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2. The Input Data
 is an  matrix,  is 

Matrix entries are given as a sequence of updates
An update specifies , , , and  or , so that , or similiarly for 

The turnstile streaming model
This is even more demanding than taking one pass over  and  fixed in memory

3. The General Algorithmic Approach
As updates appear: maintain compressed versions of  and 

Sketches
When ready: compute output results using sketches
Key resources: passes (=1 here), space, update time, compute time

4. The Problems
We give provably good estimators for:

Product: 

Regression: the matrix  minimizing 
A slightly generalized version of least-squares regression
All norms here Frobenius, so 

Low Rank Approximation: the matrix  of rank  minimizing 

For  given beforehand

The rank of 
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5. General Properties of Our Algorithms
Provable error bounds, with high probability
The error is measured using the Frobenius norm
For some problems, our sketches as small as possible

For a given error
When  and  have appropriate-sized integer entries

Sketches may also be useful in a distributed setting, where matrix entries are scattered
...and one pass  few rounds of communication

6. Randomized Matrix Compression
In a line of similar efforts...

Elementwise sampling [AM01][AHK06]
Row/column sampling: pick small random subsets of the rows, columns, or both
[DK01][DKM04]

Sample probability based on Euclidean norm of row or column
Or even: probability based on norm of vector in SVD

In general, needs two passes
Whole row or column samples are good "examples", and may preserve sparsity

(Here) Sketching/Random Projection: maintain a small number of random linear combinations
of rows or columns [S06]
Our upper bound work is  a followup to [S06]

cf. Rokhlin-Szlam-Tygert, Halko-Martinsson-Tropp

7. Approximate Matrix Product
 and  have  rows, we want to estimate 

Let  be an  sign matrix
A.K.A. Rademacher or Bernoulli
Each entry is  or  with probability 

, to be specified
Independent entries, for now

Our estimate of  is 

That is, sketches are  and 

Compressing the columns from  down to 
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8. Time and Space Bounds
Update time is , since only one column of  is needed per update

Space is  for ,  for 

 space for , via limiting independence of  entries

Compute time, for product of sketches, is , 

Can be done in  [Coppersmith]
That is, we have optimal space, number of passes, and compute time

9. Expected Error, and a Tail Estimate
From  and linearity of expectation,

So in expectation, sketch product is a good estimate of the product
This is true also with high probability
That is, for , there is  so that

Here  is the error 
This tail estimate seems to be new

Bound holds when entries of  are -wise independent

10. Lower Bound on Space
The sketch size  is only a  factor improvement, 

Entries are  bit integers

However: the new upper bound matches our new space lower bound 

Failure probability 

Large enough  and 
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11. Framework of Proof of Lower Bound
Reduction from a communication task

Alice has random 

Bob has random 

Alice must send data to Bob so that he can learn 

For even  chance of success, Alice must send  bits

Even when Bob already knows  for  [MNSW]
Given a product algorithm using small sketches:

Alice can encode  in , send sketch of  to Bob

Bob can use  and sketch of  to estimate , and find 

12. Regression
The problem again: 

 minimizing this has ,

where  is the pseudo-inverse of 
The algorithm is:

Maintain  and 

Return  solving 

Main claim: if  has rank ,

there is  so that with probability at least  

That is, relative error for  is small
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13. Regression Analysis Ideas
Why should  be so good?

For fixed , 
Just as for a random projection

If the norm is preserved for all , we're done

 must preserve norm even of , chosen using 

The main idea: show that  is small
Using normal equations of sketched problem, matrix mult. results

Use this to show  is small
Use this to show the result

Using normal equations of exact problem

14. Best Low-Rank Approximation
For any matrix  and integer , there is a matrix  of rank  that is closest to  among all

matrices of rank 

Since rank of  is , it is the product  of two -column matrices  and 

(  can be found from the SVD (singular value decomposition), where  and  are

orthogonal matrices  and )

This is a good compression of 

If entries of  are noisy measurements, often the noise is "compressed out" in this way
LSI, PCA, Eigen*, recommender systems, clustering,...

15. Best Low-Rank Approximation and 

The sketch  holds a lot of information about 

In particular, there is a rank  matrix  in the rowspace of  nearly as close to  as 

The rowspace of  is the set of linear combinations of its rows

That is, 
This is shown using the regression results
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16. Nearly Best Nearly-Low-Rank Approximation
A similar observation applies in transpose
Suppose  is a  sign matrix (recall  is )

The columnspace of  contains a nearly best rank-  approximation to 

That is,  minimizing  has 

Now minimize sketched version 

Solution is  with 

Since  has rank ,  must be , with 

17. Nearly Best Nearly-Low-Rank Algorithm
An algorithm: maintain  and , return 

Rank is 

Distance to  is 

This approximation to  is interesting in its own right
No SVD required, only pseudo-inverse of a matrix of constant size

18. Nearly Best Low-Rank Approximation
Still haven't found a good rank  matrix

To do this, we find the best rank-  approximation to 

 in the columnspace of 
The resulting upper bound on space is a bigger w.r.t. than our lower bound
When  is given a column at a time, or a row at a time, we can do better
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19. Concluding Remarks
Space bounds are tight for product, regression

Faster update times?
Space bounds are not tight w.r.t.  for low-rank approximation

Upper bounds are at fault, probably
We have better upper bounds for restricted cases

The entry-wise -norm of the error matrix  can also be bounded

This implies a bound on  in terms of  and 
Other projection matrices besides sign matrices?
For what other problems is the full power of the JL transform not needed?

Thank you for your attention
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