

Intro SDD Apps Iterative Trees Code Open

Preconditioned Iterative Methods

Solving B−1Ax = B−1b.
Basic method: x (i+1) = x (i) + B−1(b − Ax (i))

Computing x (i+1)

r = b − Ax (i) Forward Multiply and
addition.
Bz = r Solve the preconditioner system
return x (i+1) = x (i) + z

Goal: Minimize the number of iteration while
minimizing the cost of the solve.

Intro SDD Apps Iterative Trees Code Open

Classic Preconditioners

Jacobi: B = Diagonal(A).

Gauss-Seidel: B = UpperTriangular(A).
SSOR: B = (L + 1

ωD) 1
ωD(L + 1

ωD)

Still too slow and unreliable.

Intro SDD Apps Iterative Trees Code Open

Classic Preconditioners

Jacobi: B = Diagonal(A).
Gauss-Seidel: B = UpperTriangular(A).

SSOR: B = (L + 1
ωD) 1

ωD(L + 1
ωD)

Still too slow and unreliable.

Intro SDD Apps Iterative Trees Code Open

Classic Preconditioners

Jacobi: B = Diagonal(A).
Gauss-Seidel: B = UpperTriangular(A).
SSOR: B = (L + 1

ωD) 1
ωD(L + 1

ωD)

Still too slow and unreliable.

Intro SDD Apps Iterative Trees Code Open

Classic Preconditioners

Jacobi: B = Diagonal(A).
Gauss-Seidel: B = UpperTriangular(A).
SSOR: B = (L + 1

ωD) 1
ωD(L + 1

ωD)

Still too slow and unreliable.

Intro SDD Apps Iterative Trees Code Open

Symmetric Diagonally Dominate Matrices

Def: A is SDD if:

∀i Aii ≥
∑
j 6=i

|Aij |

Note: A is positive semi-definite.
Subcase: SDD with nonpositive off diagonal
Graph Laplacians
SDD can be reduce to Graph Laplacians, [Gremban
M 96]

Intro SDD Apps Iterative Trees Code Open

Symmetric Diagonally Dominate Matrices

Def: A is SDD if:

∀i Aii ≥
∑
j 6=i

|Aij |

Note: A is positive semi-definite.

Subcase: SDD with nonpositive off diagonal
Graph Laplacians
SDD can be reduce to Graph Laplacians, [Gremban
M 96]

Intro SDD Apps Iterative Trees Code Open

Symmetric Diagonally Dominate Matrices

Def: A is SDD if:

∀i Aii ≥
∑
j 6=i

|Aij |

Note: A is positive semi-definite.
Subcase: SDD with nonpositive off diagonal
Graph Laplacians

SDD can be reduce to Graph Laplacians, [Gremban
M 96]

Intro SDD Apps Iterative Trees Code Open

Symmetric Diagonally Dominate Matrices

Def: A is SDD if:

∀i Aii ≥
∑
j 6=i

|Aij |

Note: A is positive semi-definite.
Subcase: SDD with nonpositive off diagonal
Graph Laplacians
SDD can be reduce to Graph Laplacians, [Gremban
M 96]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Graph Laplacian

G = (V ,E ,w) weighted undirected graph, wij > 0.

Weighted incidence matrix:

Aij =

{
wij if eij ∈ E
0 otherwise

Degree of vi : di =
∑

j wij

D =

 d1 0
. . .

0 dn

Laplacian: L = D − A

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Graph Laplacian

G = (V ,E ,w) weighted undirected graph, wij > 0.
Weighted incidence matrix:

Aij =

{
wij if eij ∈ E
0 otherwise

Degree of vi : di =
∑

j wij

D =

 d1 0
. . .

0 dn

Laplacian: L = D − A

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Graph Laplacian

G = (V ,E ,w) weighted undirected graph, wij > 0.
Weighted incidence matrix:

Aij =

{
wij if eij ∈ E
0 otherwise

Degree of vi : di =
∑

j wij

D =

 d1 0
. . .

0 dn

Laplacian: L = D − A

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Graph Laplacian

G = (V ,E ,w) weighted undirected graph, wij > 0.
Weighted incidence matrix:

Aij =

{
wij if eij ∈ E
0 otherwise

Degree of vi : di =
∑

j wij

D =

 d1 0
. . .

0 dn

Laplacian: L = D − A

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Graph Laplacian

G = (V ,E ,w) weighted undirected graph, wij > 0.
Weighted incidence matrix:

Aij =

{
wij if eij ∈ E
0 otherwise

Degree of vi : di =
∑

j wij

D =

 d1 0
. . .

0 dn

Laplacian: L = D − A

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Example of Laplacian

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

History for solving Laplacian

Recurrsive preconditioned iterative methods.
O(n1.2) for planar Laplacians, [Vaidya 91]
Õ(m1.5) for natural 3D graphs [Gremban, M 96].
First near-linear time algorithm, O(m log15 n), [Spielman,
Teng 04].
O(n) for planar Laplacians, [Koutis, M 07]
O(m log2 n) (ignoring log log and lower terms), [Koutis, M,
Peng 10].

Intro SDD Apps Iterative Trees Code Open

Graph Laplacians

Main Theorem

Theorem

Input: SDD system Ax = b.
Output: x̄ satisfying ||x̄ − A+b||A < ε||A+b||A.
Expected Time: Õ(m log2 n log(1/ε)).

[Koutis, M, Peng 10]

Intro SDD Apps Iterative Trees Code Open

Classic Applications of the Laplacian

View each edge a conductor with conductance wij .

Let V be a column vector of voltages
If LV = c then c is the residual current needed to maintain
the given voltages.

Intro SDD Apps Iterative Trees Code Open

Classic Applications of the Laplacian

View each edge a conductor with conductance wij .
Let V be a column vector of voltages

If LV = c then c is the residual current needed to maintain
the given voltages.

Intro SDD Apps Iterative Trees Code Open

Classic Applications of the Laplacian

View each edge a conductor with conductance wij .
Let V be a column vector of voltages
If LV = c then c is the residual current needed to maintain
the given voltages.

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and the Heat Equations

View each edge as a conductor with conductance wij .

Let V be a column vector of temperatures.
If c = LV then c is the residual heat needed to maintain the
given temperatures.
The finite element heat equations can be preconditioned
with a graph Laplacian and thus solved in Õ(n + m) time.
[Boman, Hendrickson, and Vavasis 06]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and the Heat Equations

View each edge as a conductor with conductance wij .
Let V be a column vector of temperatures.

If c = LV then c is the residual heat needed to maintain the
given temperatures.
The finite element heat equations can be preconditioned
with a graph Laplacian and thus solved in Õ(n + m) time.
[Boman, Hendrickson, and Vavasis 06]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and the Heat Equations

View each edge as a conductor with conductance wij .
Let V be a column vector of temperatures.
If c = LV then c is the residual heat needed to maintain the
given temperatures.

The finite element heat equations can be preconditioned
with a graph Laplacian and thus solved in Õ(n + m) time.
[Boman, Hendrickson, and Vavasis 06]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and the Heat Equations

View each edge as a conductor with conductance wij .
Let V be a column vector of temperatures.
If c = LV then c is the residual heat needed to maintain the
given temperatures.
The finite element heat equations can be preconditioned
with a graph Laplacian and thus solved in Õ(n + m) time.
[Boman, Hendrickson, and Vavasis 06]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Random Walks

Transition Matrix: AGD−1, symmetric A. Mixing
Rate-Fundamental Eigenvector:
Õ(n + m) [Spielman Teng 04]
Trick: Inverse Powering only requires O(log n) iterations.

Intro SDD Apps Iterative Trees Code Open

Laplacian’s and Spring Mass Systems

G = (V ,E ,w) weighted graph and wij is
viewed a spring constant.

M is a diagonal matrix of mass constants
Fact: Modes of vibration of Spring-Mass
system G,M are:
Eigen-pairs of LGx = λMx .
Thus the fundamental mode can be found in
Õ(n + m) time.

Intro SDD Apps Iterative Trees Code Open

Laplacian’s and Spring Mass Systems

G = (V ,E ,w) weighted graph and wij is
viewed a spring constant.
M is a diagonal matrix of mass constants

Fact: Modes of vibration of Spring-Mass
system G,M are:
Eigen-pairs of LGx = λMx .
Thus the fundamental mode can be found in
Õ(n + m) time.

Intro SDD Apps Iterative Trees Code Open

Laplacian’s and Spring Mass Systems

G = (V ,E ,w) weighted graph and wij is
viewed a spring constant.
M is a diagonal matrix of mass constants
Fact: Modes of vibration of Spring-Mass
system G,M are:
Eigen-pairs of LGx = λMx .

Thus the fundamental mode can be found in
Õ(n + m) time.

Intro SDD Apps Iterative Trees Code Open

Laplacian’s and Spring Mass Systems

G = (V ,E ,w) weighted graph and wij is
viewed a spring constant.
M is a diagonal matrix of mass constants
Fact: Modes of vibration of Spring-Mass
system G,M are:
Eigen-pairs of LGx = λMx .
Thus the fundamental mode can be found in
Õ(n + m) time.

Intro SDD Apps Iterative Trees Code Open

Spring Mass System

Movie of a Simple Image

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Linear Programming

Graph Maximum Flow Prob: Find a maximum flow
from s to t .

Algorithm: Max-Flow is a LP problem so use log
barrier interior point method.
Fact: Each of O(

√
m) pivots requires the solution the

graph Laplacian.
Thus: Approximate Max-Flow is Õ((m + n)3/2)
[Daitch, Spielman 08]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Linear Programming

Graph Maximum Flow Prob: Find a maximum flow
from s to t .
Algorithm: Max-Flow is a LP problem so use log
barrier interior point method.

Fact: Each of O(
√

m) pivots requires the solution the
graph Laplacian.
Thus: Approximate Max-Flow is Õ((m + n)3/2)
[Daitch, Spielman 08]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Linear Programming

Graph Maximum Flow Prob: Find a maximum flow
from s to t .
Algorithm: Max-Flow is a LP problem so use log
barrier interior point method.
Fact: Each of O(

√
m) pivots requires the solution the

graph Laplacian.

Thus: Approximate Max-Flow is Õ((m + n)3/2)
[Daitch, Spielman 08]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Linear Programming

Graph Maximum Flow Prob: Find a maximum flow
from s to t .
Algorithm: Max-Flow is a LP problem so use log
barrier interior point method.
Fact: Each of O(

√
m) pivots requires the solution the

graph Laplacian.
Thus: Approximate Max-Flow is Õ((m + n)3/2)
[Daitch, Spielman 08]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Convex Programming

Uniform TV Denoising:
Input: image s
Output: image arg min ||x − s||22 + λ|| 5 x ||1

Nonuniform TV Denoising:
Input: pixel image s
Output: arg min(x − s)T (x − s)+Sum(i,j)∈G|wij(xi − xj)|
Use log-barrier interior point: pivots are low rank
perturbation of Laplacian,
Thus: Õ((m + n)3/2) time. [Koutis M Peng Sinop
Tolliver 09]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Convex Programming

Uniform TV Denoising:
Input: image s
Output: image arg min ||x − s||22 + λ|| 5 x ||1
Nonuniform TV Denoising:
Input: pixel image s
Output: arg min(x − s)T (x − s)+Sum(i,j)∈G|wij(xi − xj)|

Use log-barrier interior point: pivots are low rank
perturbation of Laplacian,
Thus: Õ((m + n)3/2) time. [Koutis M Peng Sinop
Tolliver 09]

Intro SDD Apps Iterative Trees Code Open

Graph Laplacian’s and Convex Programming

Uniform TV Denoising:
Input: image s
Output: image arg min ||x − s||22 + λ|| 5 x ||1
Nonuniform TV Denoising:
Input: pixel image s
Output: arg min(x − s)T (x − s)+Sum(i,j)∈G|wij(xi − xj)|
Use log-barrier interior point: pivots are low rank
perturbation of Laplacian,
Thus: Õ((m + n)3/2) time. [Koutis M Peng Sinop
Tolliver 09]

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Condition Number

Def:Condition number of A and B,
κ(B−1A) = λmax (B−1A)/λmin(B−1A).
OR: If xT Ax ≤ xT Bx ≤ kxT Ax for all x ∈ Rn, then
κ(B−1A) ≤ k

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Rate of Convergence

Classical results, measured in number of iterations per bit
of precision.
Richardson iteration: O(κ(B−1A)), too slow.
Conjugate gradient: O(

√
κ(B−1A)) or better, hard to

analyze when B is called recursively and solved inexactly.
Chebyshev iteration: O(

√
κ(B−1A)), will use.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

When is B a Good Recursive Preconditioner?

Properties that Laplacian B should have:
1 B−1A has low condition number.
2 Quickly reduces to something that can be solved faster

(smaller size).
Examples:

[Vaidya 91] Spanning tree + a few edges.
[Gremban, M 96] Steiner tree.
[Boman, Hendrickson 03; Spielman, Teng 04] Low stretch
spanning tree + a few edges.
[Koutis, M 07] Partition planar graphs into pieces of size k
with

√
k boundary, optimally precondition each piece.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Getting a Good Preconditioner.

Main steps:

Find a sparse subgraph by random sampling.
Use Gaussian elimination to remove degree 1 and 2
vertices.
We need sampling to be fast and give good condition
numbers.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Example: Pivoting out degree 1 and 2.

a

b

c

d

e

f

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Example: Pivoting out degree 1 and 2.

a

b

c

d

e

f

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Pivot(f)

a

b

c

d

e

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Pivot(f)

a

b

c

d

e

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Pivot(e)

a

b

c

d

Ran out of degree 1 or 2 nodes, quit.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Graph Sparsifier

Given a graph G find H by: Remove most edges, increase
weight of remaining edges.
Possible properties to be preserved:

Spanners: distance, diameter
Cut sparsifier: weight of cut for all 2|V | subset of vertices
Triangle sparsifiers: number of triangles in a subgraph
We want spectral sparsifiers
Also want H to be ultra-sparse for Gaussian elimination to
make progress.
Need to reduce to n − 1 + m/c edges for in order to
decrease edge count by factor of c/3.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Previous Work on Sparsification

Expanders: sparsifier for complete graph.
Ramanujan graphs: optimal spectral sparsifiers for the
complete graph.
[Benczur, Karger 96] Cut sparsifiers, O(n log n) edges.
[Kolountzakis, M, Tsourakakis 10] Edge sampling can
give good triangle sparsifiers.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Previous Work on Spectral Sparsification

[Spielman, Teng 04] H has Õ(n) edges, constant
condition number.
[Spielman, Teng 04] Ultrasparsifier, H has n − 1 + n/c
edges, condition number Õ(c).
[Spielman, Srivastava 08] Conceptually simple
sampling algorithm for spectral sparsification.
[Batson, Spielman, Srivastava 09] and [Kolla,
Makarychev, Saberi, Teng 10] gave better bounds, but
their algorithms do not run in near-linear time.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Sparsifier for the Complete Graph

For Kn, 1
p G(n,p) is a good sparsifier when p ≥ log n/n.

Sidenote: examples generated by code in the TeX file,
different sparsifier every time slides are generated.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Sparsifier for the Complete Graph

For Kn, 1
p G(n,p) is a good sparsifier when p ≥ log n/n.

Sidenote: examples generated by code in the TeX file,
different sparsifier every time slides are generated.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Generalized Graph Sampling

[Benczur, Karger 96] used this method for cut sparsifiers
Near-linear time spectral sparsifiers use the same
framework.
Compute a probability pe for each edge.
For each edge e keep with probability pe.
If kept multiply weight by 1/pe.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

What Sampling Gives

Expected value: original graph
Expected number of edges: (

∑
e pe) log n.

Concentration?

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Effective Resistance

Consider each edge as a resistor with conductance we

For edge e = (u, v) let Re be the effective resistance from
u to v in G.

Intro SDD Apps Iterative Trees Code Open

Combinatorial Preconditioners

Sparsification by Effective Resistance

Theorem (Spielman, Srivastava 08)
Sampling a weighted graph G using edge probablities
pe = weRe to generate H with O(n log n) expected edges then
κ(G,H) is a constant with high probablity.

Calculating effective resistance efficiently?

Intro SDD Apps Iterative Trees Code Open

Low Stretch Spanning Trees

We use low stretch spanning trees to approximate effective
resistance.
Let T be a tree of G

Definition

Stretch(e) = we · ERT
e , the effective resistance in T .

stretch(T) =
∑
e∈G

stretch(e)

Intro SDD Apps Iterative Trees Code Open

Low Stretch Spanning Trees

[Spielman, Teng 04] Fundamental for their solver and
ultrasparsifier.
[Kolla, Makarychev, Saberi, Teng 10] Fundamental their
near-optimal sparsifier.

Intro SDD Apps Iterative Trees Code Open

Known Results about Low Stretch Spanning Trees

First studied in [Alon, Karp, Peleg, West 95] in the context
of k server problem.
[Elkin, Emek, Spielman, Teng 05] O(m log2 n) stretch.
[Abraham, Bartal & Neiman 08] roughly O(m log n)
stretch.

Intro SDD Apps Iterative Trees Code Open

Example of Low Stretch Spanning Tree on a Unit Weight Mesh

Exercise: show
that stretch is
O(n log n).

Intro SDD Apps Iterative Trees Code Open

Example of Low Stretch Spanning Tree on a Unit Weight Mesh

Exercise: show
that stretch is
O(n log n).

Intro SDD Apps Iterative Trees Code Open

Example of Low Stretch Spanning Tree on a Unit Weight Mesh

Exercise: show
that stretch is
O(n log n).

Intro SDD Apps Iterative Trees Code Open

Example of Low Stretch Spanning Tree on a Unit Weight Mesh

Exercise: show
that stretch is
O(n log n).

Intro SDD Apps Iterative Trees Code Open

Pseudocode

INCREMENTALSPARSIFY

Input: Graph G, real value c = O(log4n).
Output: Graph H that’s a sparsifier for G

1 T ← LOWSTRETCHTREE(G)
2 Let T ′ be T scaled up by factor of c
3 Let G′ be the graph obtained from G by replacing T with T ′

4 FOR e ∈ E
5 Calculate EffectiveResistanceT ′(e)

6 ENDFOR

7 H ← SAMPLE(G′, EffectiveResistanceT ′)
8 RETURN H

Intro SDD Apps Iterative Trees Code Open

Example: Original Graph

a

b

c

d

e

f

Intro SDD Apps Iterative Trees Code Open

Example: Scale up a Good Spanning Tree

a

b

c

d

e

f

Scale up the
spanning tree.

Intro SDD Apps Iterative Trees Code Open

Example: Scale up a Good Spanning Tree

a

b

c

d

e

f

Scale up the
spanning tree.

Intro SDD Apps Iterative Trees Code Open

Example: Scale up a Good Spanning Tree

a

b

c

d

e

f

Scale up the
spanning tree.

Intro SDD Apps Iterative Trees Code Open

Example: Sample

a

b

c

d

e

f

Sample non-
tree edges
by (scaled
down) effective
resistance.

Intro SDD Apps Iterative Trees Code Open

Example: Gaussian Elimination

b

c

d

f

Repeatedly
eliminate de-
gree 1 and 2
nodes.

Intro SDD Apps Iterative Trees Code Open

History of Planar Solvers

1950’s O(n2) (Conjugate Gradient)

1970’s O(n1.5) (Nested Dissection) (LRT)
1990’s O(n1.2) (Combinatorial
Preconditioners) (Vaidya)
2000’s O(n log2 n) (Low stretch spanning
trees) (ST)
2006’s O(n) (separator based
preconditioners) (KM)

Intro SDD Apps Iterative Trees Code Open

History of Planar Solvers

1950’s O(n2) (Conjugate Gradient)
1970’s O(n1.5) (Nested Dissection) (LRT)

1990’s O(n1.2) (Combinatorial
Preconditioners) (Vaidya)
2000’s O(n log2 n) (Low stretch spanning
trees) (ST)
2006’s O(n) (separator based
preconditioners) (KM)

Intro SDD Apps Iterative Trees Code Open

History of Planar Solvers

1950’s O(n2) (Conjugate Gradient)
1970’s O(n1.5) (Nested Dissection) (LRT)
1990’s O(n1.2) (Combinatorial
Preconditioners) (Vaidya)

2000’s O(n log2 n) (Low stretch spanning
trees) (ST)
2006’s O(n) (separator based
preconditioners) (KM)

Intro SDD Apps Iterative Trees Code Open

History of Planar Solvers

1950’s O(n2) (Conjugate Gradient)
1970’s O(n1.5) (Nested Dissection) (LRT)
1990’s O(n1.2) (Combinatorial
Preconditioners) (Vaidya)
2000’s O(n log2 n) (Low stretch spanning
trees) (ST)

2006’s O(n) (separator based
preconditioners) (KM)

Intro SDD Apps Iterative Trees Code Open

History of Planar Solvers

1950’s O(n2) (Conjugate Gradient)
1970’s O(n1.5) (Nested Dissection) (LRT)
1990’s O(n1.2) (Combinatorial
Preconditioners) (Vaidya)
2000’s O(n log2 n) (Low stretch spanning
trees) (ST)
2006’s O(n) (separator based
preconditioners) (KM)

Intro SDD Apps Iterative Trees Code Open

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

16

18

20

Number of Pixels (in millions)

R
u

n
n

in
g

 T
im

e
(s

ec
s)

Two dimensional images

Our solver
MATLAB’s direct solver

Intro SDD Apps Iterative Trees Code Open

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

Number of Pixels (in millions)

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

s)
Three dimensional images

Our solver
direct solver

Out of memory

Intro SDD Apps Iterative Trees Code Open

Open Questions

Find fast methods for any SPD system.
Find spectral methods that find better cuts
by using more than one eigenvector.
Find solvers that work in the L2 norm.
A implementable solver with near linear time
guarantees. The low stretch spanning tree is
the bottleneck!

Intro SDD Apps Iterative Trees Code Open

Thank You

	Introduction
	Symmetric Diagonally Dominate Systems
	Graph Laplacians

	Applications of SDD/Laplacians
	Iterative Methods for Graph Laplacians
	Combinatorial Preconditioners

	Low Stretch Spanning Trees
	Solver Code
	Open Questions

