1. Numerical Linear Algebra in the Streaming Model

Ken Clarkson

IBM Almaden

joint with David Woodruff

2. The Input Data

- A is an $n \times d$ matrix, B is $n \times d^{\prime}$
- Matrix entries are given as a sequence of updates
- An update specifies i, j, v, and A or B, so that $A_{i j} \leftarrow A_{i j}+v$, or similiarly for B
- The turnstile streaming model
- This is even more demanding than taking one pass over A and B fixed in memory

3. The General Algorithmic Approach

- As updates appear: maintain compressed versions of A and B
- Sketches
- When ready: compute output results using sketches
- Key resources: passes ($=1$ here), space, update time, compute time

4. The Problems

We give provably good estimators for:

- Product: $A^{T} B$
- Regression: the matrix X^{*} minimizing $\|A X-B\|$
- A slightly generalized version of least-squares regression
- All norms here Frobenius, so $\|A\|:=\left[\sum_{i, j} A_{i j}^{2}\right]^{1 / 2}$
- Low Rank Approximation: the matrix A_{k} of rank k minimizing $\left\|A-A_{k}\right\|$
- For k given beforehand
- The rank of A

5. General Properties of Our Algorithms

- Provable error bounds, with high probability
- The error is measured using the Frobenius norm
- For some problems, our sketches as small as possible
- For a given error
- When A and B have appropriate-sized integer entries
- Sketches may also be useful in a distributed setting, where matrix entries are scattered
- ...and one pass $=>$ few rounds of communication

6. Randomized Matrix Compression

In a line of similar efforts...

- Elementwise sampling [AM01][AHK06]
- Row/column sampling: pick small random subsets of the rows, columns, or both [DK01][DKM04]
- Sample probability based on Euclidean norm of row or column
- Or even: probability based on norm of vector in SVD
- In general, needs two passes
- Whole row or column samples are good "examples", and may preserve sparsity
- (Here) Sketching/Random Projection: maintain a small number of random linear combinations of rows or columns [S06]
- Our upper bound work is \approx a followup to [S06]
- cf. Rokhlin-Szlam-Tygert, Halko-Martinsson-Tropp

7. Approximate Matrix Product

- A and B have n rows, we want to estimate $A^{T} B$
- Let S be an $n \times m$ sign matrix
- A.K.A. Rademacher or Bernoulli
- Each entry is +1 or -1 with probability $1 / 2$
- $m=O(1)$, to be specified
- Independent entries, for now
- Our estimate of $A^{T} B$ is $A^{T} S S^{T} B / m=\left(S^{T} A\right)^{T} S^{T} B / m$
- That is, sketches are $S^{T} A$ and $S^{T} B$
- Compressing the columns from n down to m

8. Time and Space Bounds

- Update time is $O(m)$, since only one column of S^{T} is needed per update
- Space is $O(m d)$ for $S^{T} A, O\left(m d^{\prime}\right)$ for $S^{T} B$
- $O(m)$ space for S, via limiting independence of S entries
- Compute time, for product of sketches, is $O\left(m d d^{\prime}\right)=O\left(m c^{2}\right), c:=d+d^{\prime}$
- Can be done in $O\left(d d^{\prime}\right)$ [Coppersmith]
- That is, we have optimal space, number of passes, and compute time

9. Expected Error, and a Tail Estimate

- From $\mathbf{E}\left[S S^{T}\right] / m=I$ and linearity of expectation,

$$
\mathbf{E}\left[A^{T} S S^{T} B / m\right]=A^{T} \mathbf{E}\left[S S^{T}\right] B / m=A^{T} B
$$

- So in expectation, sketch product is a good estimate of the product
- This is true also with high probability
- That is, for $\delta, \epsilon>0$, there is $m=O\left(\epsilon^{-2} \log (1 / \delta)\right)$ so that

$$
\operatorname{Prob}\{\|\Lambda\|>\epsilon| | A|\|\mid B\|\} \leq \delta
$$

- Here Λ is the error $A^{T} S S^{T} B / m-A^{T} B$
- This tail estimate seems to be new
- Bound holds when entries of S are $O(\log (1 / \delta)$)-wise independent

10. Lower Bound on Space

- The sketch size $O\left(M \epsilon^{-2} \log (1 / \delta)\right)$ is only a $\log c$ factor improvement, $c=d+d^{\prime}$
- Entries are $M=O(\log (n c))$ bit integers
- However: the new upper bound matches our new space lower bound $\Omega\left(M c / \epsilon^{2}\right)$
- Failure probability $\delta \leq 1 / 4$
- Large enough n and c

${ }_{11}$. Framework of Proof of Lower Bound

- Reduction from a communication task
- Alice has random $x \in\{0,1\}^{s}$
- Bob has random i
- Alice must send data to Bob so that he can learn x_{i}
- For even $2 / 3$ chance of success, Alice must send $\Omega(s)$ bits
- Even when Bob already knows $x_{i^{\prime}}$ for $i^{\prime}>i$ [MNSW]
- Given a product algorithm using small sketches:
- Alice can encode x in A, send sketch of A to Bob
- Bob can use B and sketch of A to estimate $A^{T} B$, and find x_{i}

12. Regression

- The problem again: $\min _{X}\|A X-B\|^{2}$
- X^{*} minimizing this has $X^{*}=A^{-} B$,
where A^{-}is the pseudo-inverse of A
- The algorithm is:
- Maintain $S^{T} A$ and $S^{T} B$
- Return \hat{X} solving $\min _{X}\left\|S^{T}(A X-B)\right\|$
- Main claim: if A has rank k,
there is $m=O\left(k \epsilon^{-1} \log (1 / \delta)\right)$ so that with probability at least $1-\delta$
$\|A \hat{X}-B\| \leq(1+\epsilon)\left\|A X^{*}-B\right\|$
- That is, relative error for \hat{X} is small

13. Regression Analysis Ideas

- Why should \hat{X} be so good?
- For fixed $Y,\left\|S^{T}(A Y-B)\right\| \approx\|A Y-B\|$
- Just as for a random projection
- If the norm is preserved for all Y, we're done
- S^{T} must preserve norm even of \hat{X}, chosen using S
- The main idea: show that $\left\|S^{T} A\left(X^{*}-\hat{X}\right)\right\|$ is small
- Using normal equations of sketched problem, matrix mult. results
- Use this to show $\left\|A\left(X^{*}-\hat{X}\right)\right\|$ is small
- Use this to show the result
- Using normal equations of exact problem

14. Best Low-Rank Approximation

- For any matrix A and integer k, there is a matrix A_{k} of rank k that is closest to A among all matrices of rank k
- Since rank of A_{k} is k, it is the product $C D^{T}$ of two k-column matrices C and D
- (A_{k} can be found from the SVD (singular value decomposition), where C and D are orthogonal matrices U and $V \Sigma$)
- This is a good compression of A
- If entries of A are noisy measurements, often the noise is "compressed out" in this way
- LSI, PCA, Eigen*, recommender systems, clustering,...

${ }_{15}$. Best Low-Rank Approximation and $S^{T} A$

- The sketch $S^{T} A$ holds a lot of information about A
- In particular, there is a rank k matrix \hat{A}_{k} in the rowspace of $S^{T} A$ nearly as close to A as A_{k}
- The rowspace of $S^{T} A$ is the set of linear combinations of its rows
- That is, $\left\|A-\hat{A}_{k}\right\| \leq(1+\epsilon)\left\|A-A_{k}\right\|$
- This is shown using the regression results

16.
 Nearly Best Nearly-Low-Rank Approximation

- A similar observation applies in transpose
- Suppose R is a $d \times m$ sign matrix (recall A is $n \times d$)
- The columnspace of $A R$ contains a nearly best rank- k approximation to A
- That is, \hat{X} minimizing $\|A R X-A\|$ has $\|A R \hat{X}-A\| \leq(1+\epsilon)\left\|A-A_{k}\right\|$
- Now minimize sketched version $\left\|S^{T} A R X-S^{T} A\right\|$
- Solution is $X^{\prime}=\left(S^{T} A R\right)^{-} S^{T} A$ with
$\left\|A R X^{\prime}-A\right\| \leq(1+\epsilon)\|A R \hat{X}-A\| \leq(1+\epsilon)^{2}\left\|A-A_{k}\right\|$
- Since $A R$ has rank $k \epsilon^{-1}, S$ must be $n \times m^{\prime}$, with $m^{\prime}=k \epsilon^{-2}$

17. Nearly Best Nearly-Low-Rank Algorithm

- An algorithm: maintain $A R$ and $S^{T} A$, return $A R X^{\prime}=A R\left(S^{T} A R\right)^{-} S^{T} A$
- Rank is k / ϵ
- Distance to A is $(1+\epsilon)\left\|A-A_{k}\right\|$
- This approximation to A is interesting in its own right
- No SVD required, only pseudo-inverse of a matrix of constant size

18.
 Nearly Best Low-Rank Approximation

Still haven't found a good rank k matrix

- To do this, we find the best rank- k approximation to $A R\left(S^{T} A R\right)^{-} S^{T} A$ in the columnspace of $A R$
- The resulting upper bound on space is a bigger w.r.t. than our lower bound
- When A is given a column at a time, or a row at a time, we can do better

19. Concluding Remarks

- Space bounds are tight for product, regression
- Faster update times?
- Space bounds are not tight w.r.t. ϵ for low-rank approximation
- Upper bounds are at fault, probably
- We have better upper bounds for restricted cases
- The entry-wise r-norm of the error matrix Λ can also be bounded
- This implies a bound on $\|\Lambda\|_{\text {max }}$ in terms of $\|A\|_{1 \rightarrow 2}$ and $\|B\|_{1 \rightarrow 2}$
- Other projection matrices besides sign matrices?
- For what other problems is the full power of the JL transform not needed?

Thank you for your attention

