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Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive 
streaming complex networks:
• Health care  disease spread, detection 
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Exponential growth:
More than 400 million active usersand prevention of epidemics/pandemics 

(e.g. SARS, Avian flu, H1N1 “swine” flu)
• Massive social networks 

understanding communities, intentions, 
population dynamics  pandemic spread  
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More than 400 million active users

population dynamics, pandemic spread, 
transportation and evacuation

• Intelligence  business analytics, 
anomaly detection, security, knowledge 
discovery from massive data sets
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Sample queries: 
Allegiance switching: 

• Systems Biology  understanding 
complex life systems, drug design, 
microbial research, unravel the mysteries 
of the HIV virus; understand life, disease,

g g
identify entities that switch 
communities.
Community structure:
identify the genesis and 
dissipation of communities

Ex: discovered minimal 
• Electric Power Grid  communication, 

transportation, energy, water, food supply
• Modeling and Simulation  Perform full-

scale economic-social-political 
simulations

dissipation of communities
Phase change: identify 
significant change in the 
network structure

changes in O(billions)-size 
complex network that could 
hide or reveal top influencers  
in the community

simulations
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REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME  AT SCALE



Center for Adaptive Supercomputing 
Software (CASS MT)Software (CASS-MT)
• CASS-MT, launched July 2008
• Pacific Northwest Lab• Pacific-Northwest Lab

– Georgia Tech, Sandia, WA State, Delaware
• The newest breed of supercomputers have hardware set up not just for 

speed, but also to better tackle large networks of seemingly random 
data. And now, a multi-institutional group of researchers has been 
awarded $4.0 million to develop software for these supercomputers. 
A li ti  i l d  h r  l  b  f i f r ti   b  Applications include anywhere complex webs of information can be 
found: from internet security and power grid stability to complex 
biological networks.
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CASS-MT  TASK 7: Analysis of Massive Social Networks

Objective
To design software for the analysis of massive-scale 
spatio-temporal interaction networks usingspatio temporal interaction networks using 
multithreaded architectures such as the Cray XMT.  
The Center launched in July 2008 and is led by Pacific-
Northwest National Laboratory.

D i tiDescription
We are designing and implementing advanced, 
scalable algorithms for static and dynamic graph 
analysis, including generalized k-betweenness 
centrality and dynamic clustering coefficients.y y g

Highlights
On a 64-processor Cray XMT, k-betweenness centrality 
scales nearly linearly (58.4x) on a graph with 16M Our research is focusing on temporal analysis, 

Image Courtesy of Cray, Inc.

vertices and 134M edges.  Initial streaming clustering 
coefficients handle around 200k updates/sec on a 
similarly sized graph.

g p y
answering questions about changes in global 
properties (e.g. diameter) as well as local structures 
(communities, paths).

David A Bader (CASS MT Task 7 LEAD)
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Massive Data Analytics: Protecting our Nation

• CDC / Nation-scale surveillance of 
US High Voltage Transmission 
Grid (>150 000 miles of line)

Public Health

public health
• Cancer genomics and drug design

– computed Betweenness Centrality 
of Human Proteome

Grid (>150,000 miles of line)

of Human Proteome

Human Genome core protein interactions
Degree vs. Betweenness Centrality
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Network Analysis for Intelligence and Survelliance

• [Krebs ’04] Post 9/11 Terrorist 
Network Analysis from public domain 
i f tiinformation

• Plot masterminds correctly identified 
from interaction patterns: centrality

• A global view of entities is often more Image Source: http://www.orgnet.com/hijackers.html

insightful
• Detect anomalous activities by 

exact/approximate graph matching

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies 
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47
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Massive data analytics in Informatics networks

• Graphs arising in Informatics are very different from 
topologies in scientific computingtopologies in scientific computing.

Emerging applications: dynamic, 
high-dimensional data

Static networks, 
Euclidean topologies

• We need new data representations and parallel algorithms
that exploit topological characteristics of informatics that exploit topological characteristics of informatics 
networks.
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The Reality

• This image is a 
visualization of my visualization of my 
personal friendster 
network (circa 
F b  2004) t  February 2004) to 
3 hops out. The 
network consists of 
47,471 people 
connected by 
432 430 edges  432,430 edges. 
Credit: Jeffrey Heer, UC Berkeley
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Limitations of Current Tools
Graphs with millions of vertices are well beyond simple 
comprehension or visualization: we need tools to 
summarize the graphssummarize the graphs.
Existing tools: UCINet, Pajek, SocNetV, tnet
Limitations:

Target workstations, limited in memory
No parallelism, limited in performance.
Scale only to low density graphs with a few million verticesScale only to low density graphs with a few million vertices

We need a package that will easily accommodate graphs 
with several billion vertices and deliver results in a timely 
manner.

Need parallelism both for computational speed and memory!
The Cray XMT is a natural fit...
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The Cray XMT

• Tolerates latency by massive multithreading
– Hardware support for 128 threads on each processor
– Globally hashed address space
– No data cache 
– Single cycle context switch
– Multiple outstanding memory requests

• Support for fine-grained, 
• word-level synchronizationy

– Full/empty bit associated with every 
• memory word

• Flexibly supports dynamic load balancing
Image Source: cray.com

y pp y g

• GraphCT currently tested on a 128 processor XMT: 16K threads

– 1 TB of globally shared memory
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Graph Analysis Performance:
Multithreaded (Cray XMT) vs. Cache-based multicoreMultithreaded (Cray XMT) vs. Cache based multicore

• SSCA#2 network, SCALE 24 (16.77 million vertices 
and 134 21 million edges )and 134.21 million edges.)
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What is GraphCT?

Graph Characterization Toolkit

Efficiently summarizes and analyzes static graph dataEfficiently summarizes and analyzes static graph data

Built for large multithreaded, shared memory machines like 
the Cray XMTy

Increases productivity by decreasing programming 
complexity

Classic metrics & state-of-the-art kernels 

Works on many types of graphs
directed or undirected
weighted or unweighted

Dynamic spatio-temporal graph
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Key Features of GraphCT

Low-level primitives to high-level analytic kernels
Common graph data structureCommon graph data structure
Develop custom reports by mixing and matching functions
Create subgraphs for more in-depth analysis
Kernels are tuned to maximize scaling and performance (up 
to 128 processors) on the Cray XMT

Load the Graph Data Find Connected Components Run k-Betweenness Centrality
on the largest component

David A. Bader 14
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GraphCT Functions
Name

RMAT graph generator

D di t ib ti t ti ti

Name

Modularity Score

Degree distribution statistics

Graph diameter

Maximum weight edges

Conductance Score

st-Connectivity
Maximum weight edges

Connected components

Component distribution statistics

Delta-stepping SSSP

Bellman-Ford

GTriad Cens s
Vertex Betweenness Centrality

Vertex k-Betweenness Centrality

Multithreaded BFS

GTriad Census

SSCA2 Kernel 3 Subgraphs

Greedy Agglomerative Clustering KeyMultithreaded BFS

Edge-divisive Betweenness-based Community 
Detection (pBD)

Li ht i ht Bi G h I/O

Greedy Agglomerative Clustering

Minimum spanning forest

Clustering coefficients

y

Included

In Progress

P d/A il blLightweight Binary Graph I/O
DIMACS Text Input

Proposed/Available
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GraphCT Performance

• RMAT(24) : 16.7M vertices, 134M edges
• RMAT(28) : 268M vertices 2 1B edges• RMAT(28) : 268M vertices, 2.1B edges

– BC1 : 2800s on 64P
– CC : 1200s on 64P
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Analysis of Graphs with Streaming Updates

STINGER: A Data Structure for Changing 
GraphsGraphs

Light-weight data structure that supports 
efficient iteration and efficient updatesefficient iteration and efficient updates.

Experiments with Streaming Updates to 
Cl t i  C ffi i tClustering Coefficients

Working with bulk updates, can handle almost 
200k  d200k per second
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STING Extensible Representation (STINGER)
Enhanced representation developed for dynamic graphs developed in 
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks, 
D i l Ch í Mi d  Ch l  H i  K h M dd i  d Daniel Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and 
Steven C. Poulos.
Design goals:

Be useful for the entire “large graph” community
Portable semantics and high-level optimizations across multiple 
platforms & frameworks (XMT C, MTGL, etc.)
Permit good performance: No single structure is optimal for all.
Assume globally addressable memory access
Support multiple  parallel readers and a single writerSupport multiple, parallel readers and a single writer

Operations:
Insert/update & delete both vertices & edges
A i ff  R  ld d  (b  ti t )Aging-off: Remove old edges (by timestamp)
Serialization to support checkpointing, etc.

18David A. Bader



STING Extensible Representation

Semi-dense edge 
list blocks with free 
spacespace
Compactly stores 
timestamps, types, 
weightsweights
Maps from 
application IDs to 
storage IDsstorage IDs
Deletion by negating 
IDs, separate 
compactioncompaction

19David A. Bader



Testbed: Clustering Coefficients

Roughly, the ratio of actual triangles to possible triangles 
around a vertex.

Defined in terms of triplets.
i-j-v is a closed triplet (triangle).i j v is a closed triplet (triangle).
m-v-n is an open triplet.
Clustering coefficient

# closed triplets / # all triplets
Locally, count those around v.
Globally count across entire graphGlobally, count across entire graph.

Multiple counting cancels (3/3=1)

20David A. Bader



Streaming updates to clustering coefficients
Monitoring clustering coefficients could identify anomalies, 
find forming communities, etc.
C t ti  t  l l   A h  t  d   ff t  Computations stay local.  A change to edge <u, v> affects 
only vertices u, v, and their neighbors.

u v

-1
-1

Need a fast method for updating the triangle counts, 
d g  h   dg  i  i t d  d l t d

u v-1 -1

degrees when an edge is inserted or deleted.
Dynamic data structure for edges & degrees: STINGER
Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, David, Karl 
Jiang, E. Jason Riedy, and David A. Bader. MTAAP 2010, Atlanta, GA, April 2010.
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Updating clustering coefficients
Using RMAT as a graph and edge stream generator.

– Mix of insertions and deletions

Result summary for single actionsResult summary for single actions
– Exact: from 8 to 618 actions/second
– Approx: from 11 to 640 actions/second

Alt ti  B t h h gAlternative: Batch changes
– Lose some temporal resolution within the batch
– Median rates for batches of size B:

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

STINGER overhead is minimal; most time in spent metric

Approx. 60 83 700 193 300

STINGER overhead is minimal; most time in spent metric.
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Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?p 1 2

What are the important vertices at time T?

Use persistent queries to monitor properties.
?Does the path between s and t shorten drastically?

Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.p q y y p p
Does a small community stay independent rather than merge with 
larger groups?
When does a vertex jump between communities?When does a vertex jump between communities?

New types of queries, new challenges...
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NSF Computing Research Infrastructure:
Development of a Research Infrastructure for Multithreaded 
C ti  C it  U i  C  Eld d  Pl tf  Computing Community Using Cray Eldorado Platform 
• The Cray XMT system serves as an ideal platform for the research 

and development of algorithms, data sets, libraries, languages, 
tools  and simulators for applications that benefit from large tools, and simulators for applications that benefit from large 
numbers of threads, massively data intensive, sparse-graph 
problems that are difficult to parallelize using conventional 
message-passing on clusters.

A shared comm nit  reso rce capable of efficientl  r nning  in – A shared community resource capable of efficiently running, in 
experimental and production modes, complex programs with 
thousands of threads in shared memory;

– Assembling software infrastructure for developing and measuring 
performance of programs running on the hardware; and performance of programs running on the hardware; and 

– Building stronger ties between the people themselves, creating ways 
for researchers at the partner institutions to collaborate and 
communicate their findings to the broader community.
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