AdHeat, An Influence-based Social Ads Model & its Tera-scale Algorithms

Edward Y. Chang

Google Research

Comparison between Parallel Computing Frameworks

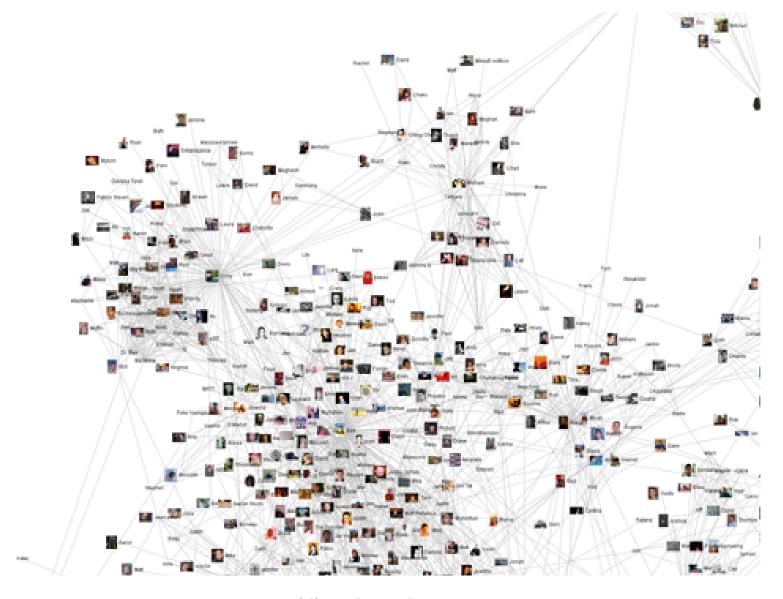
- Parallel LDA (ACM Transactions on Internet Technology, 2010)
- Parallel Spectral Clustering (PAMI, 2010)
- Parallel SVMs (NIPS, 2007)

	MapReduce	Pregel	MPI
GFS/IO and task rescheduling overhead between iterations	Yes	No +1	No +1
Flexibility of computation model	AllReduce only +0.5	AllReduce only +0.5	Flexible +1
Efficient AllReduce	Yes +1	Yes +1	Yes +1
Recover from faults between iterations	Yes +1	Yes +1	Apps
Recover from faults within each iteration	Yes +1	Yes +1	Apps
Final Score for scalable machine learning	3.5	4.5	5

Outline

- Social Network Ad Model
 - Relevance Model
 - Influence Model
- Key Algorithms
 - UserRank
 - Hint Word Generation
 - Diffusion

Social Networks [Jeff Heer, visualization]



Task: Targeting Ads at SNS Users

Users

miss_ming © 282 & O

宝宝玛德莲 (2) 12 出3 回 0

每7424 息33

● combabyを大干 闲逛 **1494 32**

● 排花0胎水 3.16 命中注定我 母575 出51

trovbley GOLD VS LEAF 同81 出16 回1

@ WTN 〒540 80

ys.5354 母268 832

◎ 诸葛侯 母571 884

© 32679319 ₱569 £259.

famously 女,22岁 ©557 2373

◎飞天鼠标 用, 19岁, 河南 第979 出 112

Mining Profiles, Friends & Activities for Relevance

北京研究会 2008-4-29 18照片

北京过年 2008 2008-2-13 6曜片

天涯谷歌会议 2008-1-28 12照片

深f 20 4所

成都 December... 2007-12-29 6照片

2007-10-24

帖子

标题

题 [余建漫画] 小狐狸KIKO的QQ表情下载 ■

[杨欣] 波爾杨欣激情 💹

[体操] 莫慧兰筹备退役选手就业辅导基金 关注无名选手 📰

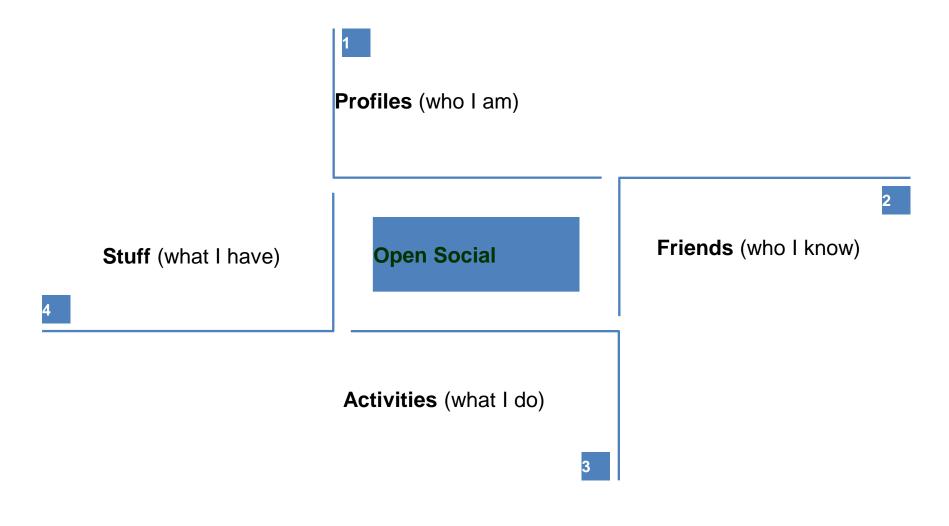
[张梓琳] 中国张梓琳获世界小姐冠军全过程回放

[摄影爱好者] 兵马俑在大英博物馆 📰

[浪漫韩剧] 最新搜藏文根英图集 🔤

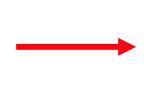
[谣言谎报]外电称西门子中国有近一半的业务涉及行贿

Open Social APIs



2010-6-16 Ed Chang @ MMDS 7

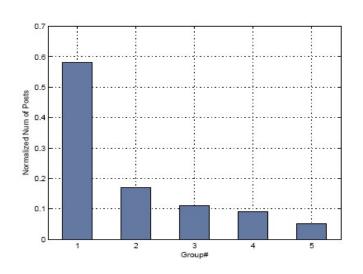
Relevance Model

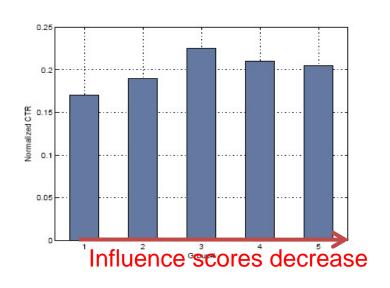


Limitation #1

Relevance → High CTR

- Correlation between users' Influence and Performance
 - Rank users by their content contributions
 - Evaluate relevance vs. CTR





(a) Content

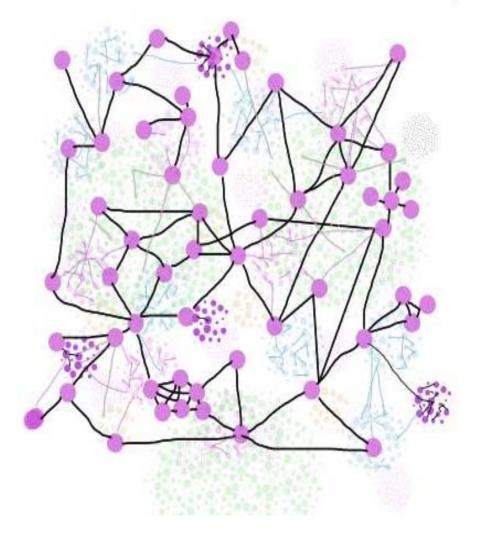
(b) CTR

Summary of Relevance

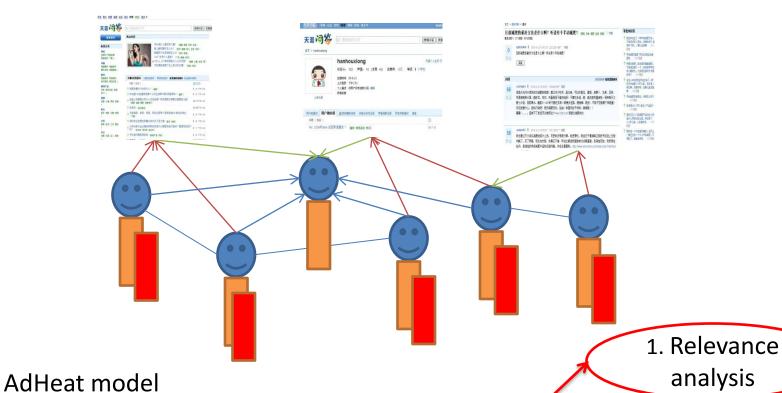
- Relevance analysis based on
 - User profile/friends/activities/stuff
- Active users
 - Sufficient data to conduct relevance analysis
 - Do not click on relevant ads
- Inactive users
 - Data too sparse to conduct relevance analysis

AdHeat: Consider also User *Influence*

- Advertisers compete for users who are
 - relevant
 - influential
- SNS Influence Analysis
 - Centrality
 - Expertise
 - Activeness
 - Heat Diffusion Rate



AdHeat



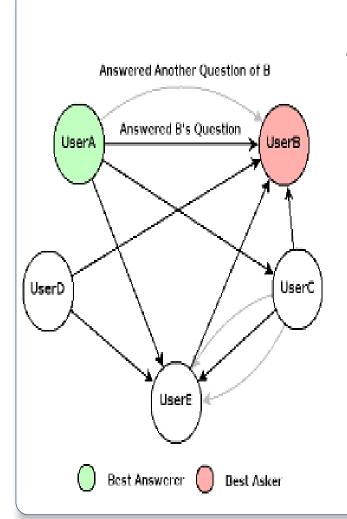
- mines the Individuals' characteristics/interests based on their contributions;
 - mines the individuals characteristics/interests based on their contributions;
 - quantifies mutual influence between users based on their interactions, constructs social network graph, and ranks the users by their influence;
 - propagates the interests of the influential users to those who are influenced by them.
 - 2. Influential user ranking
 - 3. Relevance propagation

2010-6-16 Ed Chang @ MMDS

Outline

- Social Network Ad Model
 - Relevance Model
 - Influence Model
- Key Algorithms
 - UserRank
 - Hint Word Generation
 - Diffusion

UserRank [VLDB 2010]



 Rank users by quantity (number of links) and quality (weights on links) of contributions

Quality include:

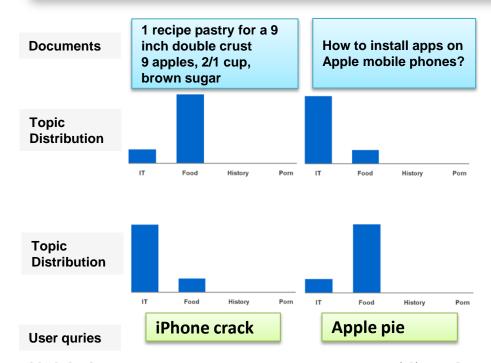
- Relevance. Is an answer relevant to the Q? Measured by KL divergence between *latent-topic* vectors of A and Q
- Originality. Detect potential plagiarism and spam
- Topic-dependent Factors.

Outline

- Social Network Ad Model
 - Relevance Model
 - Influence Model
- Key Algorithms
 - UserRank
- Hint Word Generation
 - Diffusion

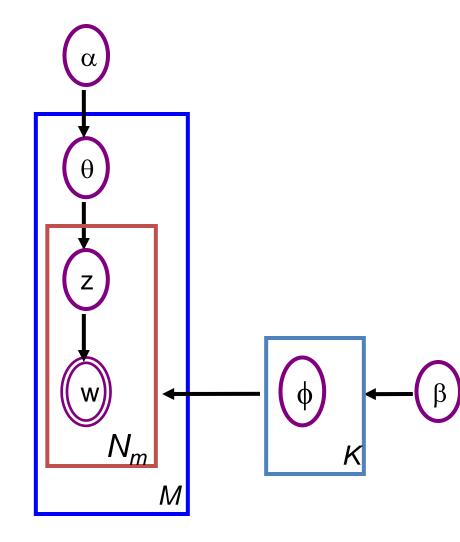
Latent Semantic Analysis

- Construct a latent layer for better for semantic matching
- Example:
 - iPhone crack
 - Apple pie



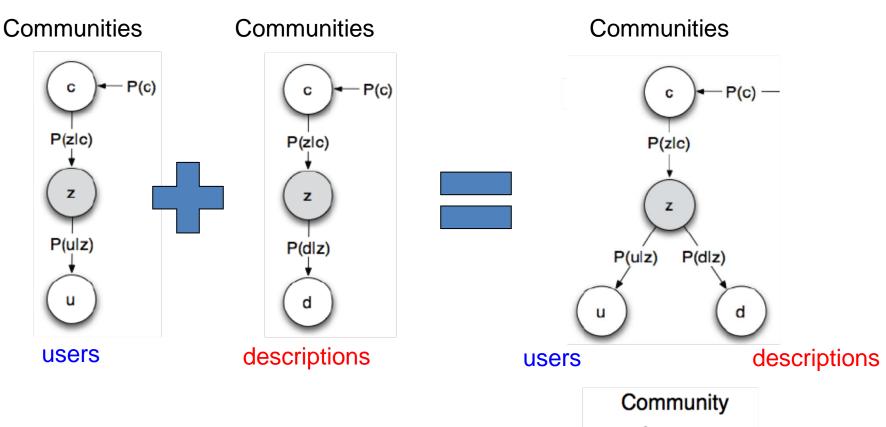
Latent Dirichlet Allocation [D. Blei, M. Jordan 04]

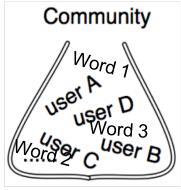
- α : uniform Dirichlet ϕ prior for per document d topic distribution (corpus level parameter)
- β : uniform Dirichlet ϕ prior for per topic z word distribution (corpus level parameter)
- θ_d is the topic distribution of document d (document level)
- z_{dj} the topic if the jth word in d, w_{dj} the specific word (word level)



Combinational Collaborative Filtering Model (CCF)

[KDD2008]





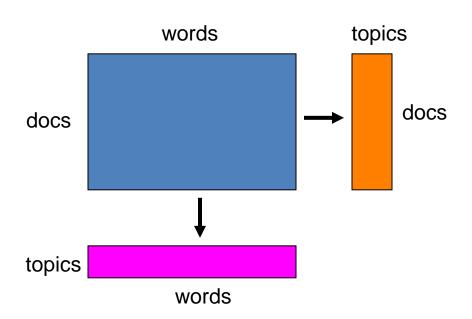
LDA Gibbs Sampling: Inputs & Outputs

Inputs:

- training data: documents as bags of words
- 2. <u>parameter</u>: the number of topics

Outputs:

- model parameters: a cooccurrence matrix of topics and words.
- by-product: a co-occurrence matrix of topics and documents.



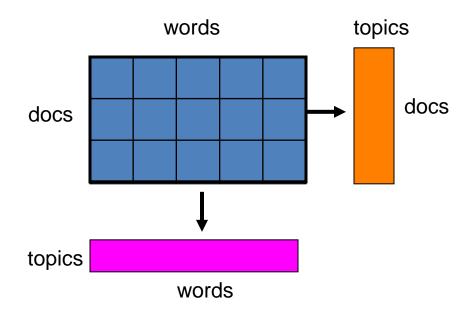
Parallel Gibbs Sampling

Inputs:

- training data: documents as bags of words
- 2. <u>parameter</u>: the number of topics

Outputs:

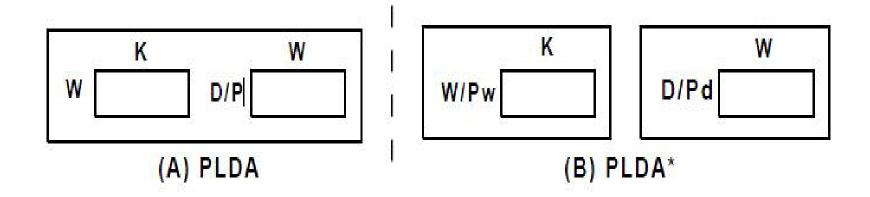
- model parameters: a cooccurrence matrix of topics and words.
- by-product: a co-occurrence matrix of topics and documents.



PLDA* -- enhanced parallel LDA

[ACM Transactions on IT]

- PLDA is restricted by memory: Topic-word matrix has to fit into memory
- Restricted by Amdahl's Law: communication costs too high



PLDA* -- enhanced parallel LDA

- Take advantage of bag of words modeling: each Pw machine processes vocabulary in a word order
- Pipelining: fetching the updated topic distribution matrix while doing Gibbs sampling

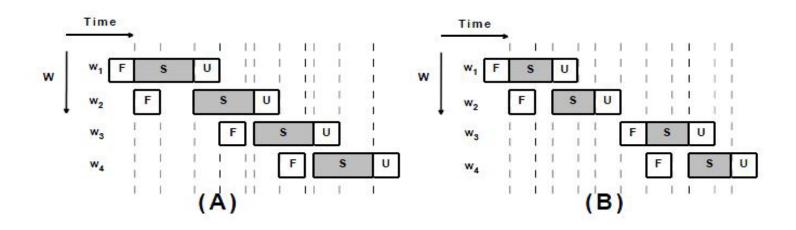
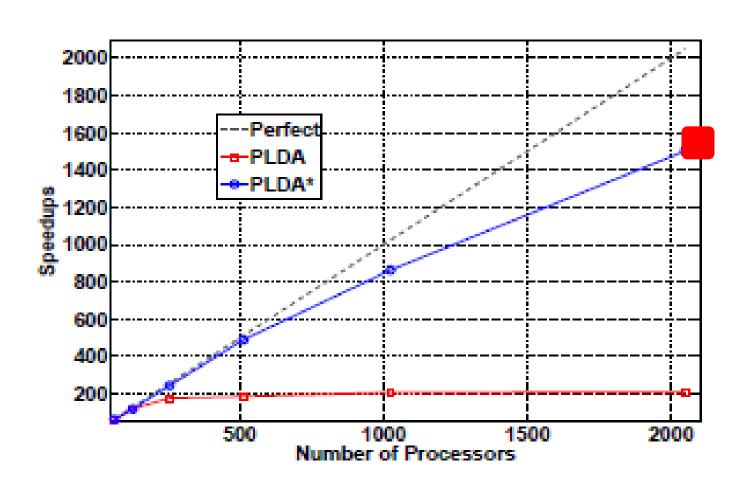


Fig. 4: Pipeline-based Gibbs Sampling in PLDA*. (A): $t_s \ge t_f + t_u$. (B): $t_s < t_f + t_u$.

Speedup

3.2B word occurrences

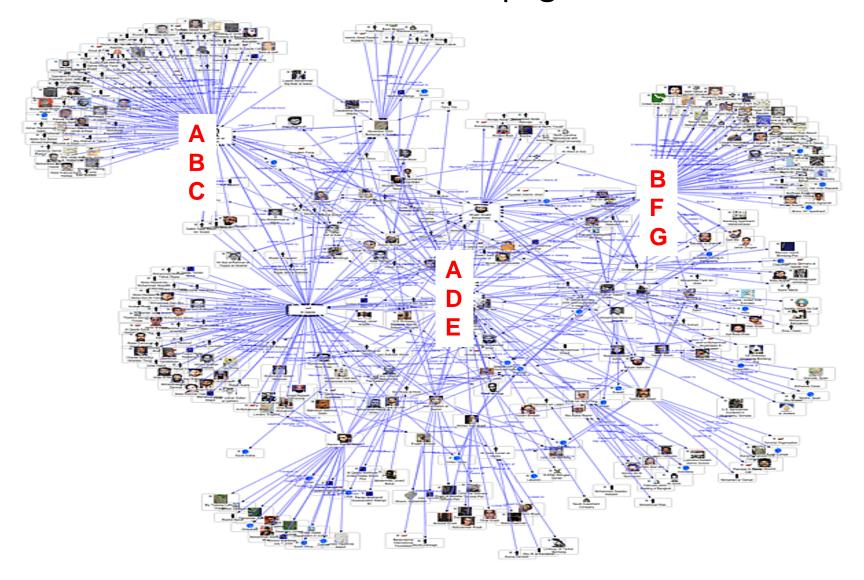
1,500x using 2,000 machines



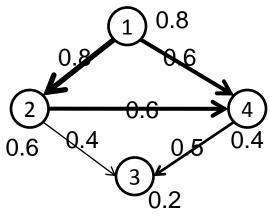
Outline

- Social Network Ad Model
 - Relevance Model
 - Influence Model
- Key Algorithms
 - UserRank
 - Hint Word Generation
- → Diffusion

Influence Analysis, Relevance Analysis, Influence-based Relevance Propagation



Illustrative Example



$$h^1 = \begin{bmatrix} 0.8 & 0.6 & 0.2 & 0.4 \end{bmatrix}^T$$

Hint words:

#1: (a, 0.6) (b, 0.4)

#2: (c, 0.8) (b, 0.2)

#3: (e, 0.5) (f, 0.5)

#4: (d, 0.9) (b, 0.1)

Word Propagation:

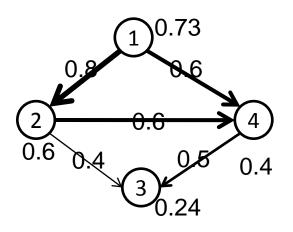
#1: (a, 0.6) (b, 0.4)

#2: (c, 0.69) (b, 0.23) (a, 0.08)

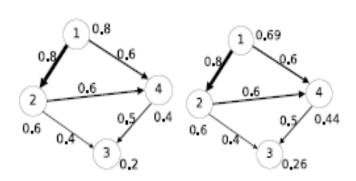
#3: (e, 0.4) (f, 0.4) (c, 0.1) (d, 0.07) (b, 0.03)

#4: (d, 0.66) (b, 0.16) (a, 0.11) (c, 0.07)

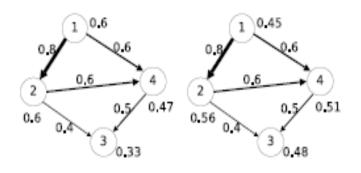
$$h^{1} = (1 + \frac{\Gamma \circ A}{M})h^{0} = [0.73 \quad 0.6 \quad 0.24 \quad 0.4]^{T}$$



Influence Propagation



(a)
$$n = 0$$
 (b) $n = 2$

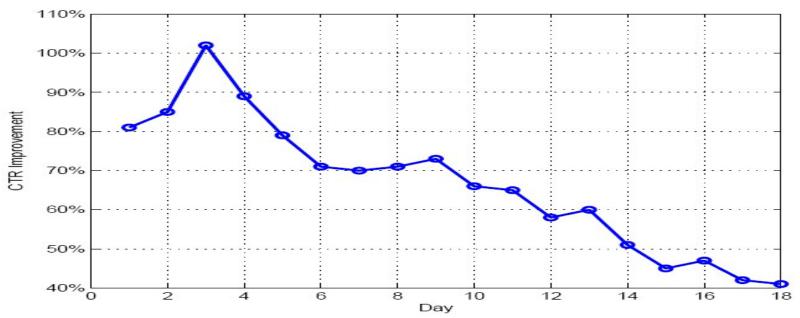


(c)
$$n = 4$$
 (d) $n = 8$

th less less see a								
n^{th}	User	Hint Words						
0	#1	(a, 0.6) (b, 0.4)						
	#2	(c, 0.8) (b, 0.2)						
	#3	(e, 0.5) (f, 0.5)						
	#4	(d, 0.9) (b, 0.1)						
	#1	(a, 0.6) (b, 0.4)						
1	#2	(c, 0.69) (b, 0.23) (a, 0.08)						
	#3	(e, 0.4) (f, 0.4) (c, 0.1) (d, 0.07) (b, 0.03) (a, 0.01)						
	#4	(d, 0.66) (a, 0.18) (c, 0.07) (b, 0.01)						
2	#1	(a, 0.6) (b, 0.4)						
	#2	(c, 0.65) (b 0.24) (a, 0.11)						
	#3	(e, 0.32) (f, 0.32) (c, 0.18) (d, 0.11) (b, 0.06) (a, 0.03)						
	#4	(d, 0.5) (a, 0.25) (b, 0.15) (c, 0.12)						
4	#1	(a, 0.6) (b, 0.4)						
	#2	(c, 0.59) (b, 0.25) (a, 0.16)						
	#3	(c, 0.26) (e, 0.21) (f, 0.21) (d, 0.13) (b, 0.11) (a, 0.08)						
	#4	(d, 0.34) (a, 0.29) (b, 0.21) (c, 0.17)						
8	#1	(a, 0.6) (b, 0.4)						
	#2	(c, 0.59) (b, 0.25) (a, 0.16)						
	#3	(c, 0.33) (b, 0.16) (e, 0.13) (f, 0.13) (a, 0.13) (d, 0.12)						
	#4	(a, 0.29) (d, 0.26) (b, 0.23) (c, 0.22)						

Influence Model with Propagation

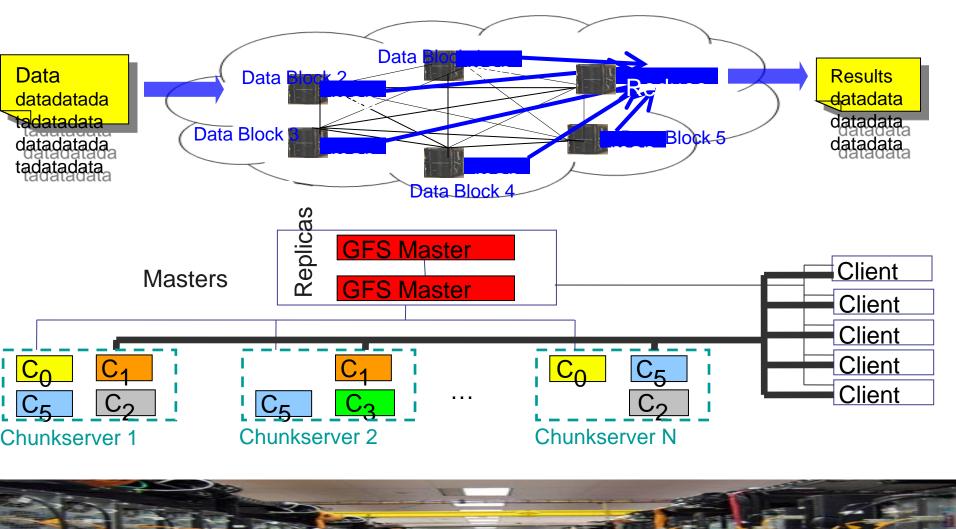
- For two groups of users to be shown ads, G1 and G2
 - G1: AdHeat with propagation (M3)
 - G2: AdHeat without propagation (M2)



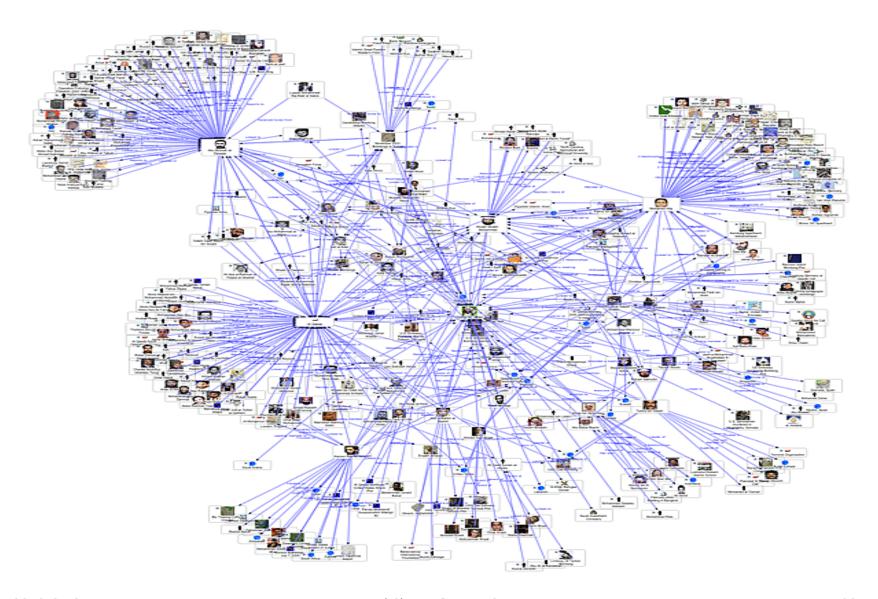
Improvement of Accumulative CTR (M3 vs. M2)

AdWords, AdSense, AdHeat

	Target	Interaction	Propagation	Page	Bid
AdWords	Query	X	X	Google pages	Key words
AdSense	Content	X	X	Web pages	Key words
AdHeat	User	V	√	User Home page	Users



Social Network Analysis



References

AdHeat (Social Ads):

- AdHeat: An Influence-based Diffusion Model for Propagating Hints to Match Ads,
 H.J. Bao and E. Y. Chang, WWW 2010, North Carolina, April 2010.
- Parallel Spectral Clustering in Distributed Systems,
 Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and E. Y. Chang,
 IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2010.

UserRank:

- Confucius and its Intelligent Disciples, X. Si, E. Y. Chang, Z. Gyongyi, VLDB, September 2010.
- Topic-dependent User Rank, Xiance Si, Z. Gyongyi, E. Y. Chang, and M.S. Sun, Google Technical Report.

Large-scale Collaborative Filtering:

- PLDA*: Parallel Latent Dirichlet Allocation for Large-Scale Applications, ACM Transactions on Internet Technology, 2010.
- Collaborative Filtering for Orkut Communities: Discovery of User Latent Behavior, W.-Y. Chen,
 J. Chu, E. Y. Chang, WWW 2009: 681-690.
- Combinational Collaborative Filtering for Personalized Community Recommendation, W.-Y.
 Chen, E. Y. Chang, KDD 2008: 115-123.
- Parallel SVMs, E. Y. Chang, et al., NIPS 2007.