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Comparison between Parallel Computing Frameworks
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• Parallel LDA (ACM Transactions on Internet Technology, 2010)
• Parallel Spectral Clustering (PAMI, 2010)
• Parallel SVMs (NIPS, 2007)
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Outline

• Social Network Ad Model
– Relevance Model

– Influence Model

• Key Algorithms
– UserRank

– Hint Word Generation

– Diffusion
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Social Networks [Jeff Heer, visualization]
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Task: Targeting Ads at SNS Users
Users

Ads

2010-6-16

Presenter
Presentation Notes
Relevance--staticInfluence--dynamic
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Mining Profiles, Friends & Activities for Relevance

2010-6-16

Presenter
Presentation Notes
Traditional methods (AdSense, Adwords) care only about relevance--not influence
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Open Social APIs

Open Social

1

2

3

Profiles (who I am)

Friends (who I know)

Activities (what I do) 

4

Stuff (what I have)

Presenter
Presentation Notes
Profiles (who I am) Profile parts can have ACLs to restrict visibilityWill also match my identity to other systems: my Flickr username is foo123Friends (who I know) Descriptive relationships: "friends", "family"; andGroups: "my soccer team", "people I went to Vegas with"Activities (what I do) Events can be pulled from third parties or pushed to GoogleStuff (what I have) Content I have created or annotated all across the web�
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Relevance Model
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Limitation #1



Relevance →High CTR

• Correlation between users’ Influence and Performance
– Rank users by their content contributions

– Evaluate relevance vs. CTR

Influence scores decrease
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Summary of Relevance 

• Relevance analysis based on
– User profile/friends/activities/stuff

• Active users
– Sufficient data to conduct relevance analysis

– Do not click on relevant ads

• Inactive users
– Data too sparse to conduct relevance analysis
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AdHeat: Consider also User Influence

• Advertisers compete for 
users who are
– relevant
– influential

• SNS Influence Analysis
– Centrality 
– Expertise 
– Activeness
– Heat Diffusion Rate

2010-6-16

Presenter
Presentation Notes
Relevance vs. Influence



AdHeat

• AdHeat model
– mines the Individuals’  characteristics/interests based on their contributions;
– quantifies mutual influence between users based on their interactions, 

constructs social network graph, and ranks the users by their influence;
– propagates the interests of the influential users to those who are influenced 

by them.

13

1. Relevance 
analysis

2. Influential user ranking
3. Relevance propagation

2010-6-16 Ed Chang @ MMDS

Presenter
Presentation Notes
The ads showing to a user is related toThe Web page he is viewingHis recent interestsThe interests of the users who are influential to him



Outline

• Social Network Ad Model
– Relevance Model

– Influence Model

• Key Algorithms
– UserRank

– Hint Word Generation

– Diffusion
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UserRank [VLDB 2010]

15

• Rank users by quantity (number of 
links) and quality (weights on links)
of contributions

• Quality include:
– Relevance. Is an answer relevant 

to the Q? Measured by KL 
divergence between latent-topic 
vectors of A and Q 

– Originality. Detect potential 
plagiarism and spam

– Topic-dependent Factors.
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Outline

• Social Network Ad Model
– Relevance Model

– Influence Model

• Key Algorithms
– UserRank

– Hint Word Generation

– Diffusion
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Latent Semantic Analysis

1 recipe pastry for a 9 
inch double crust 
9 apples, 2/1 cup, 
brown sugar

How to install apps on 
Apple mobile phones?

Documents

Topic 
Distribution

Topic 
Distribution

User quries iPhone crack Apple pie

• Construct a latent layer for better for 
semantic matching

• Example:
– iPhone crack
– Apple pie
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Latent Dirichlet Allocation [D. Blei, M. Jordan 04]

• α: uniform Dirichlet φ prior 
for per document d topic 
distribution (corpus level 
parameter)

• β: uniform Dirichlet φ prior 
for per topic z word 
distribution (corpus level 
parameter)

• θd is the topic distribution of 
document  d (document level)

• zdj the topic if the jth word in 
d, wdj the specific word (word 
level) 

θ

z

w

Nm

M

α

βφ

K



Combinational Collaborative Filtering Model (CCF)
[KDD2008]

Communities

users descriptionsusers descriptions

Communities Communities

192010-6-16 Ed Chang @ MMDS

Presenter
Presentation Notes
Show two standalone model , then combined model
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LDA Gibbs Sampling: Inputs & Outputs

Inputs: 

1. training data: documents as bags 
of words

2. parameter: the number of topics

Outputs: 

1. model parameters: a co-
occurrence matrix of topics and 
words.

2. by-product: a co-occurrence 
matrix of topics and documents.

docs

words topics

words
topics

docs
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Parallel Gibbs Sampling

Inputs: 

1. training data: documents as bags 
of words

2. parameter: the number of topics

Outputs: 

1. model parameters: a co-
occurrence matrix of topics and 
words.

2. by-product: a co-occurrence 
matrix of topics and documents.

docs

words topics

words
topics

docs



PLDA* -- enhanced parallel LDA
[ACM Transactions on IT]

• PLDA is restricted by memory: Topic-word matrix has 
to fit into memory

• Restricted by Amdahl’s Law: communication costs 
too high

222010-6-16 Ed Chang @ MMDS



PLDA* -- enhanced parallel LDA

• Take advantage of bag of words modeling: each Pw 
machine processes vocabulary in a word order

• Pipelining: fetching the updated topic distribution 
matrix while doing Gibbs sampling

232010-6-16 Ed Chang @ MMDS
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Speedup 
3.2B word occurrences

1,500x using 2,000 machines



Outline

• Social Network Ad Model
– Relevance Model

– Influence Model

• Key Algorithms
– UserRank

– Hint Word Generation

– Diffusion
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Influence Analysis, Relevance Analysis, 
Influence-based Relevance Propagation
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Illustrative Example
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Hint words:
#1: (a, 0.6) (b, 0.4)
#2: (c, 0.8) (b, 0.2)
#3: (e, 0.5) (f, 0.5)
#4: (d, 0.9) (b, 0.1)

Word Propagation:
#1: (a, 0.6) (b, 0.4)
#2: (c, 0.69) (b, 0.23) (a, 0.08)
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Influence Propagation
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Influence Model with Propagation

• For two groups of users to be shown ads, G1 and G2
– G1: AdHeat with propagation (M3)

– G2: AdHeat without propagation (M2)

29

Improvement of Accumulative CTR
(M3 vs. M2)
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AdWords, AdSense, AdHeat

Target Interaction Propagation Page Bid

AdWords Query X X Google 
pages 

Key 
words

AdSense Content X X Web pages Key 
words

AdHeat User √ √ User Home 
page Users

2010-6-16

Presenter
Presentation Notes
AdHeat uses to focus on users rather than content. Users are more dynamic than the content they create, because of influence and referral.
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Social Network Analysis
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