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What is Counting in This Talk?

Assume a very long vector of D items: x1, x2, ..., xD .

For example, D = 264, or D = 2112.

This talk is about counting
∑D

i=1 xα
i , where 0 < α ≤ 2.

1 2 4 6 8 10 12 14 D

x

The case α→ 1 is particularly interesting and important (eg entropy estimation).
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Isn’t Counting a Simple (Trivial) Task?

Partially True!, if data are static. However

Real-world data are in general Massive and Dynamic —— Data Streams

• Databases in Amazon, Ebay, Walmart, and search engines

• Internet/telephone traffic, high-way traffic

• Finance (stock) data

• ...

• May need answers in real-time, eg anomaly detection (using entropy).
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For example, the Turnstile data stream model for an online bookstore

t=1            arriving stream  =  (3,  10  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0 0

t=0

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 010

t=2            arriving stream  =  (1,  5  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0

t=3            arriving stream  =  (3,  −8  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0

user  3  ordered 10 books

user 1 ordered 5 books

user 3 cancelled 8 books

5 2

5

10
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Turnstile Data Stream Model

At time t, an incoming element : at = (it, It)

it ∈ [1, D] index, It: increment/decrement.

Updating rule : At[it] = At−1[it] + It

Goal : Count F(α) =
∑D

i=1 At[i]
α
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Counting: Trivial if α = 1, but Non-trivial in General

Goal : Count F(α) =
∑D

i=1 At[i]
α, where At[it] = At−1[it] + It .

When α 6= 1, counting F(α) exactly requires D counters. (but D can be 264)

When α = 1, however, counting the sum is trivial, using a simple counter.

F(1) =
D
∑

i=1

At[i] =
t
∑

s=1

Is,
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The Intuition for α ≈ 1

There might exist an intelligent counting system which works like a simple counter

when α is close 1; and its complexity is a function of how close α is to 1.

Our answer: Yes!

Two caveats:

(1) What if data are negative? Shouldn’t we define F(α) =
∑D

i=1 |At[i]|α ?

(2) Why the case α ≈ 1 is important ?
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The Non-Negativity Constraint

”God created the natural numbers; all the rest is the work of man.”

—- by German mathematician Leopold Kronecker (1823 - 1891)

Turnstile model, at = (it, It), At[it] = At−1[it] + It,

It > 0: increment, insertion, eg place orders

It < 0: decrement, deletion, eg cancel orders,

This talk: Strict Turnstile model At[i] ≥ 0, always.

One can only cancel an order if she/he did place the order!!

Suffices for almost all applications.
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Sample Applications of αth Moments (Especially α ≈ 1)

1. F(α) =
∑D

i=1 At[i]
α itself is a useful summary statistic

e.g., Rényi entropy, Tsallis entropy, are functions of F(α).

2. Statistical modeling and inference of parameters using method of moments

Some moments may be much easier to compute than others.

3. F(α) =
∑D

i=1 At[i]
α is a fundamental building element for other algorithms

Eg., estimating Shannon entropy of data streams
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Shannon Entropy of Data Streams

Definition of Shannon Entropy

H = −
D
∑

i=1

At[i]

F(1)
log

At[i]

F(1)
, F(1) =

D
∑

i=1

At[i]

Shannon entropy can be approximated by Rényi Entropy or Tsallis Entropy.

Rényi Entropy

Hα =
1

1− α
log

F(α)

Fα
(1)

→ H, as α→ 1

Tsallis Entropy

Tα =
1

α− 1

(

1− F(α)

Fα
(1)

)

→ H, as α→ 1
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Algorithms for Estimating Shannon Entropy

• Many algorithms in theoretical CS and databases on estimating entropy.

• A recent trend: Using αth moments to approximate Shannon entropy.

– Zhao et. al. (IMC07), used symmetric stable random projections

(Indyk JACM06, Li SODA08) to approximate moments and Shannon

entropy. Mainly an empirical paper.

– Harvey et. al. (ITW08). A theoretical paper proposed a criterion on

how close α is to 1. Used symmetric stable random projections as the

underlying algorithm.

– Harvey et. al. (FOCS08). They proposed refined criteria on how to

choose α and cited both symmetric stable random projections and

Compressed Counting as underlying algorithms.
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Basic Ideas of Estimating Entropy Using Moments

Essentially, to achieve a ν-additive guarantee for the Shannon entropy, it suffices

to estimate the αth frequency moment with an ǫ = ν∆-multiplicative guarantee

(for sufficiently small ∆, e.g., ∆ < 10−4 or even much smaller).

(1− ǫ)F(α) ≤ F̂(α) ≤ (1 + ǫ)F(α)

=⇒

H − ν ≤ Ĥα ≤ H + ν

if α = 1−∆ is extremely close to 1.

————-

Recall the definition of Rényi entropy:

Hα =
1

1− α
log

F(α)

Fα
(1)
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Previous Methods for Estimating F(α)

• The pioneering work, [AMS STOC’96]

• A popular algorithm, symmetric stable random projections

[Indyk JACM’06], [Li SODA’08]

– Basic idea: Let X = At ×R, where entries of R ∈ R
D×k are sampled

from a symmetric α-stable distribution. Entries of X ∈ R
k are also

samples from a symmetric α-stable distribution with the scale = F(α).

– k = O
(

1/ǫ2
)

, the large-deviation bound.

k may be too large for real applications [GC RANDOM’07].

– While it suggests an algorithm for estimating Shannon Entropy by letting α

very close to 1 (Harvey et. al. [ITW08, FOCS08]). The required sample

size O
(

1/ǫ2
)

with (eg) ǫ < 10−5 can be prohibitive.



Ping Li Compressed Counting, Entropy Estimation, Data Stre ams June 2010 MMDS 14

Compressed Counting: Skewed Stable Random Projections

Original data stream signal: At[i], i = 1 to D. eg D = 264

Projected signal: Xt = At ×R ∈ R
k , k is small.

Projection matrix: R ∈ R
D×k,

Sample entries of R i.i.d. from a skewed stable distribution.
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Incremental Projection

Linear Projection: Xt = At ×R, At ∈ R
D , R ∈ R

D×k.

+

Linear data model: At[it] = At−1[it] + It

=⇒
Conduct Xt = At ×R incrementally:

Xt[j]← Xt−1[j] + rit,j × It, j = 1 to k.

Generate ri,j , entries of R, on-demand
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Recover F(α) from Projected Data

Xt = (x1, x2, ..., xk) = At ×R

R = {rij} ∈ R
D×k, rij ∼ S (α, β, 1)

S (α, β, γ): α-stable, β-skewed distribution with scale γ

Then, by stability, at any t, xj ’s are i.i.d. stable samples

xj ∼ S

(

α, β, F(α) =
D
∑

i=1

At[i]
α

)

=⇒ A statistical estimation problem.
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Review of Skewed Stable Distributions

Z follows a β-skewed α-stable distribution if Fourier transform of its density

FZ(t) = E exp
(√
−1Zt

)

α 6= 1,

= exp
(

−F |t|α
(

1−
√
−1βsign(t) tan

(πα

2

)))

,

0 < α ≤ 2, −1 ≤ β ≤ 1. The scale F > 0. Z ∼ S(α, β, F )

If Z1, Z2 ∼ S(α, β, 1), independent, then for any C1 ≥ 0, C2 ≥ 0,

Z = C1Z1 + C2Z2 ∼ S (α, β, F = Cα
1 + Cα

2 ) .
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The Statistical Estimation Problem

Task : Given k i.i.d. samples xj ∼ S
(

α, β, F(α)

)

, estimate F(α).

• No closed-form density in general, but closed-form moments exit.

• Two years ago (Li, SODA 2009):

– A Geometric Mean estimator based on positive moments.

– A Harmonic Mean estimator based on negative moments.

– Their variances are proportional to O (∆), ∆ = |1− α|.
– The complexity bound is O (1/ǫ), much better than O

(

1/ǫ2
)

.

– To estimate entropy needs, for example, ∆ < 10−4, ǫ = ν∆ < 10−5.

• Today: a new estimator (Unpublished)

– The variance is proportional to O
(

∆2
)

.

– The complexity is essentially O(1), or more precisely, O
(

1/ν2
)

.
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The Moment Formula

If Z ∼ S(α, β, F(α)), then for any −1 < λ < α ,

E
(

|Z|λ
)

= F
λ/α
(α) cos

(

λ

α
tan−1

(

β tan
(απ

2

))

)

×
(

1 + β2 tan2
(απ

2

))
λ
2α

(

2

π
sin
(π

2
λ
)

Γ

(

1− λ

α

)

Γ (λ)

)

,

————

λ = α
k =⇒ an unbiased geometric mean estimator.
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The Moment Formula for β = 1

When β = 1, then, for α < 1 and −∞ < λ < α ,

E
(

|Z|λ
)

= E
(

Zλ
)

= F
λ/α
(α)

Γ
(

1− λ
α

)

cosλ/α
(

απ
2

)

Γ (1− λ)
.

Nice consequence :

Estimators using negative moments will have infinite moments.
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The Geometric Mean Estimator for β = 1

F̂(α),gm =

∏k
j=1 |xj |α/k

Dgm

Var
(

F̂(α),gm

)

=















F 2
(α)

k
π2

6

(

1− α2
)

+ O
(

1
k2

)

, if α < 1

F 2
(α)

k
π2

6 (α− 1) (5− α) + O
(

1
k2

)

, if α > 1

As α→ 1, the asymptotic variance→ 0.
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A Geometric Mean Estimator for Symmetric Projections β = 0

(Li, SODA’08)

Symmetric projections, ie rij ∼ S(α, β = 0, 1).

Projected data: xj ∼ S
(

α, β = 0, F(α)

)

, j = 1 to k.

Geometric mean estimator:

F̂(α),gm,sym =

∏k
j=1 |xj |α/k

Dgm,sym

Var
(

F̂(α),gm,sym

)

=
F 2

(α)

k

π2

12

(

2 + α2
)

+ O

(

1

k2

)

,

As α→ 1, using skewed projections achieves an “infinite improvement”.
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A Better Estimator Using Harmonic Mean, for α < 1

F̂(α),hm =
k

cos(απ
2 )

Γ(1+α)
∑k

j=1 |xj |−α

(

1− 1

k

(

2Γ2(1 + α)

Γ(1 + 2α)
− 1

))

.

Var
(

F̂(α),hm

)

=
F 2

(α)

k

(

∆ + ∆2

(

2− π2

6

)

+ O
(

∆3
)

)

+ O

(

1

k2

)

.
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Comparing Asymptotic Variances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Geometric mean
Harmonic mean
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Tail Bounds of the Geometric Mean Estimator

Pr

(

F̂(α),gm − F(α) ≥ ǫF(α)

)

≤ exp

(

−k
ǫ2

GR,gm

)

, ǫ > 0,

Pr

(

F̂(α),gm − F(α) ≤ −ǫF(α)

)

≤ exp

(

−k
ǫ2

GL,gm

)

, 0 < ǫ < 1,

ǫ2

GR,gm

= CR log(1 + ǫ) − CRγe(α − 1)

− log

(

cos

(

κ(α)πCR

2

)

2

π
Γ
(

αCR
)

Γ
(

1 − CR
)

sin

(

παCR

2

))

CR is the solution to to

− γe(α − 1) + log(1 + ǫ) +
κ(α)π

2
tan

(

κ(α)π

2
CR

)

−

απ/2

tan
(

απ
2

CR

) −

Γ′
(

αCR
)

Γ
(

αCR
)

α +
Γ′

(

1 − CR
)

Γ
(

1 − CR
)

= 0



Ping Li Compressed Counting, Entropy Estimation, Data Stre ams June 2010 MMDS 26

0  0.2 0.4 0.6 0.8 1  
0
1
2
3
4
5
6
7
8
9

ε

G
R

,g
m

α = 0.01

0.99

0.9
0.8

0.7
0.6

0.50.4
0.3

0.2
0.1

α = 0.9999

(a) Right bound, α < 1

0  0.2 0.4 0.6 0.8 1  
0 
2 
4 
6 
8 
10
12
14
16
18

ε

G
R

,g
m

α = 2.0
1.9 1.8 1.7

1.6
1.5

1.4

1.3

1.2
1.1 1.01 1.0001

(b) Right bound, α > 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

ε

G
L,

gm

α = 0.010.1

0.2

0.3
0.40.5

0.6
0.7

0.8
0.9

0.99

(c) Left bound, α < 1

0 0.2 0.4 0.6 0.8 1
0
1
2
3
4
5
6
7
8
9

10

ε

G
L,

gm

α = 2
1.9

1.81.7

1.6
1.5

1.4
1.3

1.2

1.1
1.01

(d) Left bound, α > 1



Ping Li Compressed Counting, Entropy Estimation, Data Stre ams June 2010 MMDS 27

The Sample Complexity Bound

Let G = max{GL,gm, GR,gm}.
Bound the error (tail) probability by δ, the level of significance (eg 0.05)

Pr

(

|F̂(α),gm − F(α)| ≥ ǫF(α)

)

≤ 2 exp

(

−k
ǫ2

G

)

≤ δ

=⇒ k ≥ G

ǫ2
log

2

δ

Sample Complexity Bound (large-deviation bound):

If k ≥ G
ǫ2 log 2

δ , then with probability at least 1− δ, F(α) can be approximated

within a factor of 1± ǫ.
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The Sample Complexity for α = 1±∆

For fixed ǫ, as α→ 1 (i.e., ∆→ 0),

GR,gm =
ǫ2

log(1 + ǫ) − 2
√

∆log (1 + ǫ) + o
(√

∆
) = O (ǫ)

If α > 1, then

GL,gm =
ǫ2

− log(1 − ǫ) − 2
√

−2∆ log(1 − ǫ) + o
(√

∆
) = O (ǫ)

If α < 1, then

GL,gm =
ǫ2

∆
(

exp
(

− log(1−ǫ)
∆

− 1 − γe

))

+ o
(

∆ exp
(

1
∆

))

= O
(

ǫ exp
(

− ǫ

∆

))

For α close to 1, sample complexity is O
(

G/ǫ2
)

=O (1/ǫ) not O
(

1/ǫ2
)

.
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New Algorithms/Estimators Are Needed

The geometric mean / harmonic mean estimators are inadequate for estimating

Shannon entropy, using either Rényi Entropy or Tsallis Entropy

Ĥα =
1

1− α
log

F̂(α)

Fα
(1)

, T̂α =
1

α− 1

(

1− F̂(α)

Fα
(1)

)

V ar
(

Ĥ(α)

)

∝ 1
(1−α)2 , V ar

(

T̂(α)

)

∝ 1
(1−α)2 .

The geometric mean / harmonic mean estimators are inadequate, becuase

• Their variances = O (∆), ∆ = |1− α|, are too large to cancel 1
(1−α)2 .

• The complexity O (1/ǫ) is too large as, for example, ǫ < 10−5.
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A Recent New Algorithm/Estimator

F̂(α) =
1

∆∆

[

k
∑k

j=1 x
−α/∆
j

]∆

xj ∼ S(α, β = 1, F(α) cos
(απ

2

)

)

∆ = 1− α
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Variance and Bias of the New Estimator

E
(

F̂(α)

)

= F(α)

(

1 + O

(

∆

k

))

,

V ar
(

F̂(α)

)

=
∆2

k
F 2

(α)

(

3− 2∆ + O

(

1

k

))

.
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Intuition Behind the New Estimator

Suppose a random variable Z ∼ S
(

α < 1, β = 1, cos
(

π
2 α
))

.

A popular way to sample from this distribution (Chambers-Mallows-Stuck method):

Z =
sin (αV )

[sinV ]
1/α

[

sin (V ∆)

W

]
∆
α

,

where V ∼ Uniform(0, π) and W ∼ Exp(1).
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The Cumulative Distribution Function (CDF)

FZ(t) = Pr (Z ≤ t) =
1

π

∫ π

0

exp
(

−t−α/∆g (θ; ∆)
)

dθ.

where

g(θ; ∆) =
[sin (αθ)]α/∆

[sin θ]
1/∆

sin (θ∆) , θ ∈ (0, π)

lim
θ→0+

g(θ; ∆) = g (0+; ∆) = ∆αα/∆.
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The MLE Using Approximate CDF

Consider a random variable Y whose cumulative distribution function (CDF) is

FY (t) = Pr (Y ≤ t) = exp
(

−t−α/∆∆αα/∆
)

, t ∈ [0,∞).

Consider an i.i.d. sample Yj , j = 1 to k, and xj = cYj .

Here cα is equivalent to our F(α). ∆ = 1− α.
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The maximum likelihood estimator (MLE) of cα (equivalent to our F(α)) is

1

∆∆αα

[

k
∑k

j=1 x
−α/∆
j

]∆

very similar to the proposed (guessed) new estimator F̂(α).

If ∆ = 1− α = 0.1, then ∆∆ = 0.7943, αα = 0.9095.

If ∆ = 1− α = 0.01, then ∆∆ = 0.9550, αα = 0.9901.
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The New Estimator

xj ∼ S(α, β = 1, F(α) cos
(απ

2

)

)

F̂(α) =
1

∆∆

[

k
∑k

j=1 x
−α/∆
j

]∆

,

E
(

F̂(α)

)

= F(α)

(

1 + O

(

∆

k

))

,

V ar
(

F̂(α)

)

=
∆2

k
F 2

(α)

(

3− 2∆ + O

(

1

k

))

.
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Tail Bounds of the New Estimator

For any ǫ > 0 and 0 < ∆ = 1− α < 1, the right tail bound is

Pr

(

F̂(α) ≥ (1 + ǫ)F(α)

)

≤ exp

(

−k
ǫ2

GR

)

ǫ2

GR
= −

(

log
∞
∑

n=0

(−tR)n

n!

Γ
(

1 + n
∆

)

Γ
(

1 + nα
∆

) +
tR

(1 + ǫ)1/∆∆

)

where tR is the solution to

∑

∞

n=1
(−1)n(tR)n−1

(n−1)!

Γ(1+ n
∆ )

Γ(1+ nα
∆ )

∑

∞

n=0
(−tR)n

n!

Γ(1+ n
∆ )

Γ(1+ nα
∆ )

+
1

(1 + ǫ)1/∆∆
= 0
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For any 0 < ǫ < 1 and 0 < ∆ = 1− α < 1, the left tail bound is

Pr

(

F̂(α) ≤ (1− ǫ)F(α)

)

≤ exp

(

−k
ǫ2

GL

)

ǫ2

GL
= − log

∞
∑

n=0

(tL)n

n!

Γ
(

1 + n
∆

)

Γ
(

1 + nα
∆

) +
tL

(1− ǫ)1/∆∆

where tL is the solution to

−

∑

∞

n=1
(tL)n−1

(n−1)!

Γ(1+ n
∆ )

Γ(1+ nα
∆ )

∑

∞

n=0
(tL)n

n!

Γ(1+ n
∆ )

Γ(1+ nα
∆ )

+
1

(1− ǫ)1/∆∆
= 0
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Exact Solution Exists When α→ 0 (∆→ 1)

When ∆ = 1, i.e., α = 0, then.

ǫ2

GR
= log(1 + ǫ)− ǫ

1 + ǫ
, ǫ > 0

ǫ2

GL
= log(1− ǫ) +

ǫ

1− ǫ
, 0 < ǫ < 1.

———–

If ∆ = 1 (α = 0), then Γ
(

1 + n
∆

)

= n!, Γ
(

1 + nα
∆

)

= 1:

∞
∑

n=0

(−tR)n

n!

Γ
(

1 + n
∆

)

Γ
(

1 + nα
∆

) =
∞
∑

n=0

(−tR)n =
1

1 + tR
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A Numerically Stable Version of the Tail Bounds

ǫ2

GR
= − log



1 +

∞
∑

n=1

(

−tR
e

∆

)n n−1
∏

j=0

n− j∆

(n− j)e



−
(

tR
e

∆

) 1

e(1 + ǫ)1/∆

ǫ2

GL
= − log



1 +
∞
∑

n=1

(

tL
e

∆

)n n−1
∏

j=0

n− j∆

(n− j)e



+
(

tL
e

∆

) 1

e(1− ǫ)1/∆
.

————-

Always numerically stable if
∣

∣t e
∆

∣

∣ < 1 . Recall n! ≈
√

2πnnn

en .

=⇒ ǫ2

G = ∆2ν2

G = O(1), i.e., GL = O
(

∆2
)

and GR = O
(

∆2
)

.



Ping Li Compressed Counting, Entropy Estimation, Data Stre ams June 2010 MMDS 43

Theoretical Limits when ν → 0

Recall ǫ = ν∆ and ν is the desired additive accuracy of entropy estimation.

As ν → 0,

GR

∆2
→ 6− 4∆,

GL

∆2
→ 6− 4∆.
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Numerical Values of Tail Bound Constants
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Complexity of Entropy Estimation Using the New Estimator

The new estimator provides a very satisfactory solution.

• The sample complexity for entropy estimation is O
(

9/ν2
)

.

The constant 9 can be replaced by 6 when ν is small.

• Previous bound in FOCS08 is about
(

106 log M/ν2
)

, where M is the

“universe size.” The constant, e.g., 106, may vary depending on a few

parameters.

• Empirically, only k = 10 samples achieve good estimates.
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An Empirical Study

Data

Since estimation accuracy is what we care, we simply use static data instead of

data streams. The projected vector X = R
TAt is the same, regardless whether

it is computed at once (i.e., static) or incrementally (i.e., dynamic).

Eight English words are selected from a chunk of Web crawl data. Our data set

consists of 8 vectors and the entries are the numbers of word occurrences in each

document.
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Word Sparsity Entropy H

TWIST 0.004 5.4873

FRIDAY 0.034 7.0487

FUN 0.047 7.6519

BUSINESS 0.126 8.3995

NAME 0.144 8.5162

HAVE 0.267 8.9782

THIS 0.423 9.3893

A 0.596 9.5463
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Entropy Estimation Using Symmetric Stable Projections
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Y-axis: Normalized Mean Square Error (MSE)

The errors are huge if α = 1−∆ is too close to 1.

Even with k = 1000 samples, the smallest possible errors are still very large.
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Entropy Estimation Using CC with Geometric Mean Estimator
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Much smaller errors compared to using symmetric projections.

The errors still increase if α = 1−∆ is too close to 1. With k = 1000

samples, it is possible to obtain good estimates if α is chosen carefully.
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Entropy Estimation Using CC with the New Estimator
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Only k = 10 (or even k = 3) samples are needed to produce good estimates.

The errors do not increase as α = 1−∆ is closer and closer to 1.
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Shannon Entropy Estimation Results for All Vectors
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Conclusions

• The α-th frequency moments of data streams have very important

applications when α ≈ 1, eg. estimating entropy for anomaly detection.

• Well-known methods based on symmetric stable random projections do not

capture the intuition that estimating α-th moments should be easy if α ≈ 1.

• Compressed Counting (CC) (maximally-skewed stable random projections)

can provide the mechanism for dramatically improving estimates near α = 1.
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• To estimate Shannon entropy, the estimator of frequency moments should

have variance decreasing to zero at the rate of O
(

∆2
)

, ∆ = |1− α|.
Equivalently, the complexity should be essentially O (1).

• The previous work on CC (two years ago) only achieved variances = O (∆)

and complexity =O (1/ǫ), but ǫ = O(∆) is extremely small.

• The new estimator (this talk) has achieved variance = O
(

∆2
)

and

complexity = O(1). It provides a practically satisfactory solution to the

long-standing entropy estimation problem.
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