Outline	Motivation	Theory	Application	Conclus

Sparse correlation screening in high dimension

Alfred Hero

University of Michigan - Ann Arbor

Workshop on algorithms on Modern Massive Data Sets June 17, 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applicatio

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Acknowledgements

- Bala Rajaratnam (Stanford)
- Isaac Newton Institute
- DIGITEO, Paris France
- NSF: ITR CCR-032557

Outline	Motivation	Theory	Application	Conclusions

Motivation

2 Theory

Outline	Motivation	Theory	Application	Conclusions
Outline				

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Theory

Application

Conclusions

Correlation analysis of financial time series

Source: FuturesMag.com www.futuresmag.com/.../Dom%20FEB%2024.JPG

Application

Conclusions

p-variate correlation analysis of financial data

Sample covariance matrix:

$$\hat{\Sigma} = rac{1}{n-1}\sum_{i=1}^n (\mathbf{X}_i - \hat{\mu}) (\mathbf{X}_i - \hat{\mu})^T$$

Sample correlation matrix:

Application

Conclusions

Correlation analysis of gene expression arrays

Gene expression profiles

Correlation matrix ${\bf R}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

Application

Conclusions

Correlation screening and hub discovery

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application

◆□> ◆□> ◆豆> ◆豆> □豆

Conclusions

Correlation screening and hub discovery

• Correlation screening finds hubs of high sample correlation

Application

Conclusions

Correlation screening and hub discovery

- Correlation screening finds hubs of high sample correlation
- Persistent correlation screening finds hubs surviving both treatments

Application

Conclusions

Correlation screening and hub discovery

- Correlation screening finds hubs of high sample correlation
- Persistent correlation screening finds hubs surviving both treatments
- Edges shown are survivors after leave-one-out cross-validation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How much confidence can we have in such discoveries?

Confidence mitigated by

• Lack of principles for selecting correlation threshold

How much confidence can we have in such discoveries?

Confidence mitigated by

- Lack of principles for selecting correlation threshold
- Many (p) variables but few (n) observations

Confidence mitigated by

- Lack of principles for selecting correlation threshold
- Many (p) variables but few (n) observations
 - Affymetrix gene chip has 22,000 probes (variables)
 -and has $\binom{22,000}{2} = 241,989,000$ sample correlations

Confidence mitigated by

- Lack of principles for selecting correlation threshold
- Many (p) variables but few (n) observations
 - Affymetrix gene chip has 22,000 probes (variables)
 - \bullet and has $\binom{22,000}{2}=241,989,000$ sample correlations
 - Often number of samples per treatment is less than 10

Confidence mitigated by

- Lack of principles for selecting correlation threshold
- Many (p) variables but few (n) observations
 - Affymetrix gene chip has 22,000 probes (variables)
 -and has $\binom{22,000}{2} = 241,989,000$ sample correlations
 - Often number of samples per treatment is less than 10

• Cross validation cannot be relied upon in these situations

Confidence mitigated by

- Lack of principles for selecting correlation threshold
- Many (p) variables but few (n) observations
 - Affymetrix gene chip has 22,000 probes (variables)
 -and has $\binom{22,000}{2}=241,989,000$ sample correlations
 - Often number of samples per treatment is less than 10

• Cross validation cannot be relied upon in these situations **Objective**: establish asymptotic (large p) theory.

Outline	Motivation	Theory	Application	Conclusions
Previous wo	ork			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)

Outline	wotivation	Theory	Application	Conclusions
Previous wor	k			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)
- Gaussian graphical model selection
 - *I*₁ regularized GGM: Meinshausen-Bühlmann (2006), Wiesel-Eldar-H (2010).
 - Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

Outline	wotivation	Theory	Application	Conclusions
Previous wor	k			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)
- Gaussian graphical model selection
 - *I*₁ regularized GGM: Meinshausen-Bühlmann (2006), Wiesel-Eldar-H (2010).
 - Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

- Independence testing
 - Sphericity test for multivariate Gaussian: Wilks (1935)
 - Maximal correlation test: Moran (1980)
 - Ranked correlation test: Eagleson (1983)

Outline	Motivation	Theory	Application	Conclusions
Previous	work			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)
- Gaussian graphical model selection
 - *I*₁ regularized GGM: Meinshausen-Bühlmann (2006), Wiesel-Eldar-H (2010).
 - Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

- Independence testing
 - Sphericity test for multivariate Gaussian: Wilks (1935)
 - Maximal correlation test: Moran (1980)
 - Ranked correlation test: Eagleson (1983)

New framework: screening for highly correlated variables

Outline	Motivation	Theory	Application	Conclusions
Previous	work			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)
- Gaussian graphical model selection
 - *I*₁ regularized GGM: Meinshausen-Bühlmann (2006), Wiesel-Eldar-H (2010).
 - Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)
- Independence testing
 - Sphericity test for multivariate Gaussian: Wilks (1935)
 - Maximal correlation test: Moran (1980)
 - Ranked correlation test: Eagleson (1983)

New framework: screening for highly correlated variables No particular distribution or sparsity patterns imposed

Previous work	Outline	Motivation	Theory	Application	Conclusions
	Previous	s work			

- Regularized I_2 or $I_{\mathcal{F}}$ covariance estimation
 - Shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H (2010)
 - Shrinkage towards banded: Bickel-Levina (2008)
 - Shrinkage towards sparse eigenvector: Johnstone-Lu (2007)
- Gaussian graphical model selection
 - *I*₁ regularized GGM: Meinshausen-Bühlmann (2006), Wiesel-Eldar-H (2010).
 - Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)
- Independence testing
 - Sphericity test for multivariate Gaussian: Wilks (1935)
 - Maximal correlation test: Moran (1980)
 - Ranked correlation test: Eagleson (1983)

New framework: screening for highly correlated variables No particular distribution or sparsity patterns imposed Scalable: computational complexity can be as low as O(logp)

Outline	Motivation	Theory	A	pplication		Conclusions
Correlation	screening =	screening	rows	(variables)) of	R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- For $\mathbf{r}_{ij} = (\mathbf{R})_{ij}$ let ρ be a user-defined threshold in [0,1]
- Variable *i* passes correlation screen if: $\max_{j \neq i} |\mathbf{r}_{ij}| \ge \rho$

Outline Motivation Theory Application Conclusions

Correlation screening = screening rows (variables) of \mathbf{R}

- For $\mathbf{r}_{ij} = (\mathbf{R})_{ij}$ let ρ be a user-defined threshold in [0,1]
- Variable *i* passes correlation screen if: $\max_{j \neq i} |\mathbf{r}_{ij}| \ge \rho$
- *Discovered* variables have high correlation with some other variable

HSS p>0.95 w/analytes

- Number of discoveries exhibit phase transition phenomenon
- This phenomenon gets worse as p/n increases.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two types of results for auto-correlation and persistent correlation screening

- Characterize large p phase transition and its threshold.
- Poisson asymptotics for predicting false positive rates.

Two types of results for auto-correlation and persistent correlation screening

- Characterize large p phase transition and its threshold.
- Poisson asymptotics for predicting false positive rates.

Main ingredients in our analysis

 \bullet Z-score representation: $\textbf{R} = \mathbb{U}^{\mathcal{T}}\mathbb{U}$

$$\mathbb{U} = [\mathbf{U}_1, \dots, \mathbf{U}_p], \quad \mathbf{U}_i \in S_{n-2} \subset \mathbb{R}^{n-1}$$

- Geometric probability on unit-sphere S_{n-2}
- Exchangeable process theory for dependent variables

Outline Motivation Theory Application Conclusions

Sample correlation and Z-score distances

• Sample correlation between **X**_i and **X**_j is equal to Z-score inner product

$$\mathbf{r}_{ij} = \mathbf{U}_i^T \mathbf{U}_j$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline Motivation Theory Application

Sample correlation and Z-score distances

• Sample correlation between **X**_i and **X**_j is equal to Z-score inner product

$$\mathbf{r}_{ij} = \mathbf{U}_i^T \mathbf{U}_j$$

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Relate to Euclidean distance between U_i and U_j

$$\|\mathbf{U}_i - \mathbf{U}_j\| = \sqrt{2(1 - \mathbf{r}_{ij})}$$

Applicatio

Conclusions

Example: Z-scores for diagonal Gaussian

◆□> ◆□> ◆三> ◆三> ・三 のへの

Example : Z-scores for ARMA(2,2) Gaussian

(日)、

э

Outline	Motivation	Theory	Application	Conclusions
Outline				

Define N the number of discoveries:

$$N = \sum_{i=1}^{p} \phi_i$$

Where $\phi = [\phi_1, \dots, \phi_{\rho}]$ is "discovery" indicator sequence:

$$\phi_i = \begin{cases} 1, & \max_{j \neq i} |\mathbf{r}_{ij}| \ge \rho \\ 0, & o.w. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define N the number of discoveries:

$$\mathsf{V} = \sum_{i=1}^{p} \phi_i$$

Where $\phi = [\phi_1, \dots, \phi_{\rho}]$ is "discovery" indicator sequence:

I

$$\phi_i = \begin{cases} 1, & \max_{j \neq i} |\mathbf{r}_{ij}| \ge \rho \\ 0, & o.w. \end{cases}$$

Objective: Find mathematical expressions for E[N] as a function of p, n, ρ .

Conditional expectation of ϕ_i has representation

$$\mathsf{E}[\phi_i|\mathbf{U}_i] = \mathsf{P}(\cup_{j\neq i}\mathbf{U}_j \in C_{\rho,\mathbf{U}_i} \cup C_{\rho,-\mathbf{U}_i}|\mathbf{U}_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 Outline
 Motivation
 Theory
 Application
 Conclusions

 Mathematical analysis

Given \mathbf{U}_i define the binary sequence $\mathbf{b} = [b_1, \dots, b_{p-1}]$

$$b_i = \left\{egin{array}{ccc} 1, & \mathbf{U}_j \in C_{
ho,\mathbf{U}_i} \cup C_{
ho,-\mathbf{U}_i} \ 0, & o.w. \end{array}
ight.$$

Then, have equivalent representation

$$E[\phi_i|\mathbf{U}_i] = P(\sum_{i=1}^{p-1} b_i > 0|\mathbf{U}_i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Outline
 Motivation
 Theory
 Application
 Conclusions

 Mathematical analysis

Given \mathbf{U}_i define the binary sequence $\mathbf{b} = [b_1, \dots, b_{p-1}]$

$$b_i = \left\{egin{array}{ccc} 1, & \mathbf{U}_j \in \mathcal{C}_{
ho,\mathbf{U}_i} \cup \mathcal{C}_{
ho,-\mathbf{U}_i} \ 0, & o.w. \end{array}
ight.$$

Then, have equivalent representation

$$E[\phi_i|\mathbf{U}_i] = P(\sum_{i=1}^{p-1} b_i > 0|\mathbf{U}_i)$$

Classical result [Thm. 4.5.4]{TW Anderson, 2003}:

Lemma

Let **X** be a *p*-variate elliptical vector with diagonal dispersion matrix **\Sigma**. The Z-scores $\{\mathbf{U}_i\}_{i=1}^p$ are *i.i.d.* random vectors uniformly distributed on S_{n-2} .

 Outline
 Motivation
 Theory
 Application
 Conclusions

Mathematical analysis

Given \mathbf{U}_i define the binary sequence $\mathbf{b} = [b_1, \dots, b_{p-1}]$

$$b_i = \left\{egin{array}{ccc} 1, & \mathbf{U}_j \in C_{
ho,\mathbf{U}_i} \cup C_{
ho,-\mathbf{U}_i} \ 0, & o.w. \end{array}
ight.$$

Then, have equivalent representation

$$E[\phi_i|\mathbf{U}_i] = P(\sum_{i=1}^{p-1} b_i > 0|\mathbf{U}_i)$$

Classical result [Thm. 4.5.4]{TW Anderson, 2003}:

Lemma

Let **X** be a *p*-variate elliptical vector with diagonal dispersion matrix **\Sigma**. The Z-scores $\{\mathbf{U}_i\}_{i=1}^p$ are *i.i.d.* random vectors uniformly distributed on S_{n-2} .

Implication: b_i 's are Bernoulli and $E[\phi_i | \mathbf{U}_i] = 1 - (1 - P_0)^{p-1}$.

Main result: correlation screening

Proposition

Let the $n \times p$ data matrix \mathbb{X} have i.i.d. rows but possibly dependent columns. Let the sequence $\{\rho_p\}_p$ of correlation thresholds be such that $\rho_p \to 1$ and $p(p-1) \left(1 - \rho_p^2\right)^{(n-2)/2} \to d_n$ for some finite constant d_n . Then

$$\lim_{p \to \infty} E[N] = \kappa_n J(\overline{f_{\mathbf{U}_{\bullet},\mathbf{U}_{*-\bullet}}}), \qquad (1)$$

where $\kappa_n = a_n d_n / (n-2)$ and $\overline{f_{U_{\bullet},U_{*-\bullet}}}$ is limit of average density

$$\overline{f_{\mathbf{U}_{\bullet},\mathbf{U}_{*-\bullet}}}^{(p)}(\mathbf{u},\mathbf{v}) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{p-1} \sum_{j\neq i}^{p} \left(\frac{1}{2} f_{\mathbf{U}_{i},\mathbf{U}_{j}}(\mathbf{u},\mathbf{v}) + \frac{1}{2} f_{\mathbf{U}_{i},\mathbf{U}_{j}}(\mathbf{u},-\mathbf{v}) \right).$$
(2)

Implication: uniform Z-score density is minimax

• $J(\overline{f_{U_{\bullet},U_{*-\bullet}}})$: related to Hellinger divergence and Rényi entropy

$$\begin{aligned} J(f_{\mathbf{U},\mathbf{V}}) &= |S_{n-2}| \int f_{\mathbf{U},\mathbf{V}}(\mathbf{w},\mathbf{w}) d\mathbf{w} \\ &= |S_{n-2}| \int (f_{\mathbf{U}|\mathbf{V}}(\mathbf{w}|\mathbf{w}) f_{\mathbf{V}|\mathbf{U}}(\mathbf{w}|\mathbf{w}))^{1/2} (f_{\mathbf{U}}(\mathbf{w}) f_{\mathbf{V}}(\mathbf{w}))^{1/2} d\mathbf{w} \\ &\leq |S_{n-2}| \left(\int f_{\mathbf{U}|\mathbf{V}}(\mathbf{w}|\mathbf{w}) f_{\mathbf{V}|\mathbf{U}}(\mathbf{w}|\mathbf{w}) \right)^{1/2} \left(\int f_{\mathbf{U}}(\mathbf{w}) f_{\mathbf{V}}(\mathbf{w}) \right)^{1/2} \\ &\leq H_2^{1/4} (f_{\mathbf{U}|\mathbf{V}}) H_2^{1/4} (f_{\mathbf{V}|\mathbf{U}}) H_2^{1/4} (f_{\mathbf{U}}) H_2^{1/4} (f_{\mathbf{V}}), \end{aligned}$$

- Equalities iff $f_{U,V}(u, u) = f_U(u)f_V(u)$ and $f_U(u) = f_V(u)$
- Right side of (3) minimized when f_U is uniform over S_{n-2} .

Theory

Applicatio

Conclusions

Implication: phase transition for correlation screening

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theory

Implication: phase transition for correlation screening

Critical threshold approximation: $\rho_c = \max\{\rho : dE[N]/d\rho = -1\}$

$$o_{c} = \sqrt{1 - c_{n}(p-1)^{-2/(n-4)}} \tag{3}$$

Application

Main result: persistent correlation screening

Proposition

Let the $n_a \times p$ and $n_b \times p$ data matrices \mathbb{X}^b and \mathbb{X}^a be independent. Let $\rho_p^a \to 1$ and $\rho_p^b \to 1$ while for $\gamma = a, b$

$$(p^{1/2}(
ho-1)\left(1-(
ho_{
ho}^{\gamma})^{2}
ight)^{(n_{\gamma}-2)/2} ~
ightarrow d_{n_{\gamma}}$$

Then

$$\lim_{p \to \infty} E[N^{a \wedge b}] = \kappa_n^{a \wedge b} \lim_{p \to \infty} \frac{1}{p} \sum_{i=1}^p J(\overline{f_{\mathbf{U}_i^a, \mathbf{U}_{*-i}^a}}) J(\overline{f_{\mathbf{U}_i^b, \mathbf{U}_{*-i}^b}}), \qquad (4)$$

where, for $\mathbf{U} \in {\{\mathbf{U}^a, \mathbf{U}^b\}}$,

$$\overline{f_{\mathbf{U}_{i},\mathbf{U}_{*-i}}}(\mathbf{u},\mathbf{v}) = \frac{1}{p-1} \sum_{j\neq i}^{p} \left(\frac{1}{2} f_{\mathbf{U}_{i},\mathbf{U}_{j}}(\mathbf{u},\mathbf{v}) + \frac{1}{2} f_{\mathbf{U}_{i},\mathbf{U}_{j}}(\mathbf{u},-\mathbf{v}) \right).$$
(5)

Outline Motivation Theory Application Conclusions Persistent correlation screening: observations

- $ho_{a}
 ightarrow 1$, $ho_{b}
 ightarrow 1$ at slower rates than before.
- When $J(\overline{f_{\mathbf{U}_{i}^{a},\mathbf{U}_{*-i}^{a}}})$, $J(\overline{f_{\mathbf{U}_{i}^{b},\mathbf{U}_{*-i}^{b}}})$ are asymptotically *incoherent*

$$\lim_{p\to\infty}\frac{1}{p}\sum_{i=1}^p J(\overline{f_{\mathsf{U}_i^a,\mathsf{U}_{*-i}^a}})J(\overline{f_{\mathsf{U}_i^b,\mathsf{U}_{*-i}^b}}) = J(\overline{f_{\mathsf{U}_{\bullet}^a,\mathsf{U}_{*-\bullet}^a}})J(\overline{f_{\mathsf{U}_{\bullet}^b,\mathsf{U}_{*-\bullet}^b}})$$

Then, as $p \to \infty$,

$$E[N^{a\wedge b}] o rac{E[N^a]E[N^b]}{p}$$

• $p^{-1/2}E[N_a]$, $p^{-1/2}E[N_b]$ converge but $E[N_a]$, $E[N_b]$ do not.

 Outline
 Motivation
 Theory
 Application
 Conclusion

 Implication:
 phase transition for persistent correlation
 screening
 <

・ロト ・聞ト ・ヨト ・ヨト

æ

Phase transitions: correlation vs persistent correlation screening

Outline	Motivation	Theory	Application	Conclusions
Outline				

Theory

Application

Conclusions

Application: correlation screening with spike-in

$n \setminus \alpha$	0.010	0.025	0.050	0.075	0.100
10	0.99\0.99	0.99\0.99	0.99\0.99	0.99\0.99	0.99\0.99
15	0.96\0.96	0.96\0.95	0.95\0.95	0.95\0.94	0.95\0.94
20	0.92\0.91	0.91 (0.90)	0.91 (0.89)	0.90\0.89	0.90\0.89
25	0.88\0.87	0.87\0.86	0.86\0.85	0.85\0.84	0.85\0.83
30	0.84\0.83	0.83\0.81	0.82\0.80	0.81\0.79	0.81\0.79
35	0.80\0.79	0.79\0.77	0.78\0.76	0.77\0.76	0.77\0.75

Table: Achievable limits in FPR (α) for TPR =0.8 (β), as function of *n*, minimum detectable threshold, and correlation threshold ($\rho_1 \setminus \rho$). To obtain entries $\rho_1 \setminus \rho$ a Poisson approximation determined $\rho = \rho(\alpha)$ and a Fisher-Z Gaussian approximation determined $\rho_1 = \rho_1(\beta)$. Here p = 1000 on Gaussian sample having diagonal covariance with a spike-in correlated pair.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Theory

Application

Conclusions

Application: correlation screening with spike-in

Figure: Comparison between predicted (diamonds) and actual (numbers) operating points (α, β) using Poisson approximation to false positive rate (α) and Fisher approximation to false negative rate (β) . Each number is located at an operating point determined by the sample size *n* ranging over *n* = 10, 15, 20, 25, 30, 35. These numbers are color coded according to the target value of β .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Application

Conclusions

Application: persistent correlation discovery

Figure: Comparison between predicted (diamonds) and actual (numbers) operating points (α , β) for perisistent correlation screening.

Application: gene expression data

Beverage Data from Gene Expression Omnibus (GEO) NCBI

- Reference: Florent Baty etal (2006) BMC Bioinformatics
- Subjects: 6 individuals at 5 time points (0, 1, 2, 4, 12 hours)
- Treatments: post-baseline intake of
 - A: alcohol (n₁ = 20)
 - *G*: grape juice (*n*₂ = 22)
 - *H*: water (*n*₃ = 23)
 - W: red wine $(n_4 = 22)$
- 87 Affymetrix HU133 Genechip peripheral blood samples

• Each sample contains p = 22,283 gene probes

Application

- 日本 - 1 日本 - 日本 - 日本

Conclusions

Application: observed Z-scores

Figure: 3 dimensional projections of the Z-scores for the experimental beverage data under each of the treatments A,G,H,W. For visualization the 22,238 variables (gene probes) were downsampled by a factor of 8 and a randomly selected set of four samples in each treatment were used to produce these figures.

Application

Conclusions

Application: persistent correlation discoveries

$\{A\}, \{G\}, \{H\}, \{W\}$		42	50	82	424	
${A, G}, {A, H}, {A, W}, {G, H}, {G, W}, {H, W}$	493	748	1069	677	864	1445
$\{G, H, W\}, \{A, H, W\}, \{A, G, W\}, \{A, G, H\}$		2242	2530	1893	1690	
$\{A, G, H, W\}$			3313			

Table: Number of genes discovered by auto-screening (top row) and persistency screening (lower three rows) for various combinations of treatments in the experimental data. Auto-screening threshold determined using Poisson approximation to Type I error of level 10^{-5} .

Motivatior

Theory

Application

Conclusions

Application: set-inclusion diagram

Figure: Set-inclusion graph between genes discovered by correlation screening in various combinations of treatments. Size of node is proportional to the log of number of associated correlation screening discoveries given in Table 2. A directed edge from node *i* to node *j* exists if at least 90% of the genes discovered in node *i* are also discovered in node *j* and the thickest edges indicate 100% set inclusion. The asymmetry of diagram indicates that treatments have different effects on gene expression.

Theory

Application

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application: persistent covariance network

Figure: Heatmap of 4444 genes discovered in at least one of the set inclusion tests shown in Table 2.

Motivatior

Theory

Application

Conclusions

Application: persistent covariance network

Figure: 774 gene subnetwork of the 3313 gene persistent-correlation network across all four treatments corresponding to the last row of Table 2. Two nodes in this network are linked by an edge if for all 4 treatments their sample correlation is above the 10^{-5} FWER correlation-screening threshold.

Outline	Motivation	Theory	Application	Conclusions
Outline				

Outline	Motivation	Theory	Application	Conclusions
Conclusions				

- Correlation screening can be performed with confidence
 - Screening affected by phase transition as threshold decreases
 - Large p expressions for critical PT threshold ρ_c are available
 - Effect of pairwise dependence manifested through Hellinger divergence

Outline	Motivation	Theory	Application	Conclusions
Conclusions				

- Correlation screening can be performed with confidence
 - Screening affected by phase transition as threshold decreases
 - Large p expressions for critical PT threshold ρ_{c} are available
 - Effect of pairwise dependence manifested through Hellinger divergence

- Key concepts:
 - Z-score representation of sample correlation
 - Geometry of unit sphere

Outline	Motivation	Theory	Application	Conclusions
Conclusions				

- Correlation screening can be performed with confidence
 - Screening affected by phase transition as threshold decreases
 - Large p expressions for critical PT threshold ρ_{c} are available
 - Effect of pairwise dependence manifested through Hellinger divergence
- Key concepts:
 - Z-score representation of sample correlation
 - Geometry of unit sphere
- Persistence: Strongest specialists are not strongest generalists