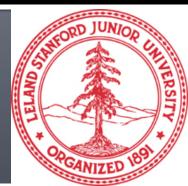
Inferring Networks of Diffusion and Influence

Jure Leskovec

Joint work with Manuel Gomez-Rodriguez, and Andreas Krause

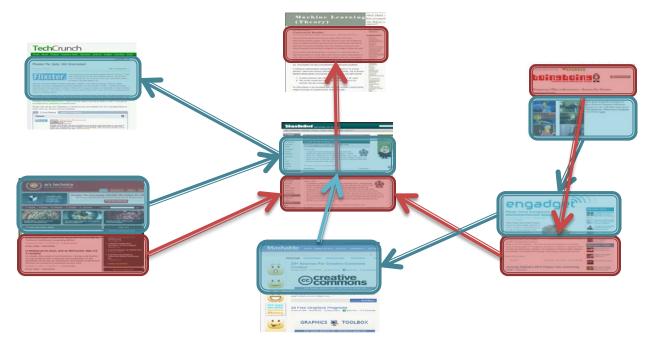


Networks and Processes on Them

- Many times it is hard to directly observe the underlying social network
 - Hidden/hard-to-reach populations:
 - Drug injection users
 - Implicit connections:
 - Network of information sharing in online media
- But it is often easier to observe results of the processes taking place on such (invisible) networks:
 - Virus propagation:
 - People get sick, they see the doctor
 - Information networks:
 - Blogs mention information

Information Diffusion Network

Information diffuses through the network



We only see the mention but not the source
Can we reconstruct (hidden) diffusion network?

[KDD, `09]

More examples

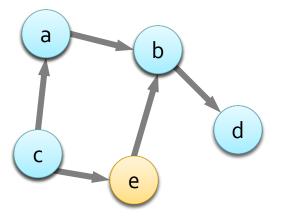
Virus propagation:

- Viruses propagate through the network
- We only observe times when people get sick
 - But NOT who infected them
- Word of mouth & Viral marketing:
 - Recommendations and influence propagate
 - We only observe when people buy products
 - But Not who influenced them to purchase

Can we infer the underlying social network?

Inferring the Network

There is a hidden directed network:



- We only see times when nodes get infected:
 - Cascade c₁: (a,1), (c,2), (b,3), (e,4)
 - Cascade c₂: (c,1), (a,4), (b,5), (d,6)
- Want to infer who-infects-whom network

Plan for the Talk

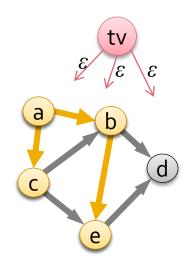
The plan:

- Define a continuous time model of diffusion
- Define the likelihood of the observed data given a graph
- Show how to efficiently compute the likelihood
- Show how to efficiently optimize the likelihood
 - Find a graph G that maximizes the likelihood

Cascade generation model

Cascade generation model:

- Cascade reaches u at time t_u, and spreads to u's neighbors v:
 - With prob. β cascade propagates along (u,v) and t_v = t_u+ Δ , where Δ ~f(Θ)



Transmission probability:

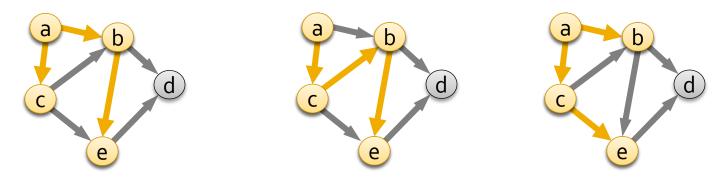
 $P_c(i,j) \propto P(\Delta)$ if $t_j > t_i$, else ε

Prob. that cascade c propagates in a tree T

$$P(c|T) \propto \prod_{(i,j)\in T} P_c(i,j)$$

Cascade generation model

There are many possible transmission trees:
c: (a,1), (c,2), (b,3), (e,4)



Heed to consider all possible directed spanning trees T supported by G:

$$P(c|G) = \sum_{T \in \mathcal{T}(G)} P(c|T)P(T|G) \propto \sum_{T \in \mathcal{T}(G)} \prod_{(i,j) \in T} P_c(i,j)$$

Finding the Diffusion network

Then simply:
$$P(C|G) = \prod_{c \in C} P(c|G)$$
Want to find: $G = \underset{|G| \leq k}{\operatorname{argmax}} P(C|G)$

- Good news: computing P(C/G) is tractable
 - Need to consider all possible transmission trees of G
 - There are O(nⁿ) such spanning trees!
 - The Matrix tree theorem
 - Can compute this sum in O(n³)
- Bad news:
 - We actually want to find $\arg \max_G P(C/G)$

An alternative formulation

Consider only the most likely tree
Log-likelihood of a cascade c in graph G:

The problem is NP-hard: MAX-k-COVER [KDD '10] Our algorithm can do it near-optimally in O(N²)

cades C:

 $G^* = \operatorname*{argmax}_{|G| \le k} F_C(G)$

Good News

Given a cascade c

What is the most likely propagation tree?

$$F_c(G) = \max_{T \in \mathcal{T}(G)} \sum_{(i,j) \in T} w_c(i,j)$$

- A maximum **directed** spanning tree
 - Edge (i,j) in G has weight $w(i,j) = log P_c(i,j)$
 - To compute the maximum spanning tree:
 Each node just picks an in-edge of max weight

$$= \sum_{i \in V} \max_{Par_T(i)} w(Par_T(i), i)$$

Local greedy selection gives optimal tree!

d

b

С

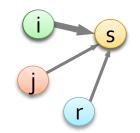
Great News

Theorem:

 $F_{C}(G) \text{ is monotonic, and submodular}$ $F_{C}(A \cup \{e\}) - F_{C}(A) \geq F_{C}(B \cup \{e\}) - F_{C}(B)$ Gain of adding an edge to a "small" graph Gain of adding an edge to a "large" graph $A \subset B \subset VxV$

Proof:

- Single cascade c, edge e of wgt. x
- Let w be max weight in-edge of s in A
- Let w' be max weight in-edge of s in B
- We know: *w*≤*w*′ and x=*x*′
- Now: $F_c(A \cup \{e\}) F_c(A) = max(w, x) w$ ≥ max(w', x) - w' = $F_c(B \cup \{e\}) - F_c(B)$



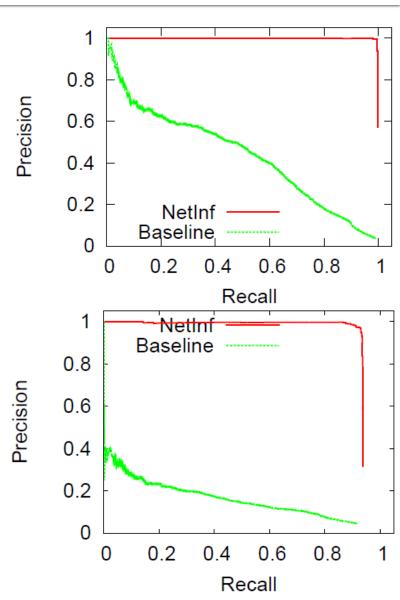
Finding the graph

- Use the greedy hill-climbing to maximize F_c(G):
 - $e_i = \underset{e \in G \setminus G_{i-1}}{\operatorname{argmax}} F_C(G_{i-1} \cup \{e\}) F_C(G_{i-1})$
 - At every step pick the edge that maximizes the marginal improvement
- Benefits:
 - Approximation guarantee (~0.63 of OPT)
 - Tight online bounds on the solution quality
 - Speed-ups:
 - Lazy evaluation
 - Localized update

Experimental setup

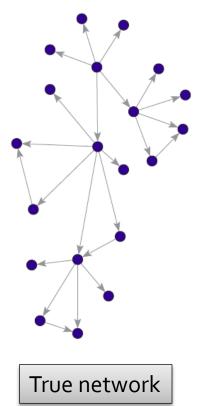
Synthetic data:

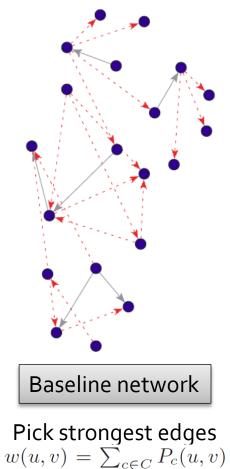
- Generate a graph G on k edges
- Generate cascades
- Record node infection times
- Reconstruct G
- Evaluation:
 - How many edges of G can we find?
 - Precision-Recall
 - Break even point

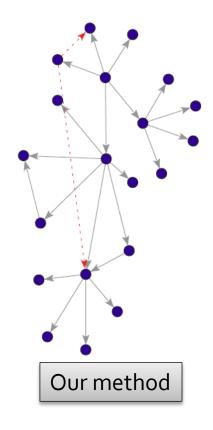


Small example

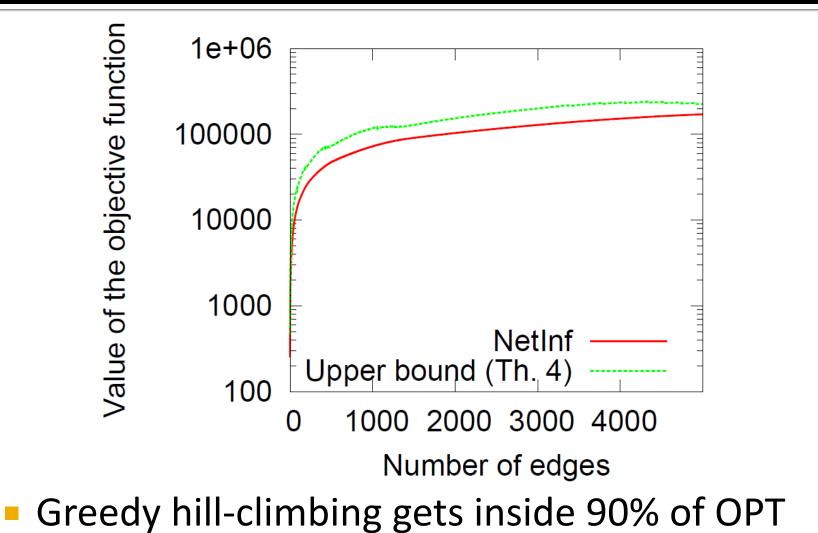
Small synthetic network:





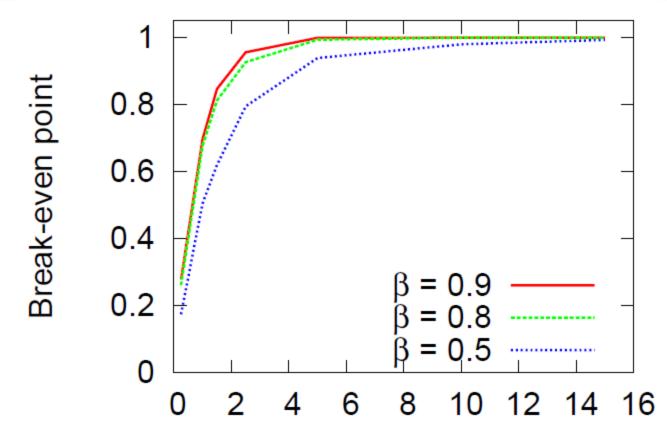


How well do we optimize F_c(G)



16

How many cascades do we need?

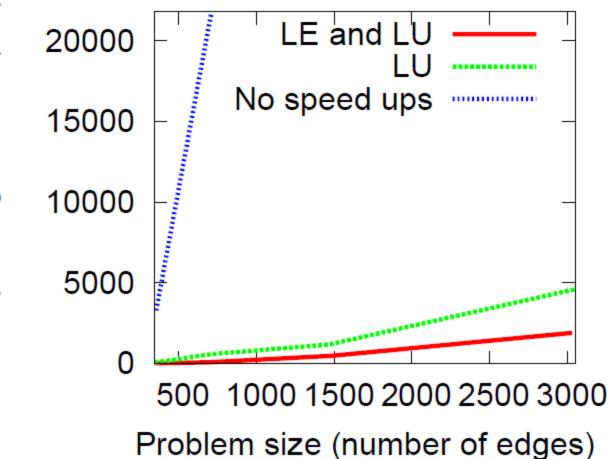


Total number of transmissions

 With twice as many infections as edges the break-even point is at 0.8-0.9

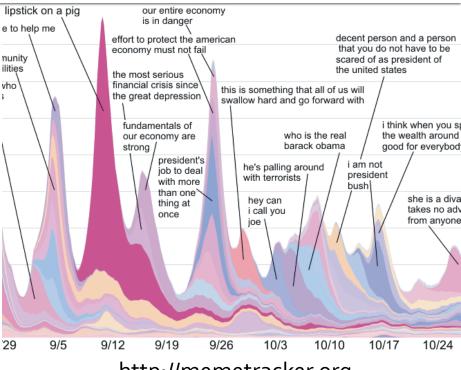
Runtime

Time per edge added (ms)



Experiments: Real data

- Memetracker dataset:
 - 172m news articles
 - Aug '08 Sept '09
 - 343m textual phrases
 - Times t_c(w) when site
 w mentions phrase c

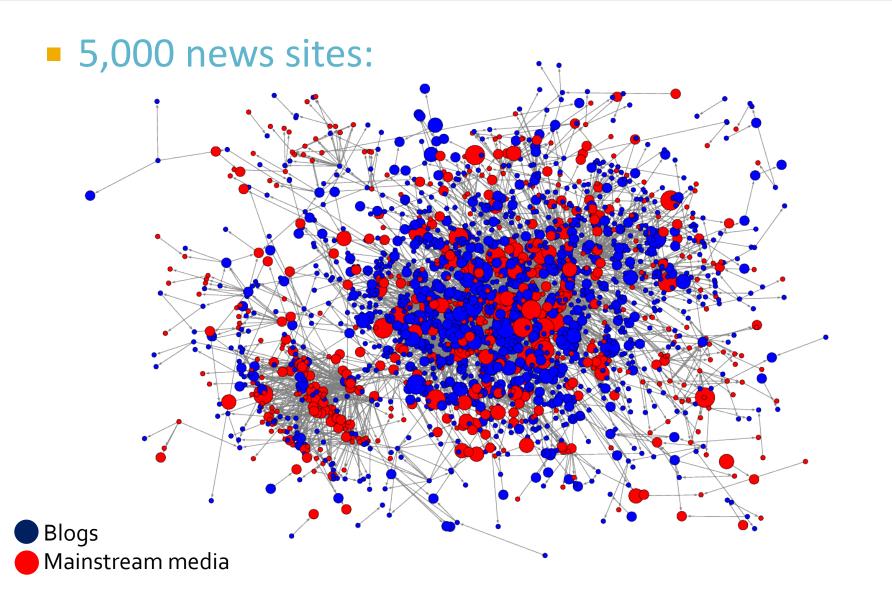


http://memetracker.org

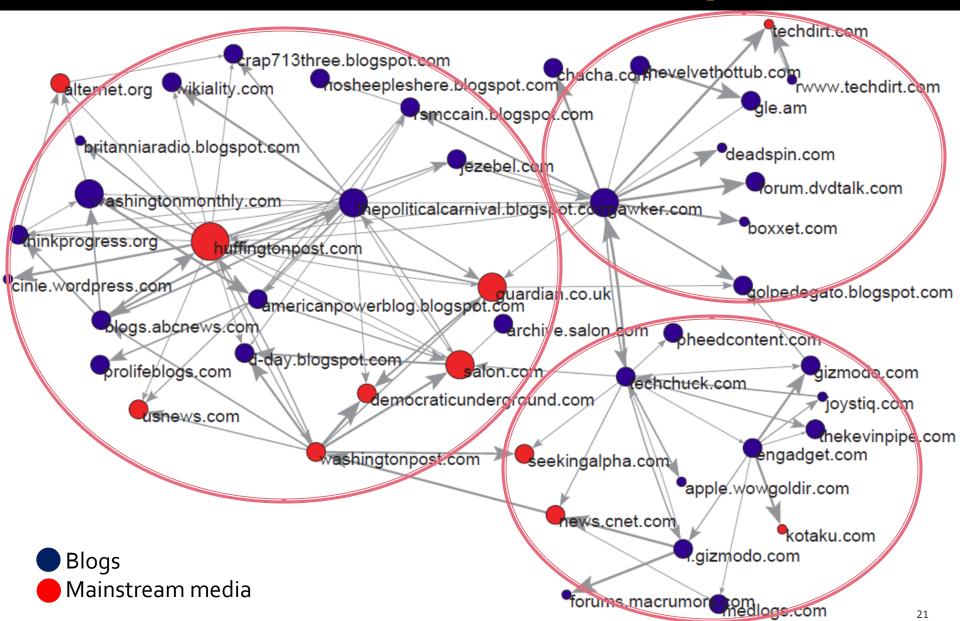
- Given times when sites mention phrasesInfer the network of information diffusion:
 - Who tends to copy (repeat after) whom

[w/Gomez-Krause, `10]

Diffusion network



Diffusion network (small part)



Conclusion

- Inferring hidden networks based on diffusion data
- Problem formulation in a maximum likelihood framework
 - Problem NP-hard in general
 - Developed an approximation algorithm that runs O(N²)
- Future work:
 - Learn both the network and the diffusion model
 - Extensions to other processes taking place on networks

A Street

THANKS! Data + Code: http://snap.stanford.edu/netinf

Inferring Networks of Diffusion and Influence by M. Gomez-Rodriguez, J. Leskovec, A. Krause. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2010. [Website] [Data]