Column Subset Selection

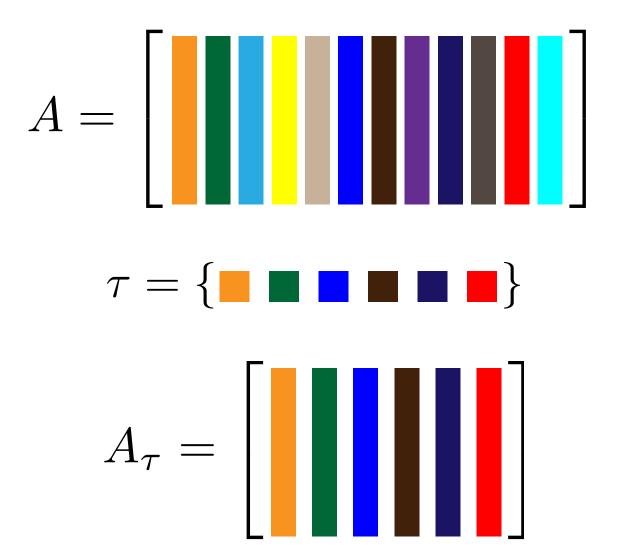
Joel A. Tropp

Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu

Thanks to B. Recht (Caltech, IST)

Research supported in part by NSF, DARPA, and ONR

Column Subset Selection



Spectral Norm Reduction

Theorem 1. [Kashin–Tzafriri] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$|\tau| \ge \frac{n}{\|\boldsymbol{A}\|^2}$$
 and $\|\boldsymbol{A}_{\tau}\| \le C.$

Examples:

- ▶ A has identical columns. Then $|\tau| \ge 1$.
- ▶ A has orthonormal columns. Then $|\tau| \ge n$.

Spectral Norm Reduction

Theorem 1. [Kashin–Tzafriri] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$| au| \ge rac{n}{\|oldsymbol{A}\|^2}$$
 and $\|oldsymbol{A}_{ au}\| \le \mathrm{C}.$

Theorem 2. [T 2007] There is a randomized, polynomial-time algorithm that produces the set τ .

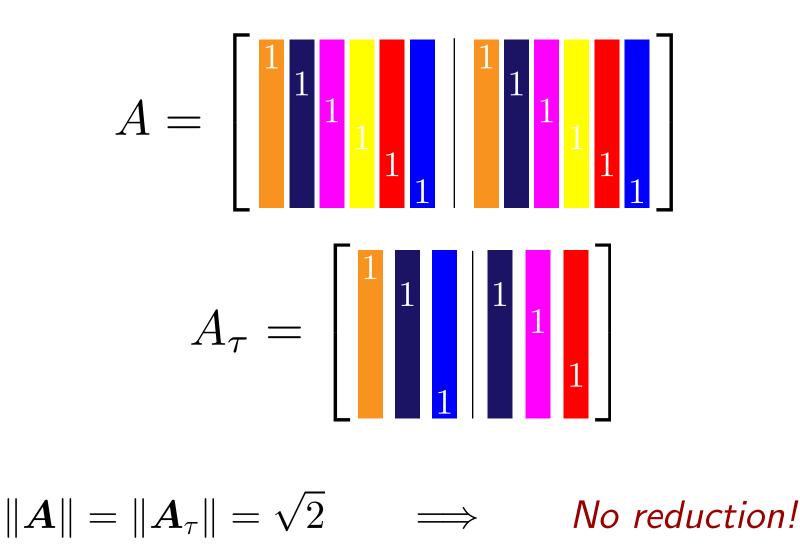
Overview:

- Randomly select columns
- Remove redundant columns

Random Column Selection: Intuitions

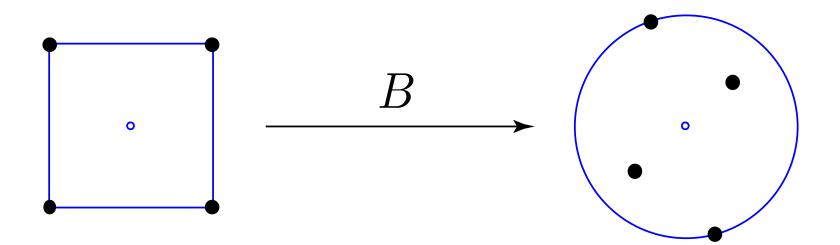
- Random column selection reduces norms
- A random submatrix gets "its share" of the total norm
- Submatrices with small norm are ubiquitous
- Random selection is a form of regularization
- ✤ Added benefit: Dimension reduction

Example: What Can Go Wrong



The $(\infty,2)$ Operator Norm

Definition 3. The $(\infty, 2)$ operator norm of a matrix \boldsymbol{B} is



 $\|B\|_{\infty,2} = \max\{\|Bx\|_2 : \|x\|_{\infty} = 1\}.$

Proposition 4. If **B** has s columns, then the best general bound is

$$\left\|\boldsymbol{B}\right\|_{\infty,2} \leq \sqrt{s} \left\|\boldsymbol{B}\right\|.$$

Random Reduction of $(\infty, 2)$ Norm

Lemma 5. Suppose the *n* columns of **A** have unit ℓ_2 norm. Draw a uniformly random subset σ of columns whose cardinality

$$\sigma| = \frac{2n}{\left\|\boldsymbol{A}\right\|^2}$$

Then

$$\mathbb{E} \left\| \boldsymbol{A}_{\sigma} \right\|_{\infty,2} \leq C \sqrt{|\sigma|}.$$

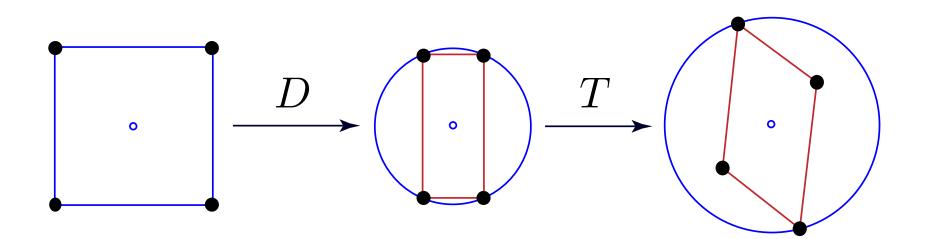
Problem: How can we use this information?

Pietsch Factorization

Theorem 6. [Pietsch, Grothendieck] Every matrix B can be factorized as B = TD where

▶ **D** is diagonal and nonnegative with $trace(D^2) = 1$, and

$$lpha$$
 $\|oldsymbol{B}\|_{\infty,2} \leq \|oldsymbol{T}\| \leq \sqrt{\pi/2} \, \|oldsymbol{B}\|_{\infty,2}$



Pietsch and Norm Reduction

Lemma 7. Suppose B has s columns. There is a set τ of column indices for which

$$| au| \geq rac{s}{2} \qquad ext{and} \qquad \|oldsymbol{B}_ au\| \leq \sqrt{\pi} \cdot rac{1}{\sqrt{s}} \, \|oldsymbol{B}\|_{\infty,2} \, .$$

Proof. Consider a Pietsch factorization B = TD. Select

$$\tau = \left\{ j : d_{jj}^2 \le 2/s \right\}.$$

Since $\sum d_{jj}^2 = 1$, Markov's inequality implies $|\tau| \ge s/2$. Calculate $\|\boldsymbol{B}_{\tau}\| = \|\boldsymbol{T}\boldsymbol{D}_{\tau}\| \le \|\boldsymbol{T}\| \cdot \|\boldsymbol{D}_{\tau}\| \le \sqrt{\pi/2} \|\boldsymbol{B}\|_{\infty,2} \cdot \sqrt{2/s}.$

Column Subset Selection, MMDS, Stanford, June 2008

Proof of Kashin–Tzafriri

- \blacktriangleright Suppose the n columns of \boldsymbol{A} have unit ℓ_2 norm
- \blacktriangleright Lemma 5 provides (random) σ for which

$$|\sigma| = rac{2n}{\left\|oldsymbol{A}
ight\|^2}$$
 and $\left\|oldsymbol{A}_{\sigma}
ight\|_{\infty,2} \leq \mathrm{C}\sqrt{|\sigma|}$

 \blacktriangleright Lemma 7 applied to $oldsymbol{B}=oldsymbol{A}_{\sigma}$ yields a subset $au\subset\sigma$ for which

$$|\tau| \geq \frac{|\sigma|}{2} \quad \text{ and } \quad \|\boldsymbol{B}_{\tau}\| \leq \sqrt{\pi} \cdot \frac{1}{\sqrt{|\sigma|}} \cdot \|\boldsymbol{B}\|_{\infty,2}$$

✤ Simplify

$$| au| \geq rac{n}{\left\|oldsymbol{A}
ight\|^2} \qquad ext{and} \qquad \left\|oldsymbol{A}_ au
ight\| \leq \mathrm{C}\sqrt{\pi}$$

Note: This is almost an algorithm

Column Subset Selection, MMDS, Stanford, June 2008

Pietsch and Eigenvalues

- \blacktriangleright Consider a matrix B with Pietsch factorization B = TD
- ▶ Suppose $\|T\| \le \alpha$
- ✤ Calculate

$$oldsymbol{B} = oldsymbol{T}oldsymbol{D} \implies \quad egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 = \|oldsymbol{T}oldsymbol{D}oldsymbol{x}\|_2^2 & orall oldsymbol{x} \ orall oldsymbol{x} \ orall oldsymbol{x} \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 = \|oldsymbol{T}oldsymbol{D}oldsymbol{x}\|_2^2 & orall oldsymbol{x} \ orall oldsymbol{x} \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 = \|oldsymbol{T}oldsymbol{D}oldsymbol{x}\|_2^2 & orall oldsymbol{x} \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 = \|oldsymbol{T}oldsymbol{D}oldsymbol{x}\|_2^2 & orall oldsymbol{x} \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{D}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 \ egin{array}{c} \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{A}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{A}oldsymbol{x}\|_2^2 & \|oldsymbol{B}oldsymbol{A}oldsymbol{B}oldsymbol{A}oldsymbol{A}oldsymbol{B}oldsymbol{A}oldsymbol{B}oldsymbol{A}oldsymbol{A}oldsymbol{B}oldsymbol{B}oldsymbol{A}oldsymbol{B}oldsymbol{A}oldsymbol{B}oldsymbol{B}oldsymbol{B}oldsymbol{B}oldsymbol{B}oldsymbol{B}oldsymbol{A}oldsymbol{B}$$

$$\implies \qquad \|\boldsymbol{B}\boldsymbol{x}\|_2^2 \leq \alpha^2 \|\boldsymbol{D}\boldsymbol{x}\|_2^2 \qquad \qquad \forall \boldsymbol{x}$$

$$\implies \qquad \boldsymbol{x}^*(\boldsymbol{B}^*\boldsymbol{B})\boldsymbol{x} \leq \alpha^2 \cdot \boldsymbol{x}^*\boldsymbol{D}^2\boldsymbol{x} \qquad \quad \forall \boldsymbol{x}$$

$$\implies \qquad \boldsymbol{x}^* \left[\boldsymbol{B}^* \boldsymbol{B} - \alpha^2 \boldsymbol{D}^2 \right] \boldsymbol{x} \le 0 \qquad \qquad \forall \boldsymbol{x}$$

$$\implies \lambda_{\max}(\boldsymbol{B}^*\boldsymbol{B} - \alpha^2\boldsymbol{D}^2) \le 0$$

Pietsch is Convex

Key new idea: Can find Pietsch factorizations by convex programming

 \blacktriangleright If value at F_{\star} is nonpositive, then we have a factorization

$$oldsymbol{B} = (oldsymbol{B}oldsymbol{F}_{\star}^{-1/2}) \cdot oldsymbol{F}_{\star}^{1/2} \qquad ext{with} \qquad \left\|oldsymbol{B}oldsymbol{F}_{\star}^{-1/2}
ight\| \leq lpha$$

- **Proof of Kashin–Tzafriri offers target value for** α
- \sim Can also perform binary search to approximate minimal value of α

An Optimization over the Simplex

- ▶ Express F = diag(f)
- Constraints delineate the probability simplex:

$$\Delta = \{ \boldsymbol{f} : \text{trace}(\boldsymbol{f}) = 1 \text{ and } \boldsymbol{f} \ge \boldsymbol{0} \}$$

Objective function and its subdifferential:

$$J(\boldsymbol{f}) = \lambda_{\max}(\boldsymbol{B}^*\boldsymbol{B} - \alpha^2 \operatorname{diag}(\boldsymbol{f}))$$

$$\partial J(\boldsymbol{f}) = \operatorname{conv}\left\{-\alpha^2 \left|\boldsymbol{u}\right|^2 : \boldsymbol{u} \text{ top evec. } \boldsymbol{B}^*\boldsymbol{B} - \alpha^2 \operatorname{diag}(\boldsymbol{f}), \ \|\boldsymbol{u}\|_2 = 1\right\}$$

🔈 Obtain

$$\min \ J(oldsymbol{f}) \qquad ext{ subject to } \quad oldsymbol{f} \in \Delta$$

Column Subset Selection, MMDS, Stanford, June 2008

Entropic Mirror Descent

- 1. Intialize $f^{(1)} \leftarrow s^{-1}e$ and $k \leftarrow 1$
- 2. Compute a subgradient: $\boldsymbol{\theta} \in \partial J(\boldsymbol{f}^{(k)})$
- 3. Determine step size:

$$\beta_k \leftarrow \sqrt{\frac{2\log s}{k \left\|\boldsymbol{\theta}\right\|_{\infty}^2}}$$

4. Update variable:

$$oldsymbol{f}^{(k+1)} \leftarrow rac{oldsymbol{f}^{(k)} \circ \exp\{-eta_k oldsymbol{ heta}\}}{ ext{trace}(oldsymbol{f}^{(k)} \circ \exp\{-eta_k oldsymbol{ heta}\})}$$

5. Increment $k \leftarrow k + 1$, and return to 2.

References: [Eggermont 1991, Beck–Teboulle 2003]

Other Formulations

 \blacktriangleright Modified primal to simultaneously identify α

 $\begin{array}{ll} \min \ \lambda_{\max}(\boldsymbol{B}^*\boldsymbol{B} - \alpha^2\boldsymbol{F}) + \alpha^2 \\ \text{subject to} \quad \boldsymbol{F} \text{ diagonal}, \quad \boldsymbol{F} \geq \boldsymbol{0}, \quad \mathrm{trace}(\boldsymbol{F}) = 1, \quad \alpha \geq 0 \end{array}$

Dual problem is the famous MAXCUT SDP:

 $\max \langle \boldsymbol{B}^*\boldsymbol{B}, \ \boldsymbol{Z} \rangle \qquad \text{subject to} \qquad \operatorname{diag}(\boldsymbol{Z}) = \mathbf{e}, \quad \boldsymbol{Z} \succcurlyeq \mathbf{0}$

Related Results

Theorem 8. [Bourgain–Tzafriri 1991] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$| au| \ge rac{\mathrm{c}n}{\|oldsymbol{A}\|^2}$$
 and $\kappa(oldsymbol{A}_{ au}) \le \sqrt{3}.$

Examples:

- ▶ A has identical columns. Then $|\tau| \ge 1$.
- ▶ A has orthonormal columns. Then $|\tau| \ge cn$.

Related Results

Theorem 8. [Bourgain–Tzafriri 1991] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$| au| \geq rac{\mathrm{c}n}{\left\|oldsymbol{A}
ight\|^2} \qquad ext{and} \qquad \kappa(oldsymbol{A}_ au) \leq \sqrt{3}.$$

Theorem 9. [T 2007] There is a randomized, polynomial-time algorithm that produces the set τ .

To learn more...

E-mail:

jtropp@acm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp

Papers in Preparation:

- ▶ T, "Column subset selection, matrix factorization, and eigenvalue optimization"
- T, "Paved with good intentions: Computational applications of matrix column partitions"

...