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Correlation analysis of financial time series

Source: FuturesMag.com
www.futuresmag.com/.../Dom%20FEB%2024.JPG
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p-variate correlation analysis of financial data

Sample covariance matrix:

Σ̂ =
1

n − 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

Sample correlation matrix:

R = D
−1/2

Σ̂
Σ̂D
−1/2

Σ̂
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Correlation analysis of gene expression arrays

Gene expression profiles Correlation matrix R
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Correlation screening and hub discovery

Blue condition Red condition

• Correlation screening finds hubs of high sample correlation
• Persistent correlation screening finds hubs surviving both
treatments
• Edges shown are survivors after leave-one-out cross-validation
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How much confidence can we have in such discoveries?

Confidence mitigated by

Lack of principles for selecting correlation threshold

Many (p) variables but few (n) observations

Affymetrix gene chip has 22, 000 probes (variables)

....and has
(

22,000
2

)
= 241, 989, 000 sample correlations

Often number of samples per treatment is less than 10

Cross validation cannot be relied upon in these situations

Objective: establish asymptotic (large p) theory.
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Previous work

Regularized l2 or lF covariance estimation

Shrinkage towards identity: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)
Shrinkage towards banded: Bickel-Levina (2008)
Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)

Gaussian graphical model selection

l1 regularized GGM: Meinshausen-Bühlmann (2006),
Wiesel-Eldar-H (2010).
Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

Independence testing

Sphericity test for multivariate Gaussian: Wilks (1935)
Maximal correlation test: Moran (1980)
Ranked correlation test: Eagleson (1983)

New framework: screening for highly correlated variables
No particular distribution or sparsity patterns imposed
Scalable: computational complexity can be as low as O(logp)
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Correlation screening = screening rows (variables) of R

For rij = (R)ij let ρ be a user-defined threshold in [0, 1]
Variable i passes correlation screen if: maxj 6=i |rij | ≥ ρ

Discovered variables have high correlation with some other
variable
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Phase transitions in correlation screening

Number of discoveries exhibit phase transition phenomenon

This phenomenon gets worse as p/n increases.
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Overview of mathematical results

Two types of results for auto-correlation and persistent correlation
screening

Characterize large p phase transition and its threshold.

Poisson asymptotics for predicting false positive rates.

Main ingredients in our analysis

Z-score representation: R = UTU

U = [U1, . . . ,Up], Ui ∈ Sn−2 ⊂ IRn−1

Geometric probability on unit-sphere Sn−2

Exchangeable process theory for dependent variables
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Sample correlation and Z-score distances

Sample correlation between Xi and Xj is equal to Z-score
inner product

rij = UT
i Uj

Relate to Euclidean distance between Ui and Uj

‖Ui −Uj‖ =
√

2(1− rij)
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Example: Z-scores for diagonal Gaussian
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Example : Z-scores for ARMA(2,2) Gaussian
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Mathematical analysis

Define N the number of discoveries:

N =

p∑
i=1

φi

Where φ = [φ1, . . . , φp] is ”discovery” indicator sequence:

φi =

{
1, maxj 6=i |rij | ≥ ρ
0, o.w .

Objective: Find mathematical expressions for E [N] as a function
of p, n, ρ.
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Mathematical analysis

Conditional expectation of φi has representation

E [φi |Ui ] = P(∪j 6=iUj ∈ Cρ,Ui
∪ Cρ,−Ui

|Ui )
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Mathematical analysis

Given Ui define the binary sequence b = [b1, . . . , bp−1]

bi =

{
1, Uj ∈ Cρ,Ui

∪ Cρ,−Ui

0, o.w .

Then, have equivalent representation

E [φi |Ui ] = P(

p−1∑
i=1

bi > 0|Ui )

Classical result [Thm. 4.5.4]{TW Anderson, 2003}:

Lemma

Let X be a p-variate elliptical vector with diagonal dispersion
matrix Σ. The Z-scores {Ui}pi=1 are i.i.d. random vectors
uniformly distributed on Sn−2.

Implication: bi ’s are Bernoulli and E [φi |Ui ] = 1− (1− P0)p−1.
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Main result: correlation screening

Proposition

Let the n × p data matrix X have i.i.d. rows but possibly
dependent columns. Let the sequence {ρp}p of correlation

thresholds be such that ρp → 1 and p(p − 1)
(
1− ρ2

p

)(n−2)/2 → dn

for some finite constant dn. Then

lim
p→∞

E [N] = κnJ(fU•,U∗−•), (1)

where κn = andn/(n − 2) and fU•,U∗−• is limit of average density

fU•,U∗−•
(p)

(u, v) =
1

p

p∑
i=1

1

p − 1

p∑
j 6=i

(
1
2 fUi ,Uj

(u, v) + 1
2 fUi ,Uj

(u,−v)
)
. (2)
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Implication: uniform Z-score density is minimax

J(fU•,U∗−•): related to Hellinger divergence and Rényi entropy

J(fU,V) = |Sn−2|
∫

fU,V(w,w)dw

= |Sn−2|
∫ (

fU|V(w|w)fV|U(w|w)
)1/2

(fU(w)fV(w))1/2 dw

≤ |Sn−2|
(∫

fU|V(w|w)fV|U(w|w)

)1/2(∫
fU(w)fV(w)

)1/2

≤ H
1/4
2 (fU|V)H

1/4
2 (fV|U)H

1/4
2 (fU)H

1/4
2 (fV),

Equalities iff fU,V(u,u) = fU(u)fV(u) and fU(u) = fV(u)

Right side of (3) minimized when fU is uniform over Sn−2.
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Implication: phase transition for correlation screening

n 550 500 450 150 100 50 10 8 6
ρc 0.188 0.197 0.207 0.344 0.413 0.559 0.961 0.988 0.9997

Critical threshold approximation: ρc = max{ρ : dE [N]/dρ = −1}

ρc =
√

1− cn(p − 1)−2/(n−4) (3)
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Main result: persistent correlation screening

Proposition

Let the na × p and nb × p data matrices Xb and Xa be
independent. Let ρap → 1 and ρbp → 1 while for γ = a, b

p1/2(p − 1)
(
1− (ργp)2

)(nγ−2)/2 → dnγ

Then

lim
p→∞

E [Na∧b] = κa∧bn lim
p→∞

1

p

p∑
i=1

J(fUa
i ,U

a
∗−i

)J(fUb
i ,U

b
∗−i

), (4)

where, for U ∈ {Ua,Ub},

fUi ,U∗−i
(u, v) =

1

p − 1

p∑
j 6=i

(
1
2 fUi ,Uj

(u, v) + 1
2 fUi ,Uj

(u,−v)
)
. (5)
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Persistent correlation screening: observations

ρa → 1, ρb → 1 at slower rates than before.

When J(fUa
i ,U

a
∗−i

), J(fUb
i ,U

b
∗−i

) are asymptotically incoherent

lim
p→∞

1

p

p∑
i=1

J(fUa
i ,U

a
∗−i

)J(fUb
i ,U

b
∗−i

) = J(fUa
•,U

a
∗−•

)J(fUb
•,U

b
∗−•

)

Then, as p →∞,

E [Na∧b]→ E [Na]E [Nb]

p

p−1/2E [Na], p−1/2E [Nb] converge but E [Na], E [Nb] do not.
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Implication: phase transition for persistent correlation
screening
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Phase transitions: correlation vs persistent correlation
screening
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Application: correlation screening with spike-in

n�α 0.010 0.025 0.050 0.075 0.100

10 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99

15 0.96\0.96 0.96\0.95 0.95\0.95 0.95\0.94 0.95\0.94

20 0.92\0.91 0.91\0.90 0.91\0.89 0.90\0.89 0.90\0.89

25 0.88\0.87 0.87\0.86 0.86\0.85 0.85\0.84 0.85\0.83

30 0.84\0.83 0.83\0.81 0.82\0.80 0.81\0.79 0.81\0.79

35 0.80\0.79 0.79\0.77 0.78\0.76 0.77\0.76 0.77\0.75

Table: Achievable limits in FPR (α) for TPR =0.8 (β), as function of n, minimum detectable threshold, and
correlation threshold (ρ1\ρ). To obtain entries ρ1\ρ a Poisson approximation determined ρ = ρ(α) and a
Fisher-Z Gaussian approximation determined ρ1 = ρ1(β). Here p = 1000 on Gaussian sample having diagonal
covariance with a spike-in correlated pair.
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Application: correlation screening with spike-in

Figure: Comparison between predicted (diamonds) and actual (numbers) operating points (α, β) using
Poisson approximation to false positive rate (α) and Fisher approximation to false negative rate (β). Each number
is located at an operating point determined by the sample size n ranging over n = 10, 15, 20, 25, 30, 35. These
numbers are color coded according to the target value of β.
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Application: persistent correlation discovery

Figure: Comparison between predicted (diamonds) and actual (numbers) operating points (α, β) for
perisistent correlation screening.
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Application: gene expression data

Beverage Data from Gene Expression Omnibus (GEO) NCBI

Reference: Florent Baty etal (2006) BMC Bioinformatics

Subjects: 6 individuals at 5 time points (0, 1, 2, 4, 12 hours)

Treatments: post-baseline intake of

A: alcohol (n1 = 20)
G : grape juice (n2 = 22)
H: water (n3 = 23)
W : red wine (n4 = 22)

87 Affymetrix HU133 Genechip peripheral blood samples

Each sample contains p = 22, 283 gene probes
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Application: observed Z-scores

Figure: 3 dimensional projections of the Z-scores for the experimental beverage data under each of the
treatments A,G,H,W. For visualization the 22,238 variables (gene probes) were downsampled by a factor of 8 and a
randomly selected set of four samples in each treatment were used to produce these figures.



Outline Motivation Theory Application Conclusions

Application: persistent correlation discoveries

{A}, {G}, {H}, {W} 42 50 82 424
{A, G}, {A,H}, {A,W}, {G ,H}, {G ,W}, {H,W} 493 748 1069 677 864 1445
{G ,H,W}, {A,H,W}, {A, G ,W}, {A, G ,H} 2242 2530 1893 1690

{A, G ,H,W} 3313

Table: Number of genes discovered by auto-screening (top row) and persistency screening (lower three rows)
for various combinations of treatments in the experimental data. Auto-screening threshold determined using

Poisson approximation to Type I error of level 10−5.



Outline Motivation Theory Application Conclusions

Application: set-inclusion diagram

Figure: Set-inclusion graph between genes discovered by correlation screening in various combinations of
treatments. Size of node is proportional to the log of number of associated correlation screening discoveries given
in Table 2. A directed edge from node i to node j exists if at least 90% of the genes discovered in node i are also
discovered in node j and the thickest edges indicate 100% set inclusion. The asymmetry of diagram indicates that
treatments have different effects on gene expression.
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Application: persistent covariance network

Figure: Heatmap of 4444 genes discovered in at least one of the set inclusion tests shown in Table 2.
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Application: persistent covariance network

Figure: 774 gene subnetwork of the 3313 gene persistent-correlation network across all four treatments
corresponding to the last row of Table 2. Two nodes in this network are linked by an edge if for all 4 treatments

their sample correlation is above the 10−5 FWER correlation-screening threshold.
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Conclusions

Correlation screening can be performed with confidence

Screening affected by phase transition as threshold decreases
Large p expressions for critical PT threshold ρc are available
Effect of pairwise dependence manifested through Hellinger
divergence

Key concepts:

Z-score representation of sample correlation
Geometry of unit sphere

Persistence: Strongest specialists are not strongest generalists
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