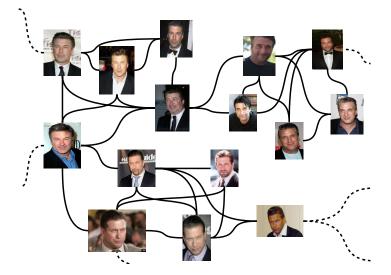
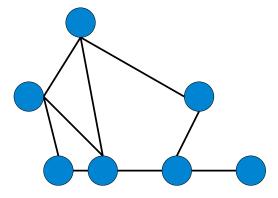
Scaleable correlation clustering algorithms

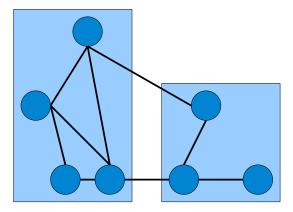

Edo Liberty

YAHOO!

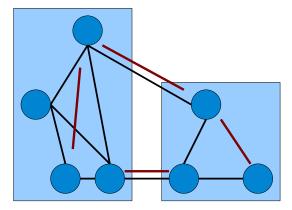
Joint work (in progress) with Nir Ailon.



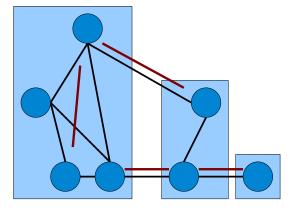
Correlation clustering



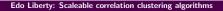
Input for correlation clustering

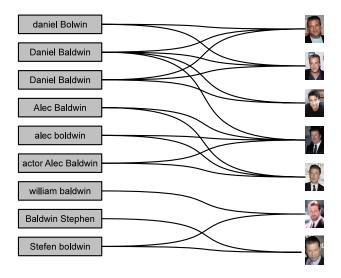


Output of correlation clustering



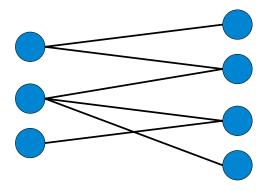
Cost of a correlation clustering solution


Cost of a correlation clustering solution



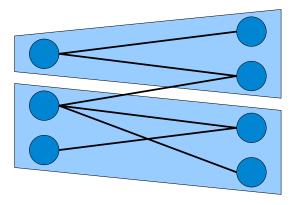
Correlation clustering results

	approx const	running time
Bansal, Blum, Chawla	pprox 20,000	$\Omega(n^2)$
Demaine, Emanuel, Fiat, Immorlica	$4\log(n)$	LP
Charikar, Guruswami, Wirth	4	LP
Ailon, Charikar, Newman, Alantha	2.5	LP
Ailon, Charikar, Newman, Alantha	3	<i>O</i> (<i>m</i>)
Ailon, Liberty	< 3	O(n) + cost(OPT)
	3	<pre>log(n) message passing rounds*</pre>



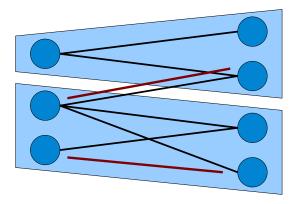
Correlation bi-clustering

Input for correlation bi-clustering

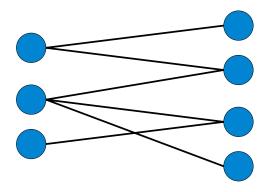


The input is an undirected unweighted bipartite graph.

Output of correlation bi-clustering

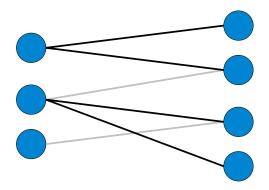

The output is a set of bi-clusters.

Cost of a correlation bi-clustering solution

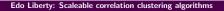


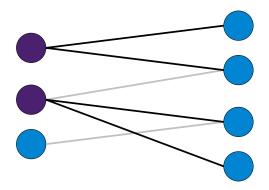
The cost is the number of erroneous edges.

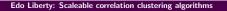
	approx const	running time
Demaine, Emanuel, Fiat, Immorlica	$O(\log(n))*$	LP
Charikar, Guruswami, Wirth	$O(\log(n))*$	LP
Guo, Huffner, Ko- musiewicz, Zhang	4	sequential $O(m)$
	4	3 message passing rounds $O(n + cost(OPT))$ communication



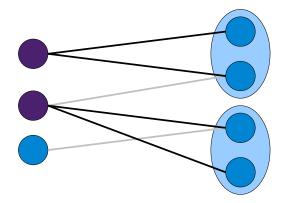
Permute both left and right side randomly.

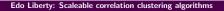


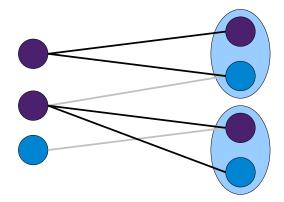




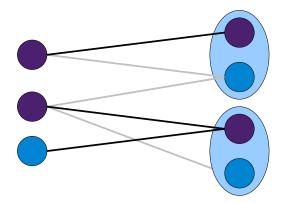
For every node on the right keep only the top edge.



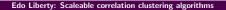

Mark connected nodes on the left as "left-centers".



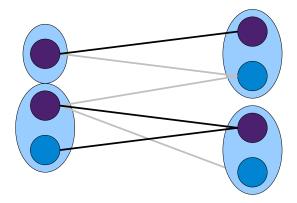
Cluster all nodes on the right by their left-center.



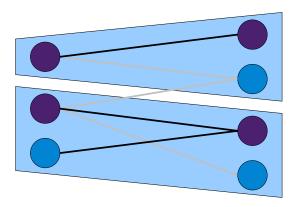
Mark top nodes in their right clusters and "right-centers".



Edo Liberty: Scaleable correlation clustering algorithms


17 / 33

For every node on the left keep only the top edge to a right-center.

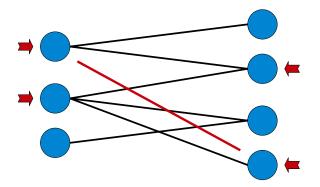


18 / 33

Cluster nodes on the left by their right-center.

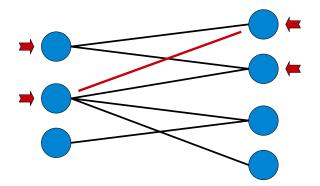
Bi-cluster right-clusters and left-clusters by centers connections.

Lemma


Let OPT denote the best possible bi-clustring of G. Let B be a random output of quick-bi-cluster. Then:

 $E[cost(B)] \leq 4cost(OPT)$

Let's prove this...


Bad squares, bad events, and erroneous edges

A bad square, is a set of four nodes (two on each side) between which there are exactly three edges.

Bad squares, bad events, and erroneous edges

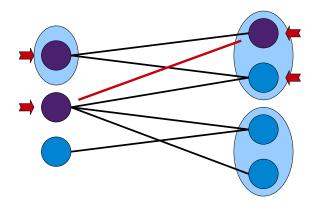
A bad square, is a set of four nodes (two on each side) between which there are exactly three edges.

OPT must make at least one mistake in every bad square.

$$cost(OPT) \geq min \sum_{e} x_{e}$$

s.t. $\forall s \sum_{e \subseteq s} x_{e} \geq 1$

 $x_e \in [0, 1]$ indicates whether edge *e* is erroneous.


Defining dual of the problem and using that $PRIMAL \ge DUAL$ we have:

$$egin{array}{rcl} {\it cost}({\it OPT}) &\geq & max \sum_s eta_s \ {
m s.t.} &orall e & \sum_{s \supset e} eta_s \leq 1 \end{array}$$

 β_s is a fractional "blame" factor for each square s.

Bad squares, bad events, and erroneous edges



A bad event, happens to a bad square when two nodes that belong to it are chosen, one on each side.

Edo Liberty: Scaleable correlation clustering algorithms

26 / 33

Bad squares, bad events, and erroneous edges

This is a bad event because it generates an erroneous edge.

Edo Liberty: Scaleable correlation clustering algorithms

27 / 33

Property 1

There is a one to one mapping between bad events occurring and errors in the output clustering.

$$\mathbb{E}(cost(B)) = \mathbb{E}\sum_{e} z_e = \mathbb{E}\sum_{s} z_s = \sum_{s} p_s$$

- \blacksquare z_e denote the indicator variable that edge e is erroneous
- \blacksquare z_s denote the event that a bad event happened to bad square s.
- p_s is the probability that a bad event happens to bad square s.

Property 2

The probability of each edge in a bad event being erroneous is 1/4.

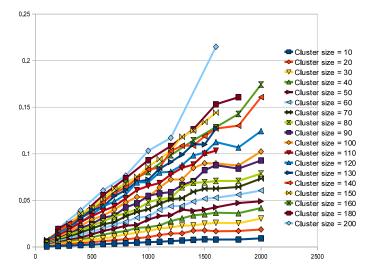
We have that $p_e \leq 1$ for every edge, and also:

$$p_e = \sum_{s \supset e} \Pr(z_e | z_s = 1) \cdot p_s = \sum_{s \supset e} \frac{1}{4} p_s$$

$$\forall e \quad \sum_{s \supset e} \frac{1}{4} p_s \leq 1$$

Putting it all together

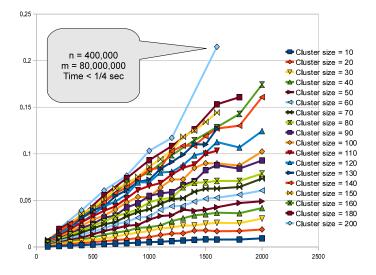
$$\mathbb{E}(cost(B)) = \sum_{s} p_{s}$$
$$\forall e \sum_{s \supset e} \frac{1}{4} p_{s} \le 1$$


$$cost(OPT) \geq max \sum_{s} eta_{s}$$

s.t. $orall e \sum_{s \supset e} eta_{s} \leq 1$

We finally get...

The values $\beta_s = \frac{1}{4}p_s$ give a feasible solution to DUAL and so


$$E[cost(B)] \leq 4cost(OPT)$$

Some experiments....

Some experiments....

Fin

