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Networks and networked data

Interaction graph model of
networks:
• Nodes represent “entities”
• Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
• technological networks

– AS, power-grid, road networks

• biological networks
– food-web, protein networks

• social networks
– collaboration networks, friendships

• information networks
– co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

• language networks
– semantic networks...

• ...



Micro-markets in sponsored search
“keyword-advertiser graph”

10 million keywords
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What is the
CTR/ROI  of “sports

gambling” keywords?

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?
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Question: Is this visualization evidence
for the schematic on the left?



What do these networks “look” like?



Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):
• extreme heterogeneity in local environments, e.g., as captured by
degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based
models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):
• local environments of nodes have structure, e.g., captures with
clustering coefficient, that is meaningfully “geometric”

• basis for small world models that start with global “geometry” and
add random edges to get small diameter and preserve local “geometry”



Popular approaches to data more generally

Use geometric data analysis tools:
• Low-rank methods - very popular and flexible
• “Kernel” and “manifold” methods - use other distances,
e.g., diffusions or nearest neighbors, to find “curved” low-
dimensional spaces

These geometric data analysis tools:
• View data as a point cloud in Rn, i.e., each of the m data
points is a vector in Rn

• Based on SVD*, a basic vector space structural result
• Geometry gives a lot --  scalability, robustness, capacity
control, basis for inference, etc.

*perhaps in an implicitly-defined infinite-dimensional non-linearly transformed feature space



Can these approaches be combined?

These approaches are very different:
• network is a single data point---not a collection of feature vectors
drawn from a distribution, and not really a matrix
• can’t easily let m or n (number of data points or features) go to
infinity---so nearly every such theorem fails to apply

Can associate matrix with a graph, vice versa, but:
• often do more damage than good
• questions asked tend to be very different
• graphs are really combinatorial things*

*But, graph geodesic distance is a metric, and metric embeddings give fast
approximation algorithms in worst-case CS analysis!



Overview
• Large networks and different perspectives on data

• Approximation algorithms as “experimental probes”
• Graph partitioning: good test case for different approaches to data

• Geometric/statistical properties implicit in worst-case algorithms

• An example of the theory
• Local spectral graph partitioning as an optimization problem

• Exploring data graphs locally: practice follows theory closely

• An example of the practice
• Local and global clustering structure in very large networks

• Strong theory allows us to make very strong applied claims



Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)

• Both sides contain a lot of nodes

Several standard formulations:
• Graph bisection (minimum cut with 50-50 balance)

• β-balanced bisection (minimum cut with 70-30 balance)

• cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion)

• cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts)

All of these formalizations are NP-hard!

Later: size-resolved conductance: algs can have non-obvious size-dependent behavior!



Why graph partitioning?

Graph partitioning algorithms:
• capture a qualitative notion of connectedness
• well-studied problem, both in theory and practice
• many machine learning and data analysis applications
• good “hydrogen atom” to work through the method (since
spectral and max flow methods embed in very different places)

We really don’t care about exact solution to
intractable problem:
• output of approximation algs is not something we “settle for”
• randomized/approximation algorithms give “better” answers
than exact solution



Exptl Tools: Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.



Overview
• Large networks and different perspectives on data

• Approximation algorithms as “experimental probes”
• Graph partitioning: good test case for different approaches to data

• Geometric/statistical properties implicit in worst-case algorithms
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• Local spectral graph partitioning as an optimization problem
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Recall spectral graph partitioning

• Relaxation of:
The basic optimization
problem:

• Solvable via the eigenvalue
problem:

• Sweep cut of second eigenvector
yields:



Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:

• Find a cut well-correlated with the
seed vector s - geometric notion of
correlation between cuts!

• If s is a single node, this relaxes:

Interpretation:
• Embedding a combination of scaled
complete graph Kn and complete
graphs T and T (KT and KT) - where
the latter encourage cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)



Main results (1 of 2)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR* vector for parameter α, and it can be
computed as the solution to a set of linear equations.
Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.

**GPPR vectors generalize Personalized PageRank, e.g., with negative teleportation
- think of it as a more flexible regularization tool to use to “probe” networks.

Mahoney, Orecchia, and Vishnoi (2010)



Main results (2 of 2)

Theorem: If x* is optimal solution to LocalSpect(G,s,κ),
one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*.

Theorem: Let s be seed vector and κ correlation
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ)
if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.



Other “Local” Spectral and Flow and
“Improvement” Methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated”local”  random walks to compute locally-biased cut

ACL06/Chung08 : locally-biased PageRank vector/heat-kernel vector

Flow improvement methods - Given a graph G and a partition, find a
“nearby” cut that is of similar quality:

GGT89: find min conductance subset of a “small” partition

LR04,AL08: find “good” “nearby” cuts using flow-based methods

Optimization ansatz ties these two together (but is not strongly local
in the sense that computations depend on the size of the output).



Illustration on small graphs
• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)



Illustration with general seeds
• Seed vector doesn’t need to correspond to cuts.

• It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n].
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Conductance, Communities, and NCPPs
Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

Just as conductance captures the “gestalt” notion of cluster/community quality,
the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Since algorithms often
have non-obvious size-
dependent behavior.



Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



Large Social and Information Networks



Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



Other clustering methods

29

Spectral

Metis+MQI

Lrao disconn

LRao conn

Newman

Graclus

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



Lower and upper bounds
 Lower bounds on conductance can be

computed from:
 Spectral embedding  (independent

of balance)
 SDP-based methods (for

volume-balanced partitions)
 Algorithms find clusters close to

theoretical lower bounds

30



12 clustering objective functions*
 Clustering objectives:

 Single-criterion:
 Modularity: m-E(m)   (Volume minus correction)
 Modularity Ratio: m-E(m)
 Volume: ∑u d(u)=2m+c
 Edges cut: c

 Multi-criterion:
 Conductance: c/(2m+c)   (SA to Volume)
 Expansion: c/n
 Density: 1-m/n2

 CutRatio: c/n(N-n)
 Normalized Cut: c/(2m+c) + c/2(M-m)+c
 Max ODF: max frac. of edges of a node pointing outside S
 Average-ODF: avg. frac. of edges of a node pointing outside
 Flake-ODF: frac. of nodes with mode than _ edges inside

31

S

n: nodes in S
m: edges in S
c: edges pointing
     outside S

*Many of hese typically come with a weaker theoretical understanding than conductance, but are
similar/different in known ways for practitioners.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



Multi-criterion objectives

32

 Qualitatively similar
to conductance

 Observations:
 Conductance, Expansion,

NCut, Cut-ratio and
Avg-ODF are similar

 Max-ODF prefers
smaller clusters

 Flake-ODF prefers
larger clusters

 Internal density is bad
 Cut-ratio has high

variance

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



Single-criterion objectives

33

Observations:
 All measures are

monotonic (for rather
trivial reasons)

 Modularity
 prefers large clusters
 Ignores small clusters
 Because it basically

captures Volume!



Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.

• Regularization is implicit in the
steps of approximation algorithm.

External/internal conductanceExternal/internal conductance

Diameter of the clusterDiameter of the clusterConductance of  bounding cutConductance of  bounding cut

Local Spectral

Connected

Disconnected

Lower is good



Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

K1 =
E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

(also, an expander)“low-dimensional” core-periphery



Implications
Relationship b/w small-scale structure and large-scale
structure in social/information networks is not reproduced
(even qualitatively) by popular models

• This relationship governs many things: diffusion of information;
routing and decentralized search; dynamic properties; etc., etc., etc.

•  This relationship also governs (implicitly) the applicability of nearly
every common data analysis tool in these applications

•  Local structures are locally “linear” or meaningfully-Euclidean -- do
not propagate to more expander-like or hyperbolic global size-scales

• Good large “communities” (as usually conceptualized i.t.o. inter-
versus intra- connectivity) don’t really exist



Conclusions

Approximation algorithms as “experimental probes”:
• Geometric and statistical properties implicit in worst-case
approximation algorithms - based on very strong theory

• Graph partitioning is good “hydrogen atom” - for understanding
algorithmic versus statistical perspectives more generally

Applications to network data:
• Local-to-global properties not even qualitatively correct in existing
models, graphs used for validation, intuition, etc.

• Informatics graphs are good “hydrogen atom” for development of
geometric network analysis tools more generally


