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Large Margin Linear Classification
aka L2-regularized Linear Classification

aka Support Vector Machines

Margin: M = 1/|w|
w

<w,x> ≤ -1

<w,x> ≥ 1

Error: [1-y<w,x>]+

M

?



SVM Training as an
Optimization Problem

• IP method on dual (standard QP solver):
O(n4 log log(1/ε))

• Dual decomposition methods (e.g. SMO):
O(n2 d log(1/ε)) [Platt 98][Joachims 98][Lin 02]

• Primal cutting plane method (SVMperf):
O( nd / (λε) ) [Joachims 06][Smola et al 08]

Runtime to get f(w) ≤ min f(w) + ε



More Data ⇒ More Work?
10k training examples 1 hour 2.3% error

(when using
the predictor)

1M training examples 1 week (or more…) 2.29% error

10 minutes 2.3% error

But I really care about that 0.01% gain

Can always sample and get same runtime:

Can we leverage the excess data to reduce runtime?

1 hour 2.3% error

Study runtime increase as a function of target accuracy

Study runtime increase as a function of problem difficulty (e.g. small margin)

My problem is so hard, I have to crunch 1M examples



SVM Training

• Optimization objective:

• True objective: prediction error
err(w) = Ex,y[error of w’x vs. y]

• Would like to understand computational cost in terms of:
• Increasing function of:

– Desired generalization performance (i.e. as err(w) decreases)
– Hardness of problem:

margin, noise (unavoidable error)

• Decreasing function of available data set size



Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + E[loss(w)]

• Estimation error:
– Extra error due to replacing E[loss] with empirical loss

w* = arg min fn(w)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error



The Double-Edged Sword

• When data set size increases:
– Estimation error decreases
– Can increase optimization error,

i.e. optimize to within lesser accuracy ⇒ fewer iterations
– But handling more data is expensive

e.g. runtime of each iteration increases

• PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs) 
[Shalev-Shwartz Singer S 07]

– Fixed runtime per iteration
– Runtime to get fixed accuracy does not increase with n

err(w0)

err(w*)

err(w)

data set size (n)

Prediction error



PEGASOS: Stochastic (sub-)Gradient Descent

• Initialize w=0

• At each iteration t,
with random data point (xi,yi):

subgradient of
λ|w|2+[1-yi<w,xi>]+

• Theorem: After at most               iterations, f(wPEGASOS) ≤ minw f(w)+ε,
with probability ≥ 1-δ

• With d-dimensional (or d-sparse) features, each iteration takes time O(d)

• Conclusion: Run-time required for PEGASOS to find ε accurate solution with 
constant probability:

• Run-time does not depend on #examples



Training Time (in seconds)

8052
Physics ArXiv
(62k examples, 
100k features)

25,514856
Covertype
(581k examples, 
54 features)

20,075772
Reuters CCAT 
(800K examples, 
47k features)

SVM-Light 
[Joachims]

SVM-Perf
[Joachims06]

Pegasos



Runtime Analyzis
Traditional Data Laden:
f(w)<f(w*)+εacc err(w)≤ err(w0)+ε

SMO n2 d log(1/εacc) d |w0|
4/ε4

SVMPerf n d / (λ εacc) d |w0|
4/ε4

PEGASOS d / (λ εacc) d |w0|
2/ε2

To get err(w) ≤ err(w0)+O(ε):
λ = O(ε/|w0|2)
εacc = O(ε)
n = Ω(1/(λ ε)) = Ω(|w0|2/ε2)

If there is some predictor w0 with low |w0| and low err(w0),
how much time to find predictor with err(w) ≤ err(w0)+ε

large margin M=1/|w0|

Unlimited data available, can 
choose working data-set size

Data Laden analysis: Restricted by computation, not data

(ignoring log-factors)



Dependence on Data Set Size

Training set Size
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Dependence on Data Set Size

Training set Size
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Dependence on Data Set Size

Training set Size
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err(w) ≤ err(w0) + λ|w0|2 + O(1/(λn)) + O(d/(λT))

Larger λ ⇒
More regularization, less predictors allowed
Larger approximation error err(w0)+λ|w0|2

Faster runtime T ∝ 1/λ
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Beyond PEGASOS

• PEGASOS (stochastic sub-gradient descent) effective for SVM with 
linear kernel (i.e. feature vectors given explicitly)
– Relevant especially in text analysis, where feature vectors are sparse, 

very high dimensional, bags-of-words

• More generally: instead of explicit access of vectors xi, only access 
to <xi,xj>=K(i,j)
– Stochastic Sub-Gradient Descent applicable, but runtime to get fixed 

εacc does increase linearly with n
– Can we get similar behavior for general kernels?

• Can we more explicitly leverage excess data?
– Playing only on the decrease in estimation error, having a constant 

factor more samples than statistical limit gets us within constant factor 
of data-laden computational limit

• Other machine learning problems…



Clustering
(by fitting a Gaussian mixture model)

• Clustering is hard in the worst-case
• Given LOTS of data (and enough separation):

– Can efficiently recover true clustering
[Dasgupta 99][Dasgupta Schulman 00][Arora Kannan 01][Vempala Wang 04] 
[Achliopts McSherry 05][Kannan Salmasian Vempala 05]

– EM works (empirically)

• With too little data, clustering is meaningless:
– Even if we find the ML clustering, it has nothing to do with 

underlying distribution

“Clustering isn’t hard—
it’s either easy, or not interesting”



Effect of “Signal Strength”

Not enough data—
“optimal” solution is 
meaningless.

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Just enough data—
optimal solution is 
meaningful, but hard to 
find?

~Informational
limit

Computational
limit ~

Larger data set

Smaller data set
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Informational Cost of Tractability?

• Gaussian Mixture Clustering
• Learning structure of dependency networks

– Hard to find optimal (ML) structure in the worst case [Srebro 01]

– Polynomial-time algorithms for the large-sample limit [Chechetka
Guestrin 07]

• Graph partitioning (correlation clustering)
– Hard in the worst case
– Easy for large graphs with a “nice” partitions [McSherry 03]

• Finding cliques in random graphs
• Planted Noisy MAX-SAT



• Required runtime:
– increases with complexity of the answer (separation, decision boundary)

– increases with desired accuracy

– decreases with amount of available data
• PEGASOS (stochastic sub-gradient descent for SVMs):

– Runtime to get fixed optimization accuracy doesn’t depend on n
→ Best performance in data-laden regime
→ Runtime decreases as more data is available

More Data ⇒ Less Work
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An Investigation of Comp. and Inf. Limits in Gaussian Mixture Clustering [ICML’06]


