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Anna Karenina, Chapter 1, Leo Tolstoy

`Homogeneous data are all alike;

all heterogeneous data are heterogeneous

in their own way.'
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Heterogeneity
I Status : response/ explanatory.
I Hidden (latent)/measured.
I Type :

I Continuous
I Binary, categorical
I Graphs/ Trees
I Images
I Maps/ Spatial Information
I Rankings

I Amounts of dependency: independent/time
series/spatial.
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Goals in Modern Biology: Systems Approach
Look at the data/ all the data: data integration
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Taking Categorical Data and Making it into a
Continuum

Horseshoe Example:Joint with Persi Diaconis and Sharad
Goel. Data from 2005 U.S. House of Representatives
roll call votes. We further restricted our analysis to
the 401 Representatives that voted on at least 90% of the
roll calls (220 Republicans, 180 Democrats and 1
Independent) leading to a 401× 669 matrix of voting data.

The Data
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 -1 -1 1 -1 0 1 1 1 1 1 ...
2 -1 -1 1 -1 0 1 1 1 1 1 ...
3 1 1 -1 1 -1 1 1 -1 -1 -1 ...
4 1 1 -1 1 -1 1 1 -1 -1 -1 ...
5 1 1 -1 1 -1 1 1 -1 -1 -1 ...
6 -1 -1 1 -1 0 1 1 1 1 1 ...
7 -1 -1 1 -1 -1 1 1 1 1 1 ...
8 -1 -1 1 -1 0 1 1 1 1 1 ...
9 1 1 -1 1 -1 1 1 -1 -1 -1 ...
10 -1 -1 1 -1 0 1 1 0 0 0 .... . . . . .
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Iterative Structuration (Tukey, 1977)

A distance-> projection
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Phylogenetic Trees
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Distances between Trees

I Nearest Neighbor Interchange (NNI).

Rotation Moves
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I Fill-in of NNI moves: Billera, Holmes, Vogtmann
(BHV).
The boundaries between regions represent an area of
uncertainty about the exact branching order. In
biological terminology this is called an `unresolved'
tree.
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Empirical Evidence on Mixing on Bethe Lattice
E. Mossel noticed that one of the extreme points of
tree space with regards to predicting the root was the
Bethe Lattice:
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Seeing the Mutation Rate Gradient
We generated 9 sets of trees with mutation rates set
from α = 0.01 to α = 0.09 and we generated the data
according to the Bethe lattice tree.
Here are the results in the first plane of the MDS:
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Nontechnical description of Multi-table methods
Variance, Inertia, Co-Inertia The study of variability of
one continuous variable is done through the use of the
variance. We generalize it in several directions through
the idea of inertia.
As in physics, we define inertia as a weighted sum of
distances of weighted points.
This enables us to use abundance data in a contingency
table and compute its inertia which in this case will be
the weighted sum of the squares of distances between
observed and expected frequencies, such as is used in
computing the chisquare statistic.
Another generalization of variance-inertia is the useful
Phylogenetic diversity index. (computing the sum of the
squares of distances between a subset of taxa through
the tree).
We also have such generalizations that cover variability
of points on a graph taken from standard spatial
statistics. . . . . . .



Co-Inertia

When studying two variables measured at the same
locations, for instance PH and humidity the standard
quantification of covariation is the covariance. A simple
generalization to this when the variability is more
complicated to measure as above is done through
Co-Inertia analysis (CIA).
Co-inertia analysis (CIA) is a multivariate method that
identifies trends or co-relationships in multiple datasets
which contain the same samples or the same time
points. That is the rows or columns of the matrix have
to be weighted similarly and thus must be matchable.

. . . . . .



RV coefficient

The global measure of similarity of two data tables as
opposed to two vectors can be done by a generalization
of covariance provided by an inner product between tables
that gives the RV coefficient, a number between 0 and 1,
like a correlation coefficient, but for tables.

. . . . . .



Multiple table methods

In PCA we compute the variance-covariance matrix, in
multiple table methods we can take a cube of tables and
compute the RV coefficient of their characterizing
operators.
We then diagonalize this and find the best weighted
`ensemble'.
This is called the `compromise' and all the individual
tables can be projected onto it.

. . . . . .



Data Matrix: Geometrical Approach

i. The data are p variables measured on n observations.
ii. X with n rows (the observations) and p columns

(the variables).
iii. Dn is an n× n matrix of weights on the

``observations'', which is most often diagonal.
iv Symmetric definite positive matrix Q,often

Q =


1
σ2
1

0 0 0 ...

0 1
σ2
2

0 0 ...

0 0 1
σ2
3

0 ...

... ... ... 0 1
σ2p

 .

. . . . . .



Euclidean Spaces

These three matrices form the essential ``triplet"
(X,Q,D) defining a multivariate data analysis.
Q and D define geometries or inner products in Rp and Rn,
respectively, through

xtQy =< x, y >Q x, y ∈ Rp

xtDy =< x, y >D x, y ∈ Rn.

This simple type of inner product has been generalized
to Kernels in Elizabeth Purdom's thesis (2008).

. . . . . .



An Algebraic Approach

I Q can be seen as a linear function from Rp to
Rp∗ = L(Rp), the space of scalar linear functions on
Rp.

I D can be seen as a linear function from Rn to
Rn∗ = L(Rn).

I
Rp∗ −−−−→

X
Rn

Q
x yV D

y xW

Rp ←−−−−
Xt

Rn∗

. . . . . .



An Algebraic Approach

Rp∗ −−−−→
X

Rn

Q
x yV D

y xW

Rp ←−−−−
Xt

Rn∗

Duality diagram
i. Eigendecomposition of XtDXQ = VQ
ii. Eigendecomposition of XQXtD = WD
iii. Transition Formulae.

. . . . . .



Notes

(1) Suppose we have data and inner products defined by Q
and D :

(x, y) ∈ Rp × Rp 7−→ xtQy = < x, y >Q∈ R

(x, y) ∈ Rn × Rn 7−→ xtDy = < x, y >D∈ R.

||x||2Q =< x,x >Q=
p∑

j=1

qj(x
.j)2 ||x||2D =< x,x >D=

p∑
j=1

pi(xi.)2

(2) We say an operator O is B-symmetric if
< x,Oy >B=< Ox, y >B, or equivalently BO = OtB.
The duality diagram is equivalent to (X,Q,D) such that X
is n× p .
Escoufier (1977) defined as XQXtD = WD and XtDXQ = VQ
as the characteristic operators of the diagram.

. . . . . .



(3) V = XtDX will be the variance-covariance matrix, if X
is centered with regards to D (X′D1n = 0).

. . . . . .



Transposable Data

There is an important symmetry between the rows and
columns of X in the diagram, and one can imagine
situations where the role of observation or variable is
not uniquely defined. For instance in microarray studies
the genes can be considered either as variables or
observations. This makes sense in many contemporary
situations which evade the more classical notion of n
observations seen as a random sample of a population.
It is certainly not the case that the 9,000 species are a
random sample of bacteria since these probes try to be
an exhaustive set.

. . . . . .



Two Dual Geometries
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Properties of the Diagram

Rank of the diagram: X,Xt,VQ and WD all have the same
rank.
For Q and D symmetric matrices, VQ and WD are
diagonalisable and have the same eigenvalues.

λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λr ≥ 0 ≥ · · · ≥ 0.

Eigendecomposition of the diagram: VQ is Q symmetric,
thus we can find Z such that

VQZ = ZΛ,ZtQZ = Ip, where Λ = diag(λ1, λ2, . . . , λp). (1)

. . . . . .



Features
1. Inertia : Trace(VQ) = Trace(WD)
(inertia in the sense of Huyghens inertia formula for
instance). Huygens, C. (1657),

n∑
i=1

pid2(xi, a)

Inertia with regards to a point a of a cloud of
pi-weighted points.
PCA with Q = Ip, D = 1

nIn, and the variables are centered,
the inertia is the sum of the variances of all the
variables.
If the variables are standardized (Q is the diagonal matrix
of inverse variances), then the inertia is the number of
variables p.
For correspondence analysis the inertia is the
Chi-squared statistic.

. . . . . .



Comparing Two Diagrams: the RV coefficient
Many problems can be rephrased in terms of comparison
of two ``duality diagrams" or put more simply, two
characterizing operators, built from two ``triplets",
usually with one of the triplets being a response or
having constraints imposed on it. Most often what is
done is to compare two such diagrams, and try to get
one to match the other in some optimal way.
To compare two symmetric operators, there is either a
vector covariance as inner product
covV(O1,O2) = Tr(O1O2) =< O1,O2 > or a vector
correlation (Escoufier, 1977)

RV(O1,O2) =
Tr(O1O2)√

Tr(Ot
1O1)tr(Ot

2O2)
.

If we were to compare the two triplets
(
Xn×1, 1, 1

nIn
)

and
(
Yn×1, 1, 1

nIn
)

we would have RV = ρ2.
. . . . . .



PCA: Special case

PCA can be seen as finding the matrix Y which
maximizes the RV coefficient between characterizing
operators, that is, between

(
Xn×p,Q,D

)
and

(
Yn×q,I,D

)
,

under the constraint that Y be of rank q < p .

RV
(
XQXtD, YYtD

)
=

Tr
(
XQXtDYYtD

)
√

Tr
(
XQXtD

)2 Tr
(
YYtD

)2
.

. . . . . .



This maximum is attained where Y is chosen as the
first q eigenvectors of XQXtD normed so that YtDY = Λq.
The maximum RV is

RVmax =
∑q

i=1 λ2
i∑p

i=1 λ2
i
.

Of course, classical PCA has D = 1
nI, Q = I, but the

extra flexibility is often useful. We define the distance
between triplets (X,Q,D) and (Z,Q,M) where Z is also
n× p, as the distance deduced from the RV inner product
between operators XQXtD and ZMZtD.

. . . . . .



One Diagram to replace Two Diagrams

Canonical correlation analysis was introduced by
Hotelling to find the common structure in two sets of
variables X1 and X2 measured on the same observations.
This is equivalent to merging the two matrices
columnwise to form a large matrix with n rows and
p1 + p2 columns and taking as the weighting of the
variables the matrix defined by the two diagonal blocks
(Xt

1DX1)−1 and (Xt
2DX2)−1

Q =


(Xt

1DX1)−1 0

0 (Xt
2DX2)−1



. . . . . .



Rp1∗ −−−−→
X1

Rn

Ip1

x yV1 D
y xW1

Rp1 ←−−−−
Xt
1

Rn∗

Rp2∗ −−−−→
X2

Rn

Ip2

x yV2 D
y xW2

Rp2 ←−−−−
Xt
2

Rn∗

Rp1+p2∗ −−−−→
[X1;X2]

Rn

Q
x yV D

y xW

Rp1+p2 ←−−−−−
[X1;X2]t

Rn∗

This analysis gives the same eigenvectors as the analysis
of the triple
(Xt

2DX1, (Xt
1DX1)−1, (Xt

2DX2)−1), also known as the
canonical correlation analysis of X1 and X2.. . . . . .



PCA with regards to Instrumental Variables

CR Rao, 1964: Explain one matrix by another (one matrix
is a response, the other explanatory). It is the extension
of PCA and regression. If Z is the explanatory table and
X is the response, we take the projector:

PZ = Z(Z′DZ)−1Z′D, X̂ = PZX are the predicted values

Take the triplet (X̂,Q,D) and do the PCA.
See [6] for more details.

. . . . . .



Integrating Spatial Information into the triplet

If we make Z the explanatory table contain the spatial
information, we are integrating the spatial information
into the multivariate analysis.
Another solution explained in Dray and Jombart's paper is
to study the coinertia of X and WX, the spatially lagged
version of X.

. . . . . .



Spatial Multivariate Output
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Jean Thioulouse uses the generalized notion of
co-inertia to analyze these complex data:

Ephemeroptera
species (13)

Environmental
variables (10)

Si
te

s 
(6

)

Si
te

s 
(6

)

Spring
Summer

Autumn
Winter

Spring
Summer

Autumn
Winter

An example data set consists of two data cubes. The
first one contains 10 environmental variables that have
been measured four times (in Spring, Summer, Autumn
and Winter) along six sampling sites. The second one
contains the numbers of Ephemeroptera belonging to 13
species, collected in the same conditions.. . . . . .



Complex Output

. . . . . .



Benefitting from the tools and schools of
Statisticians.......

Thanks to the R community, in particular Chessel,
Jombart, Dray, Thioulouse(ade4 group in Lyon) and
Emmanuel Paradis.

Collaborators:
Persi Diaconis, Sharad Goel, John Chakarian, Adam
Guetz, Adam Kapelner, Elisabeth Purdom, Omar delaCruz,
Nelson Ray, Yves Escoufier.

Data:
Alfred Spormann, Peter Lee, Francesca Setiadi.
Funding from NIH/ NIGMS R01 and NSF-DMS.
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