UCSB

Combinatorial Scientific Computing: Tutorial, Experiences, and Challenges

John R. Gilbert
University of California, Santa Barbara

Workshop on Algorithms for Modern Massive Datasets June 15, 2010

Combinatorial Scientific Computing

"I observed that most of the coefficients in our matrices were zero; i.e., the nonzeros were 'sparse' in the matrix, and that typically the triangular matrices associated with the forward and back solution provided by Gaussian elimination would remain sparse if pivot elements were chosen with care"

- Harry Markowitz, describing the 1950s work on portfolio theory that won the 1990 Nobel Prize for Economics

Graphs and Sparse Matrices: Cholesky factorization

Fill: new nonzeros in factor

G(A)

Symmetric Gaussian elimination:
for $\mathrm{j}=1$ to n
add edges between j 's higher-numbered neighbors

$$
\begin{gathered}
\mathrm{G}^{+}(\mathrm{A}) \\
{[\text { chordal] }}
\end{gathered}
$$

Fill-reducing matrix permutations

Vertex separator in graph of matrix

- Theory: approx optimal separators => approx optimal fill and op count
- Orderings: nested dissection, minimum degree, hybrids
- Graph partitioning: spectral, geometric, multilevel

UC S B

Combinatorial Scientific Computing

What's in the intersection?

Combinatorial Scientific Computing:

The development, application and analysis of combinatorial algorithms to enable scientific and engineering computations

CSC: What's in a name?

- Deeper origins in ...
- \quad Sparse direct methods community (1950s \& onward)
- Statistical physics: graphs and Ising models (1940s \& 50s)
- Chemical classification (1800s, Cayley)
- Common esthetic, techniques, and goals among researchers who were far apart in traditional scientific taxonomy

CSC: What's in a name?

- Deeper origins in ...
- \quad Sparse direct methods community (1950s \& onward)
- Statistical physics: graphs and Ising models (1940s \& 50s)
- Chemical classification (1800s, Cayley)
- Common esthetic, techniques, and goals among researchers who were far apart in traditional scientific taxonomy
- "Combinatorial scientific computing" chosen in 2002
- After lengthy email discussion among ~ 30 people.
- Now > 70,000 Google hits for "combinatorial scientific computing"

CSC: What's in a name?

- Deeper origins in ...
- \quad Sparse direct methods community (1950s \& onward)
- Statistical physics: graphs and Ising models (1940s \& 50s)
- Chemical classification (1800s, Cayley)
- Common esthetic, techniques, and goals among researchers who were far apart in traditional scientific taxonomy
- "Combinatorial scientific computing" chosen in 2002
- After lengthy email discussion among ~ 30 people.
- Now > 70,000 Google hits for "combinatorial scientific computing"
- Recognition by scientific community \& funding agencies
- 5 major CSC workshops since 2004, plus many minisymposia
- DOE "CSCapes" institute formed 2006

DOE CSCapes Institute

www.cscapes.org

Purdue

U N I V E R S I T Y

Sandia National Laboratories

Scientific Computing Application

Lead Principal Investigator: Alex Pothen, Purdue

Office of Science

A Brief Tour of Applications

UC S B

Partitioning data for parallel computation

- Goals: balance load, reduce data movement
- Approaches: geometric, spectral, multilevel
- Geometric meshes are easier than general sparse structures!
- Graphs => hypergraphs, more detailed models
- Partitioning in parallel: how to bootstrap?

Coloring for parallel nonsymmetric preconditioning [Agganwal et al]

- Level set method for multiphase interface problems in 3D.
- Nonsymmetric-structure,

263 million DOF second-order-accurate octree discretization. BiCGSTAB preconditioned by parallel triangular solves.

Coloring for evaluation of sparse Jacobians

[Pothen et al., courtesy CSCapes]

- Goal: compute (sparse) matrix J of partial derivatives, $J(i, j)=\partial y_{i} / \partial x_{j}$
- Finite differences give one column at a time ...
- ... but nonoverlapping columns can be computed together.

Many variations, extensions, generalizations.

Automatic Differentiation of Programs

[Hovland et al., courtesy CSCapes]

- Technique to convert a (complicated) program that computes $f(x)$ into a program that computes $\partial f_{i} / \partial x_{j}$ for all i and j
- Represent a computation as a DAG; vertices are elementary operations
- Label edges with partial derivatives of elementary ops

$$
\begin{aligned}
& t 0=\sin (y) \\
& d 0=\cos (y) \\
& b=t 0^{*} y \\
& a=\exp (x) \\
& c=a^{*} b \\
& f=a^{*} c
\end{aligned}
$$

Derivatives

U C S B

Automatic Differentiation

- Label edges with partial derivatives of elementary ops
- Using the chain rule, eliminate internal vertices
- End up with partial derivatives of outputs with respect to inputs

Automatic Differentiation

- Label edges with partial derivatives of elementary ops
- Using the chain rule, eliminate internal vertices
- End up with partial derivatives of outputs with respect to inputs

Automatic Differentiation

- Label edges with partial derivatives of elementary ops
- Using the chain rule, eliminate internal vertices
- End up with partial derivatives of outputs with respect to inputs

$$
\begin{aligned}
& t 0=\sin (y) \\
& d 0=\cos (y) \\
& b=t 0^{*} y \\
& a=\exp (x) \\
& c=a^{*} b \\
& f=a^{*} c \\
& d 1=t 0+d 0^{*} y \\
& d 2=a^{*} a \\
& d 3=c+b^{*} a
\end{aligned}
$$

Automatic Differentiation

- Label edges with partial derivatives of elementary ops
- Using the chain rule, eliminate internal vertices
- End up with partial derivatives of outputs with respect to inputs

Automatic Differentiation

- Used in practice on very large programs => large computational graphs
- Work depends on elimination order; best order is NP-hard
- Checkpointing to trade time for memory; many combinatorial problems

Landscape connectivity modeling

[Shah et al.]

- Habitat quality, gene flow, corridor identification, conservation planning
- Pumas in southern California: 12 million nodes, < 1 hour
- Targeting larger problems: Yellowstone-to-Yukon corridor

Circuitscape [McRae, Shah]

- Predicting gene flow with resistive networks
- Matlab, Python, and Star-P (parallel) implementations
- Combinatorics:
- Initial discrete grid: ideally 100m resolution (for pumas)
- Partition landscape into connected components
- Graph contraction: habitats become nodes in resistive network
- Numerics:
- Resistance computations for pairs of habitats in the landscape
- Iterative linear solvers invoked via Star-P: Hypre (PCG+AMG)

Reverse-engineering genetic transcription

DNA makes RNA, regulated by proteins called transcription factors.

- How strongly does each transcription factor activate or repress expression of each gene?
- Factorize observation matrix \mathbf{E} as $\mathbf{P} \times \mathbf{A}$
- Topological constraints on A
- Possible nonnegativity constraint on \mathbf{P}
- Regularized alternating least squares, etc.

strengths A

A Few Challenges in Combinatorial Scientific Computing

UC S B

The Challenge of Architecture and Algorithms

UC S B

The Architecture \& Algorithms Challenge

Oak Ridge / Cray Jaguar
> 1.75 PFLOPS

- Parallelism is no longer optional...
- ... in every part of a computation.

High-performance architecture

Most high-performance computer designs allocate resources to optimize Gaussian elimination on large, dense matrices.

Originally, because linear algebra is the middleware of scientific computing.

Nowadays, largely for bragging rights.

Strongly connected components

- Symmetric permutation to block triangular form
- Diagonal blocks are strong Hall (irreducible / strongly connected)
- Sequential: linear time by depth-first search [Tarjan]
- Parallel: divide \& conquer, work and span depend on input [Fleischer, Hendrickson, Pinar]

Architectural impact on algorithms

Matrix multiplication: $C=A$ * B

$$
\begin{aligned}
& C=0 ; \\
& \text { for } i=1: n \\
& \text { for } j=1: n \\
& \quad \text { for } k=1: n \\
& \quad C(i, j)=C(i, j)+A(i, k) * B(k, j) ;
\end{aligned}
$$

$O\left(n^{3}\right)$ operations

Architectural impact on algorithms

Naïve 3-loop matrix multiply [Alpern et al., 1992]:

log Problem Size
Naïve algorithm is $\mathrm{O}\left(\mathrm{N}^{5}\right)$ time under UMH model.
BLAS-3 DGEMM and recursive blocked algorithms are $O\left(N^{3}\right)$.

The architecture \& algorithms challenge

> A big opportunity exists for computer architecture to influence combinatorial algorithms.
(Maybe even vice versa.)

The Challenge of Primitives

UC S B

An analogy?

As the "middleware"

Linear algebra
\downarrow
 of scientific computing, linear algebra has supplied or enabled:

- Mathematical tools
- "Impedance match" to computer operations
- High-level primitives
- High-quality software libraries
- Ways to extract performance from computer architecture
- Interactive environments

UCSB

An analogy?

Linear algebra

structure analysis
 Discrete

UC S B

An analogy? Well, we're not there yet

$\sqrt{ }$ Mathematical tools
? "Impedance match" to computer operations
? High-level primitives
? High-quality software libs
? Ways to extract performance from computer architecture
? Interactive environments

Discrete

structure analysis

Graph theory

Computers

- Supply a common notation to express computations
- Have broad scope but fit into a concise framework
- Allow programming at the appropriate level of abstraction and granularity
- Scale seamlessly from desktop to supercomputer
- Hide architecture-specific details from users

Many possibilities; none completely satisfactory;
little work on common frameworks or interoperability.

- Visitor-based, distributed-memory: PBGL
- Visitor-based, multithreaded: MTGL
- Heterogeneous, tuned kernels: SNAP
- Scan-based vectorized: NESL
- Map-reduce: lots of visibility
- Sparse array-based: Matlab *P-KDT, CBLAS

The Case for Sparse Matrices

U C S B

Sparse matrix-matrix multiplication (SpGEMM)

Element-wise operations

Sparse matrix-dense vector multiplication

Sparse matrix indexing

Matrices on various semirings: ($\mathrm{x},+$) , (and, or) , (+, min) , ...

Multiple-source breadth-first search

UC S B

Multiple-source breadth-first search

UC S B

Multiple-source breadth-first search

- \quad Sparse array representation => space efficient
- \quad Sparse matrix-matrix multiplication => work efficient
- Load balance depends on SpGEMM implementation

SpGEMM: Sparse Matrix x Sparse Matrix

- Graph clustering (Markov, peer pressure)
- Subgraph / submatrix indexing
- Shortest path calculations
- Betweenness centrality
- Graph contraction
- Cycle detection

- Multigrid interpolation \& restriction
- Colored intersection searching
- Applying constraints in finite element computations
- Context-free parsing ...
- 2D block layout
- Outer product formulation
- Sequential "hypersparse" kernel

$$
\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} * \mathrm{~B}_{\mathrm{kj}}^{-}
$$

Parallel PSpGEMM Scalability, Rmat-Scale20

- Scales well to hundreds of processors
- Betweenness centrality benchmark: over 200 MTEPS
- Experiments: TACC Lonestar cluster

Time vs Number of cores -- 1M-vertex RMAT

A Parallel Library: Combinatorial BLAS

UC S B

The Primitives Challenge

- By analogy to numerical scientific computing. . .
- What should the combinatorial BLAS look like?

Basic Linear Algebra Subroutines (BLAS):
Speed (MFlops) vs. Matrix Size (n)

The Combinatorial BLAS: Example of use

Software stack for an application of the Combinatorial BLAS

Betweenness Centrality (BC)

What fraction of shortest paths pass through this node?

$$
C_{B}(v)=\sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

Brandes’ algorithm

BC performance in distributed memory

BC performance

\rightarrow Scale 17
--Scale 18
\simeq Scale 19

* Scale 20

Number of Cores

- TEPS = Traversed Edges Per Second
- One page of code using CBLAS

The Education Challenge

$>$ How do you teach this stuff?

Where do you go to take courses in
> Graph algorithms ...
> ... on massive data sets ...
> ... in the presence of uncertainty ...
> ... analyzed on parallel computers ...
> ... applied to a domain science?

Final thoughts

- Combinatorial algorithms are pervasive in scientific computing and will become more so.
- Linear algebra and combinatorics can support each other in computation as well as in theory.
- A big opportunity exists for computer architecture to influence combinatorial algorithms.
- This is a great time to be doing research in combinatorial scientific computing!

