An Adaptive Forward/Backward Greedy Algorithm for Learning Sparse Representations

Tong Zhang

Statistics Department Rutgers University, NJ

Learning with large number of features

- Consider learning problems with large number of features
- Sparse target
 - linear combination of small number of features
- This talk: how to solve sparse learning problem
 - directly solve L_0 regularization: approximate path following
 - provably effective under appropriate conditions

Notations

- Basis functions $\mathbf{f}_1, \ldots, \mathbf{f}_d \in R^n$; Observation $\mathbf{y} \in R^n$
- $d \gg n$
- Cost function $R(\cdot)$:
 - e.g., least squares problem: $R(\mathbf{f}) = \|\mathbf{f} \mathbf{y}\|_2^2/n$
- Given $\mathbf{w} \in R^d$, linear prediction function $f(\mathbf{w}) = \sum_j \mathbf{w}_j \mathbf{f}_j$
- Empirical risk minimization:

 $R(f(\mathbf{w})).$

Sparse Regularization

- $d \gg n$: ill-posed
 - what if only a few relevant features.
- Learning method: *L*₀ regularization

 $\hat{\mathrm{w}}_{FS} = rg\min_{\mathrm{w}} R(f(\mathrm{w})), \hspace{1em} ext{subject to } \|w\|_0 \leq k.$

$$||w||_0 = |\{j : w_j \neq 0\}|$$

- Combinatorial problem: find $k \ll n$ features with smallest prediction error. - C_d^k possible feature combinations: exponential in k (NP-hard).
- This talk: how to solve L_0 using greedy algorithm.

Statistical model for sparse least squares regression

- Linear prediction model: $Y = \sum_j \bar{w}_j f_j + \epsilon$
 - $\epsilon \in \mathbb{R}^n$ are *n* independent zero-mean noise with variance $\leq \sigma^2$.
- Assumption: sparse model achieves good performance
 - \bar{w} has only k nonzero components: $k \ll n \ll d$.
 - or approximately sparse: \bar{w} can be approximated by sparse vector.
- Compressed sensing is special case: noise $\sigma = 0$ with least squares loss.

Efficient Sparse Learning and Feature Selection Methods

- Traditional Methods:
 - convex relaxation: L_1 -regularization.
 - simple greedy algorithms:
 - * forward (greedy) feature selection: boosting.
 - * backward (greedy) feature selection.
 - provably effective only under restrictive assumptions.
- A new method: adaptive forward/backward greedy algorithm: FoBa
 - solve L_0 directly: remedy problems in traditional methods.
 - theoretically: better statistical behavior under less restrictive assumptions.

Some Assumptions

- sub-Gaussian noise: σ is noise level
- basis are normalized: $\|\mathbf{f}_{j}\|_{2} = 1 \ (j = 1, ..., d)$
- sparse-eigenvalue conditions: any small number of basis functions are linearly independent for small k ($f(\mathbf{w}) = \sum_{j} \mathbf{w}_{j} \mathbf{f}_{j}$)

$$\rho(k) = \inf\left\{\frac{1}{n} \|f(\mathbf{w})\|_2^2 / \|\mathbf{w}\|_2^2 : \|\mathbf{w}\|_0 \le k\right\} > 0,$$

and for all $\overline{F} \subset \{1, \ldots, d\}$, let

$$\lambda(\bar{F}) = \sup\left\{\frac{1}{n} \|f(\mathbf{w})\|_2^2 / \|\mathbf{w}\|_2^2 : \operatorname{support}(\mathbf{w}) \subset \bar{F}\right\}.$$

L_1 -regularization and its Problems

• Closest convex relaxation of L₀-regularization (feature selection):

$$\hat{w}_{L_1} = \arg\min_{w} R(\mathbf{w}), \quad \text{subject to } \|\mathbf{w}\|_1 \le k.$$

replace L_0 -regularization $||w||_0 \le k$.

- Practical: not good approximation to *L*₀ regularization
- Theoretical: analysis exists
 - requires relatively strong conditions
 - inferior sparse learning method when noise is present: bias

Forward Greedy Algorithm

- Initialize feature set $F^k = \emptyset$ at k = 0
- Iterate
 - find best feature j to add to F^k with most significant cost reduction
 - k + + and $F^k = F^{k-1} \cup \{j\}$

Problem of Forward Greedy Feature Selection

- Can make error in early stage that cannot be corrected.
 - correct basis functions: f_1 and f_2 , but f_3 closer to y
 - forward greedy algorithm output: f_3, f_1, f_2, \ldots

Backward Greedy Algorithm

- Initialize feature set $F^k = \{1, \ldots, d\}$ at k = d
- Iterate
 - find best feature $j \in F^k$ to remove with least significant cost increase
 - $F^{k-1} = F^k \{j\}$ and k -

Problems of Backward Greedy Feature Selection

- Computationally very expensive.
- The naive version overfits the data when $d \gg n$: $R(F^d) = 0$.
 - fails if $R(F^d \{j\}) = 0$ for all $j \in F_t$.
 - cannot effectively eliminate bad features
- Works only when $n \gg d$ (insignificant overfitting).
 - when $n \ll d$: have to regularize the naive version to prevent overfitting
 - how to regularize?

Idea: Combine Forward/Backward Algorithms

- Forward greedy
 - pros: computationally efficient; doesn't overfit
 - cons: error made in early stage doesn't get corrected later
- Backward greedy
 - pros: can correct error by looking at the full model
 - cons: need to start with sparse/non-overfited model
- Combination: adaptive forward/backward greedy
 - computationally efficient; doesn't overfit; error made in early stage can be corrected by backward greedy step later
 - key design issue: when to take a backward step?

Greedy method for Direct L_0 minimization

• Optimize objective function greedily:

 $\min_{w} [R(\mathbf{w}) + \lambda \|\mathbf{w}\|_0].$

- Two types of greedy operations to reduce L_0 regularized objective
 - feature addition (forward): $R(\mathbf{w})$ decreases, $\lambda \|\mathbf{w}\|_0$ increases by λ
 - feature deletion (backward): $R(\mathbf{w})$ increases, $\lambda \|\mathbf{w}\|_0$ decreases by λ
- First idea: alternating with addition/deletion to reduce objective
 - "local" solution: a fixed point of the procedure
 - problem: ineffective deletion with small λ : overfitting like backward greedy
- Key modification: track a sparse solution path
 - L_0 path-following: λ decreases from ∞ to 0.

FoBa (conservative): Adaptive Forward/Backward Greedy Algorithm

• Iterate

- forward step
 - * find best feature j to add
 - $* \hspace{0.1in} k + + \hspace{0.1in} \text{and} \hspace{0.1in} F^k = F^{k-1} \cup \{j\}$
 - * δ_k = forward step square error reduction
 - * if ($\delta_k < \epsilon$) terminate the loop.
- backward step
 - * find best feature $j \in F^k$ to remove
 - * if (backward square error increase $\leq 0.5\delta_k$)
 - $\cdot F_{k-1} = F_k \{j\} \text{ and } k -$
 - $\cdot\,$ repeat the backward step.
- L_0 path-following: replace 0.5 by a shrinkage factor $\nu \rightarrow 1$

Computational Efficiency

- Assume $R(\mathbf{w}) \ge 0$ for all $\mathbf{w} \in R^d$
- Given stopping criterion $\epsilon > 0$
 - ϵ : should be set to noise level
- FoBa terminates after at most $2R(0)/\epsilon$ forward iterations.
- The algorithm approximately follows an L_0 local solution path
 - statistically as effective as global L_0 under appropriate conditions.

Forward Greedy Failure Example Revisited

- FoBa can correct errors made in early forward stages
 - correct basis functions: f_1 and f_2 , but f_3 is closer to y
 - **–** FoBa output: $f_3, f_1, f_2, -f_3 \dots$

Learning Theory: FoBa with Sparse Target

Theorem 1. Assume also that the target is sparse: there exists $\bar{\mathbf{w}} \in \mathbb{R}^d$ such that $\bar{\mathbf{w}}^T \mathbf{x}_i = \mathbf{E} y_i$ for i = 1, ..., n, and $\bar{F} = \operatorname{support}(\bar{\mathbf{w}})$. Let $\bar{k} = |\bar{F}|$, and assume that for some s > 0, we have $\bar{k} \leq 5s\rho(s)^2(32+5\rho(s)^2)^{-1}$. Given any $\eta \in (0, 1/3)$, and choose ϵ that satisfies the condition $\epsilon \geq 64\rho(s)^{-2}\sigma^2 \ln(2d/\eta)/n$. If $\min_{j \in \operatorname{support}(\bar{\mathbf{w}})} |\bar{\mathbf{w}}_j|^2 \geq \frac{64}{25}\rho(s)^{-2}\epsilon$, then with probability larger than $1 - 3\eta$:

• When the algorithm terminates, we have $F^k = \text{support}(\bar{\mathbf{w}})$, and the solution

$$\|\mathbf{w}^k - \bar{\mathbf{w}}\|_2 \le \sigma \sqrt{\bar{k}/(n\rho(\bar{k}))} \left[1 + \sqrt{20\ln(1/\eta)}\right].$$

• The algorithm terminates after at most $\frac{7\lambda(\bar{F})\|\bar{\mathbf{w}}\|_2^2}{\rho(s)^2 \min_{j \in \bar{F}} |\bar{\mathbf{w}}_j|^2}$ forward-backward iterations.

Approximate Sparse Target for FoBa

- Let $\epsilon \ge 64\rho(s)^{-2}\sigma^2\ln(2d/\eta)/n$.
- $\bar{k} = |\bar{F}|$: $\bar{F} = \text{support}(\bar{\mathbf{w}})$
 - $\bar{\mathbf{w}}$: approximate target parameter
- $k(\epsilon) = \left| \{ j \in \overline{F} : |\overline{\mathbf{w}}_j|^2 \le 12\epsilon/\rho(s)^2 \} \right|$
 - $k(\epsilon)$ can be much smaller than \bar{k}
 - features with small weights that cannot be reliably selected by any algorithm (up to a constant in threshold)
- Learning Theory Bounds
 - Optimal feature selection and parameter estimation accuracy

- Feature selection:

$$\max(|\bar{F} - F^{(k)}|, |F^{(k)} - \bar{F}|) = O(k(\epsilon) + \|\mathbf{E}\mathbf{y} - f(\bar{\mathbf{w}})\|_2 / (n\epsilon))$$

- Estimation error bound of $\|\mathbf{w}^{(k)} - \bar{\mathbf{w}}\|_2$: (better than L_1)

$$O\left(\underbrace{\sigma\sqrt{\frac{\bar{k}\ln(1/\eta)}{n}}}_{O(\text{parametric})} + \underbrace{\sigma\sqrt{k(\epsilon)\ln(d/\eta)/n}}_{\sqrt{k(\epsilon)\epsilon}} + \underbrace{\|\mathbf{E}\mathbf{y} - f(\bar{\mathbf{w}})\|_2/n}_{\text{approximation error}}\right)$$

– Compare to L_1 : needs stronger condition for feature selection, and gives error

$$O\left(\sigma\sqrt{\bar{k}\ln(d/\eta)/n} + \underbrace{\|\mathbf{E}\mathbf{y} - f(\bar{\mathbf{w}})\|_2/n}_{\text{approximation error}}\right)$$

Artificial data experiment: feature selection/parameter estimation

- d = 500, n = 100, noise $\sigma = 0.1$, moderately correlated design matrix
- exact sparse weight with $\bar{k} = 5$ and weights uniform 0 10
- 50 random runs, resulting results for top five features

	FoBa-conservative	forward-greedy	L_1
least squares training error	0.093 ± 0.02	0.16 ± 0.089	0.25 ± 0.14
parameter estimation error	0.057 ± 0.2	0.52 ± 0.82	1.1 ± 1
feature selection error	0.76 ± 0.98	1.8 ± 1.1	3.2 ± 0.77

Real data experiment: Boston Housing

- least squares regression: 13 features + 1 constant feature,
- 506 data points: random 50 as training, remaining as test data ($n \gg d$)
- Example forward-greedy steps:
 - 6 13 4 8 2 3 10 1 7 11
- Example FoBa (conservative) steps:
 - 6 13 4 8 4 2 4 3 4 4 10 4 3 4 1 7
- Example *L*₁ steps (lars):
 - 6 2 13 4 8 10 3 11 7 12 5 9 1 -3 14 3

Training error

Test error

Training error (additional comparisons)

Test error (additional comparisons)

Summary

- Traditional approximation methods for *L*₀ regularization
 - L_1 relaxation (bias: need non-convexity)
 - forward selection (not good for feature selection)
 - backward selection (cannot start with overfitted model)
- FoBa: combines the strength of forward backward selection
 - approximate path-following algorithm to directly solve L_0
 - theoretically: more effective than earlier algorithms
 - practically: closer to L_0 than forward-greedy and L_1
- A Final Remark: L_0 (sparsity) does not always lead to better prediction performance in practice (unstable for certain problems)