# Numerical Reliability of Randomized Algorithms Inner Product - Two Norm 

Ilse Ipsen

North Carolina State University
Raleigh, NC, USA

## Randomized Matrix Multiplication

Sarlós 2006
Drineas, Kannan \& Mahoney 2006
Belabbas \& Wolfe 2008

Goal:
Algorithm behaviour for moderate matrix dimensions Numerical properties of algorithms

## Outline

Randomized inner product - squared two norm
Relative error due to randomization
Repeated sampling of same elements
"Stability" of algorithm

## Randomized Inner Product - Squared Two Norm

[Drineas, Kannan \& Mahoney 2006]

Input: real vector $a=\left(\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right)^{T}$
probabilities $p_{k}>0, \sum_{k=1}^{n} p_{k}=1$ number $c$ where $1 \leq c \leq n$

Output: Approximation $X$ to $a^{T} a$ from $c$ randomly sampled elements $a_{k}$

$$
\begin{aligned}
& X=0 \\
& \text { for } t=1: c \text { do } \\
& \quad \text { Sample } k_{t} \text { from }\{1, \ldots, n\} \text { with probability } p_{k_{t}} \\
& \quad \text { independently and with replacement } \\
& X=X+\frac{a_{k_{t}}^{2}}{c p_{k_{t}}}
\end{aligned}
$$

end for

## Properties

## [Drineas, Kannan \& Mahoney 2006]

Unbiased estimator

$$
E[X]=a^{T} a
$$

Uniform probabilities: $p_{k}=1 / n, 1 \leq k \leq n$
Absolute error bound
For every $\delta>0$ with probability at least $1-\delta$

$$
\left|a^{T} a-X\right|<\frac{n\|a\|_{\infty}^{2}}{\sqrt{c}} \sqrt{8 \ln (2 / \delta)}
$$

## Relative Error due to Randomization

## Relative Error Bound

For every $\delta>0$ with probability at least $1-\delta$

$$
\frac{\left|X-a^{T} a\right|}{a^{T} a}<\epsilon
$$

where

$$
\epsilon \geq \frac{1}{\sqrt{c \delta}} \sqrt{\sum_{k=1}^{n} \frac{a_{k}^{4}}{p_{k}\|a\|_{2}^{4}}-1}
$$

Proof: Chebyshev inequality

Uniform probabilities $p_{k}=1 / n$

$$
\epsilon \geq \frac{1}{\sqrt{c \delta}} \sqrt{n\left(\frac{\|a\|_{4}}{\|a\|_{2}}\right)^{4}-1}
$$

## Relative Error for Uniform Probabilities

$n=10^{6}, a_{k}$ are independent uniform $[0,1]$


Relative errors $\left|X-a^{T} a\right| / a^{T} a \quad$ for every $c$ Chebyshev bound with probability . 99

## Relative Error for Uniform Probabilities

Uniform vectors
$a_{k}$ iid uniform $[0,1], n=10^{6}$
Relative error: $10^{-2}-10^{-1}$

Weakly graded vectors

$$
a=\left(\begin{array}{llll}
1 & 2 & \ldots & n
\end{array}\right)
$$

With probability $1-\delta$ : Relative error $\geq .8 / \sqrt{\delta c}$

With 99 percent probability: Relative error $\approx 10^{-8}$ for $c \geq 10^{20}$

## Weakly Graded Vectors

$$
a=\left(\begin{array}{llll}
1 & 2 & \ldots & n
\end{array}\right), n=10^{4}
$$



Relative errors $\left|X-a^{T} a\right| / a^{T} a \quad$ for every $c$ Chebyshev bound with probability .99

## Strongly Graded Vectors

$a=\left(\begin{array}{llll}1 & 2^{-1} & \ldots & 2^{-n+1}\end{array}\right), n=10^{4}$


Relative errors $\left|X-a^{T} a\right| / a^{T} a \quad$ for every $c$
Relative error $\geq \sqrt{.6 n-1} / \sqrt{\delta c}$ grows with $n$

## Non-Uniform Probabilities

Sample $a_{k}$ with probability $p_{k}=\left|a_{k}\right| /\|a\|_{1}$

- For every $\delta>0$ with probability at least $1-\delta$

$$
\frac{\left|X-a^{T} a\right|}{a^{T} a}<\epsilon
$$

where

$$
\epsilon \geq \frac{1}{\sqrt{c \delta}} \sqrt{\frac{\|a\|_{1}\|a\|_{3}^{3}}{\|a\|_{2}^{4}}-1}
$$

Smaller than relative error for uniform probabilities

- Weakly and strongly graded vectors Relative error $\geq .3 / \sqrt{\delta c}$ independent of $n$


## Strongly Graded Vectors

$a=\left(\begin{array}{llll}1 & 2^{-1} & \ldots & 2^{-n+1}\end{array}\right), n=10^{4}$
non uniform probabilities $p_{k}=\left|a_{k}\right| /\|a\|_{1}$


Relative errors $\left|X-a^{T} a\right| / a^{T} a \quad$ for every $c$
Chebyshev bound with probability . 99

## Relative Errors: Summary

- Moderate dimensions

For $n \leq 10^{6}$ : relative error $\approx 10^{-2}-10^{-1}$
Output of algorithm has 1-2 correct decimal digits

- Larger dimensions

For relative error of $10^{-8}$ need dimension $n \geq 10^{20}$

- Uniformly distributed and weakly graded vectors Uniform probabilities suffice
- Strongly graded vectors

Need non-uniform probabilities

- Probability bounds

Hoeffding's bound is tighter by only factor of 10 compared to Chebyshev bound

Repeated Sampling of Same Elements

## Maximal Number of Times Same Element Is Sampled

$n=10^{3}, a_{k}$ iid uniform $[0,1]$, uniform probabilities


Repeated sampling increases with $c$

## Elements that are Repeatedly Sampled

Expected value of \# distinct elements sampled more than once

$$
\begin{aligned}
n\left(1-\left(1-\frac{1}{n}\right)^{c-1}\left(1+\frac{c-1}{n}\right)\right) & \approx n-(n+c) e^{-c / n} \\
& \approx .27 n \quad \text { for } c=n
\end{aligned}
$$



## Elements that are Never Sampled

Expected value of \# elements never sampled

$$
n\left(1-\frac{1}{n}\right)^{c} \approx n e^{-c / n}
$$

$$
\approx .37 n \quad \text { for } c=n
$$



## No Repeated Sampling



Relative errors $\left|X-a^{T} a\right| /\left|a^{T} a\right|$ for every $c$

Relative errors still around $10^{-2}-10^{-1}$

## Repeated Sampling

Uniform probabilities

- Number of times an element can be sampled increases with $c$
- About $27 \%$ elements sampled more than once
- About $37 \%$ elements never sampled
- Repeated sampling does not seem to hurt accuracy

Non-uniform probabilities

- Preliminary conjecture: repeated sampling occurs at same rate as for uniform probabilities
"Stability" of Randomized Algorithm


## What is Stability?

- Stability of deterministic algorithms:

How does a perturbation of the input change the output of the algorithm?

- Difficulty with randomized algorithms:

We don't know the output with certainty

- Exception:

Constant vector $\quad a_{k}=\alpha, \quad 1 \leq k \leq n$
Uniform probabilities:

$$
X=\underbrace{\frac{n}{c} \alpha^{2}+\cdots+\frac{n}{c} \alpha^{2}}_{c}=n \alpha^{2}=a^{T} a
$$

Randomized algorithm gives exact result for any c

## Stability of Randomized Algorithm

- Relative perturbations of constant vector

$$
\tilde{a}_{k}=\alpha\left(1+\epsilon \rho_{k}\right)
$$

$0<\epsilon \ll 1, \quad \rho_{k}$ are iid random variables

- Perturbed approximation

$$
\tilde{X}=\frac{n}{c}\left(\tilde{a}_{k_{1}}^{2}+\cdots+\tilde{a}_{k_{c}}^{2}\right)
$$

- Algorithm is numerically stable if

$$
\underbrace{\left.\frac{\tilde{X}-n \alpha^{2}}{n \alpha^{2}} \right\rvert\,}_{\text {forward error }}=\mathcal{O}(\epsilon)
$$

## Forward Errors

$\alpha=1, n=10^{4}$
Perturbations: $\epsilon=10^{-14}, \quad \rho_{k}$ uniformly distributed in $[0,1]$


Forward errors $\left(\tilde{X}-n \alpha^{2}\right) /\left(n \alpha^{2}\right) \quad$ for every $c$

Forward errors bounded by $\epsilon \quad \Rightarrow$ algorithm stable

## Expected Value of Forward Error

- First and second moments

$$
E_{\rho}\left[\rho_{k}\right]=\mu_{1} \quad E_{\rho}\left[\rho_{k}^{2}\right]=\mu_{2}
$$

- Expected value of forward error

$$
E_{\rho}\left[\frac{\tilde{X}-n \alpha^{2}}{n \alpha^{2}}\right]=2 \epsilon \mu_{1}+\epsilon^{2} \mu_{2}
$$

- If perturbations $\rho_{k}$ are iid uniform $\left[\beta_{1}, \beta_{2}\right]$ then

$$
E_{\rho}\left[\frac{\tilde{X}-n \alpha^{2}}{n \alpha^{2}}\right]=\epsilon\left(\beta_{1}+\beta_{2}\right)+\frac{\epsilon^{2}}{3}\left(\beta_{1}^{2}+\beta_{1} \beta_{2}+\beta_{2}^{2}\right)
$$

Expected value of forward error is $\mathcal{O}(\epsilon)$

## How Close is Forward Error To Expected Value?

- Perturbations $\rho_{k}$ are iid uniform $\left[\beta_{1}, \beta_{2}\right.$ ]
- Probability that

$$
\left|\frac{\tilde{x}-n \alpha^{2}}{n \alpha^{2}}-E_{\rho}\left[\frac{\tilde{x}-n \alpha^{2}}{n \alpha^{2}}\right]\right|<\tau
$$

is at least

$$
1-2 \exp \left(\frac{-\tau^{2} c}{2\left(\epsilon\left(\beta_{2}-\beta_{1}\right)+\epsilon^{2} \max \left\{\beta_{1}^{2}, \beta_{2}^{2}\right\}\right)^{2}}\right)
$$

Proof: Azuma's inequality

## Bound on Forward Error

- Perturbations $\rho_{k}$ are iid uniform $\left[\beta_{1}, \beta_{2}\right]$

$$
\left|\frac{\tilde{X}-n \alpha^{2}}{n \alpha^{2}}\right|<\epsilon\left(1+\left|\beta_{1}+\beta_{2}\right|\right)+\frac{\epsilon^{2}}{3}\left|\beta_{1}^{2}+\beta_{1} \beta_{2}+\beta_{2}^{2}\right|
$$

holds with probability at least $1-\delta$ for

$$
c \geq 2 \ln \left(\frac{2}{\delta}\right)\left(\left(\beta_{2}-\beta_{1}\right)+\epsilon \max \left\{\beta_{1}^{2}, \beta_{2}^{2}\right\}\right)^{2}
$$

- Perturbations $\rho_{k}$ are iid uniform $[0,1]$

$$
\left|\frac{\tilde{X}-n \alpha^{2}}{n \alpha^{2}}\right|<3 \epsilon
$$

holds with probability at least .99 for $c \geq 22$

## Summary

- Randomized algorithm for inner product $a^{T} a$ from [Drineas, Kannan \& Mahoney 2006]
- Low relative accuracy

1-2 correct decimal digits for dimensions $n \leq 10^{6}$

- Repeated sampling of elements occurs frequently but does not seem to hurt accuracy
- Preliminary definition of numerical stability

Change in output when constant vector perturbed by iid random variables

- Randomized algorithm is stable w.r.t. perturbations by iid uniform $\left[\beta_{1}, \beta_{2}\right.$ ] variables

