

Geometric Network Analysis Tools

Michael W. Mahoney

Stanford University MMDS, June 2010

(For more info, see: <u>http:// cs.stanford.edu/people/mmahoney/</u> or Google on "Michael Mahoney")

Networks and networked data

Lots of "networked" data!!

- technological networks
 - AS, power-grid, road networks
- biological networks
 - food-web, protein networks
- social networks
 - collaboration networks, friendships
- information networks

- co-citation, blog cross-postings, advertiser-bidded phrase graphs...

language networks

• ...

- semantic networks...

Interaction graph model of networks:

- Nodes represent "entities"
- Edges represent "interaction" between pairs of entities

Micro-markets in sponsored search "keyword-advertiser graph"

Goal: Find *isolated* markets/clusters with *sufficient money/clicks* with *sufficient coherence*. Ques: Is this even possible?

advertiser

Question: Is this visualization evidence for the schematic on the left?

What do these networks "look" like?

Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):

• extreme heterogeneity in local environments, e.g., as captured by degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):

- local environments of nodes have structure, e.g., captures with clustering coefficient, that is meaningfully "geometric"
- basis for small world models that start with global "geometry" and add random edges to get small diameter and preserve local "geometry"

Popular approaches to data more generally

Use geometric data analysis tools:

- Low-rank methods very popular and flexible
- "Kernel" and "manifold" methods use other distances, e.g., diffusions or nearest neighbors, to find "curved" lowdimensional spaces

These geometric data analysis tools:

• View data as a point cloud in \mathbb{R}^n , i.e., each of the *m* data points is a vector in \mathbb{R}^n

- Based on SVD*, a basic vector space structural result
- Geometry gives a lot -- scalability, robustness, capacity control, basis for inference, etc.

Can these approaches be combined?

These approaches are very different:

- network is a single data point---not a collection of feature vectors drawn from a distribution, and not really a matrix
- can't easily let m or n (number of data points or features) go to infinity---so nearly every such theorem fails to apply

Can associate matrix with a graph, vice versa, but:

- often do more damage than good
- questions asked tend to be very different
- graphs are really combinatorial things*

*But, graph geodesic distance is a metric, and metric embeddings give fast approximation algorithms in worst-case CS analysis!

Overview

- Large networks and different perspectives on data
- Approximation algorithms as "experimental probes"
 - Graph partitioning: good test case for different approaches to data
 - Geometric/statistical properties *implicit* in worst-case algorithms
- An example of the theory
 - Local spectral graph partitioning as an optimization problem
 - Exploring data graphs locally: practice follows theory closely
- An example of the practice
 - Local and global clustering structure in very large networks
 - Strong theory allows us to make very strong applied claims

Graph partitioning

- A family of combinatorial optimization problems want to partition a graph's nodes into two sets s.t.:
- Not much edge weight across the cut (cut quality)
- Both sides contain a lot of nodes

Several standard formulations:

- Graph bisection (minimum cut with 50-50 balance)
- β -balanced bisection (minimum cut with 70-30 balance)
- cutsize/min{|A|,|B|}, or cutsize/(|A||B|) (expansion)
- cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations are NP-hard!

Later: size-resolved conductance: algs can have non-obvious size-dependent behavior!

Why graph partitioning?

Graph partitioning algorithms:

- capture a qualitative notion of connectedness
- well-studied problem, both in theory and practice
- many machine learning and data analysis applications
- good "hydrogen atom" to work through the method (since spectral and max flow methods embed in very different places)

We *really* don't care about exact solution to intractable problem:

- output of approximation algs is *not* something we "settle for"
- randomized/approximation algorithms give "better" answers than exact solution

Exptl Tools: Probing Large Networks with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses "long paths" with "deep cuts" Multi-commodity flow - (log(n) approx) - difficulty with expanders SDP - (sqrt(log(n)) approx) - best in theory Metis - (multi-resolution for mesh-like graphs) - common in practice X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.

Analogy: What does a protein look like?

Three possible representations (all-atom; backbone; and solvent-accessible surface) of the three-dimensional structure of the protein triose phosphate isomerase.

Experimental Procedure:

- Generate a bunch of output data by using the unseen object to filter a known input signal.
- Reconstruct the unseen object given the output signal and what we know about the artifactual properties of the input signal.

Overview

- Large networks and different perspectives on data
- Approximation algorithms as "experimental probes"
 - Graph partitioning: good test case for different approaches to data
 - Geometric/statistical properties *implicit* in worst-case algorithms
- An example of the theory
 - Local spectral graph partitioning as an optimization problem
 - Exploring data graphs locally: practice follows theory closely
- An example of the practice
 - Local and global clustering structure in very large networks
 - Strong theory allows us to make very strong applied claims

Recall spectral graph partitioning

The basic optimization problem: minimize $x^T L_G x$

s.t. $\langle x, x \rangle_D = 1$ $\langle x, 1 \rangle_D = 0$

- Relaxation of: $\phi(G) = \min_{S \subset V} \frac{E(S, \bar{S})}{Vol(S)Vol(\bar{S})}$
- Solvable via the eigenvalue problem: $\mathcal{L}_G y = \lambda_2(G) y$
- Sweep cut of second eigenvector yields:

 $\lambda_2(G)/2 \le \phi(G) \le \sqrt{8\lambda_2(G)}$

Local spectral partitioning ansatz

Mahoney, Orecchia, and Vishnoi (2010)

Primal program:

minimize $x^T L_G x$

s.t. $\langle x, x \rangle_D = 1$ $\langle x, s \rangle_D^2 \ge \kappa$

Dual program:

$$\max \quad \alpha - \beta (1 - \kappa)$$

s.t.
$$L_G \succeq \alpha L_{K_n} - \beta \left(\frac{L_{K_T}}{\operatorname{vol}(\bar{T})} + \frac{L_{K_{\bar{T}}}}{\operatorname{vol}(T)} \right)$$
$$\beta \ge 0$$

Interpretation:

- Find a cut well-correlated with the seed vector **s** geometric notion of correlation between cuts!
- If s is a single node, this relaxes: $\min_{S \subset V, s \in S, |S| \le 1/k} \frac{E(S, \bar{S})}{Vol(S)Vol(\bar{S})}$

Interpretation:

• Embedding a combination of scaled complete graph K_n and complete graphs T and <u>T</u> (K_T and K_T) - where the latter encourage cuts near (T,<u>T</u>).

Main results (1 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

Theorem: If x^* is an optimal solution to LocalSpectral, it is a GPPR* vector for parameter α , and it can be computed as the solution to a set of linear equations. Proof:

- (1) Relax non-convex problem to convex SDP
- (2) Strong duality holds for this SDP
- (3) Solution to SDP is rank one (from comp. slack.)
- (4) Rank one solution is GPPR vector.

**GPPR vectors generalize Personalized PageRank, e.g., with negative teleportation - think of it as a *more flexible regularization tool* to use to "probe" networks.

Main results (2 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

Theorem: If x^* is optimal solution to LocalSpect(G,s, κ), one can find a cut of conductance $\leq 8\lambda(G,s,\kappa)$ in time $O(n \ lg \ n)$ with sweep cut of x^* . Upper bound, as usual from sweep cut & Cheeger.

Theorem: Let s be seed vector and κ correlation parameter. For all sets of nodes T s.t. $\kappa' := \langle s, s_T \rangle_D^2$, we have: $\phi(T) \ge \lambda(G, s, \kappa)$ if $\kappa \le \kappa'$, and $\phi(T) \ge (\kappa'/\kappa)\lambda(G, s, \kappa)$ if $\kappa' \le \kappa$. Lower bound: Spectral version of flow-

improvement algs.

Other "Local" Spectral and Flow and "Improvement" Methods

Local spectral methods - provably-good local version of global spectral STO4: truncated"local" random walks to compute locally-biased cut ACL06/Chung08 : locally-biased PageRank vector/heat-kernel vector

Flow improvement methods - Given a graph G and a partition, find a "nearby" cut that is of similar quality:

GGT89: find min conductance subset of a "small" partition

LR04,AL08: find "good" "nearby" cuts using flow-based methods

Optimization ansatz ties these two together (but is *not* strongly local in the sense that computations depend on the size of the output).

Illustration on small graphs

• Similar results if we do local random walks, truncated PageRank, and heat kernel diffusions.

Often, it finds
"worse" quality but
"nicer" partitions
than flow-improve
methods. (Tradeoff
we'll see later.)

Illustration with general seeds

- Seed vector doesn't need to correspond to cuts.
- It could be any vector on the nodes, e.g., can find a cut "near" lowdegree vertices with $s_i = -(d_i - d_{av})$, is[n].

Overview

- Large networks and different perspectives on data
- Approximation algorithms as "experimental probes"
 - Graph partitioning: good test case for different approaches to data
 - Geometric/statistical properties *implicit* in worst-case algorithms
- An example of the theory
 - Local spectral graph partitioning as an optimization problem
 - Exploring data graphs locally: practice follows theory closely
- An example of the practice
 - Local and global clustering structure in very large networks
 - Strong theory allows us to make very strong applied claims

Conductance, Communities, and NCPPs

A

Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

 $\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$

$$(S) = \sum_{i \in S} \sum_{j \in V} A_{ij}$$

The Network Community Profile (NCP) Plot of the graph is:

$$\Phi(k) = \min_{S \subset V, |S|=k} \phi(S)$$

Since algorithms often have non-obvious sizedependent behavior.

Just as conductance captures the "gestalt" notion of cluster/community quality, the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Widely-studied small social networks

Newman's Network Science

"Low-dimensional" graphs (and expanders)

NCPP for common generative models

Large Social and Information Networks

• Social nets	Nodes	Edges	Description
LIVEJOURNAL	4,843,953	42,845,684	Blog friendships [4]
Epinions	75,877	405,739	Who-trusts-whom [35]
FLICKR	404,733	2,110,078	Photo sharing [21]
Delicious	147,567	301,921	Collaborative tagging
CA-DBLP	317,080	1,049,866	Co-authorship (CA) [4]
CA-COND-MAT	21,363	91,286	CA cond-mat [25]
• Information networks			
CIT-HEP-TH	27,400	352,021	hep-th citations [13]
Blog-Posts	437,305	565,072	Blog post links [28]
• Web graphs			
Web-google	855,802	4,291,352	Web graph Google
Web-wt10g	1,458,316	6,225,033	TREC WT10G web
• Bipartite affiliation (authors-to-papers) networks			
ATP-DBLP	615,678	944,456	DBLP [25]
ATP-ASTRO-PH	54,498	131,123	Arxiv astro-ph [25]
• Internet networks			
AS	6,474	12,572	Autonomous systems
GNUTELLA	62,561	147,878	P2P network [36]

Table 1: Some of the network datasets we studied.

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of whiskers), and black (randomly rewired network) for consistency and cross-validation.

Other clustering methods

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)

- LeightonRao: based on multi-commodity flow
 - Disconnected clusters vs.
 Connected clusters
- Graclus prefers larger clusters
- Newman's modularity optimization similar to Local Spectral

Lower and upper bounds

- Lower bounds on conductance can be computed from:
 - Spectral embedding (independent of balance)
 - SDP-based methods (for volume-balanced partitions)
- Algorithms find clusters close to theoretical lower bounds

12 clustering objective functions*

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)

- Clustering objectives:
 - Single-criterion:
 - Modularity: *m*-*E*(*m*) (Volume minus correction)
 - Modularity Ratio: *m*-*E*(*m*)
 - Volume: $\sum_{u} d(u) = 2m + c$
 - Edges cut: *c*
 - Multi-criterion:
 - <u>Conductance</u>: c/(2m+c) (SA to Volume)
 - Expansion: *c*/*n*
 - Density: $1-m/n^2$
 - CutRatio: c/n(N-n)
 - Normalized Cut: c/(2m+c) + c/2(M-m)+c
 - Max ODF: max frac. of edges of a node pointing outside S
 - Average-ODF: avg. frac. of edges of a node pointing outside
 - Flake-ODF: frac. of nodes with mode than _ edges inside

*Many of hese typically come with a weaker theoretical understanding than conductance, but are similar/different in known ways for practitioners.

n: nodes in Sm: edges in Sc: edges pointing outside S

Single-criterion objectives

Observations:

- All measures are monotonic (for rather trivial reasons)
- Modularity
 - prefers large clusters
 - Ignores small clusters
 - Because it basically captures Volume!

Volume

Edges cut

Regularized and non-regularized communities (1 of 2)

- Metis+MQI (red) gives sets with better conductance.
- Local Spectral (blue) gives tighter and more well-rounded sets.
- Regularization is *implicit* in the steps of approximation algorithm.

Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Small versus Large Networks

Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

Small and large networks are very different:

E.g., fit these networks to Stochastic Kronecker Graph with "base" K=[a b; b c]:

Implications

Relationship b/w small-scale structure and large-scale structure in social/information networks is not reproduced (even qualitatively) by popular models

- This relationship governs many things: diffusion of information; routing and decentralized search; dynamic properties; etc., etc., etc.
- This relationship also governs (implicitly) the applicability of nearly every common data analysis tool in these applications
- Local structures are locally "linear" or meaningfully-Euclidean -- do not propagate to more expander-like or hyperbolic global size-scales
- Good large "communities" (as usually conceptualized i.t.o. interversus intra- connectivity) don't really exist

Conclusions

Approximation algorithms as "experimental probes":

- Geometric and statistical properties *implicit* in worst-case approximation algorithms based on very strong theory
- Graph partitioning is good "hydrogen atom" for understanding algorithmic versus statistical perspectives more generally

Applications to network data:

- Local-to-global properties not even qualitatively correct in existing models, graphs used for validation, intuition, etc.
- Informatics graphs are good "hydrogen atom" for development of geometric network analysis tools more generally