Efficient Projection Algorithms onto the L₁ Ball for Learning Sparse Representations from High Dimension Data

Yoram Singer Google

BASED ON JOINT WORK WITH: JOHN DUCHI & TUSHAR CHANDRA (GOOGLE) SHAI SHALEV-SHWARTZ (TTI)

MMDS WORKSHOP, STANFORD, JUNE 27, 2008

Feature Selection & Learning

THE HIGHER MINIMUM WAGE THAT WAS SIGNED INTO LAW ... WILL BE WELCOME RELIEF OF WORKERS ... THE 90 CENT-AN-HOUR INCREASE...

- Common approach to topic classification:
 - Select relevant features / tokens
 - Assign weights to tokens in order to achieve low classification error rate

REGULATIONS

ECONOMICS

ABOUR

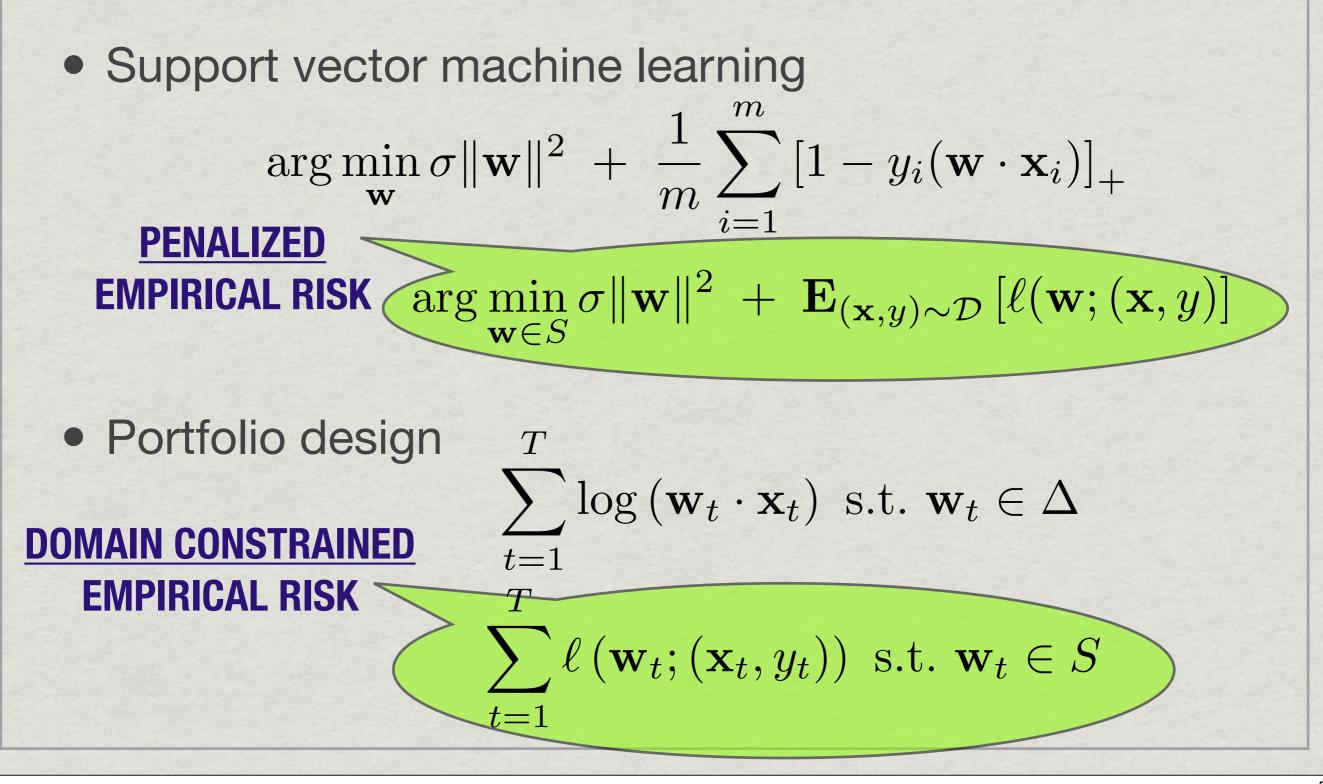
Portfolio Design & Selection

- A large collections of investments tools (stocks, bonds, ETFs, cash, options, ...)
- Select a subset of the assets
- Distribute investments among selected assets, not necessarily evenly

Learning & Representation

- Many learning problems benefit from compact representation of the input space: spam classification, advertisements placement, web ranking, audio reconstruction, ...
- Often the learning is divides into two phases:
 - Find compact representation (CR)
 - Build a prediction mechanism from (on top) CR
- Perform selection of features and learning a predictor simultaneously

Two Forms of ERM

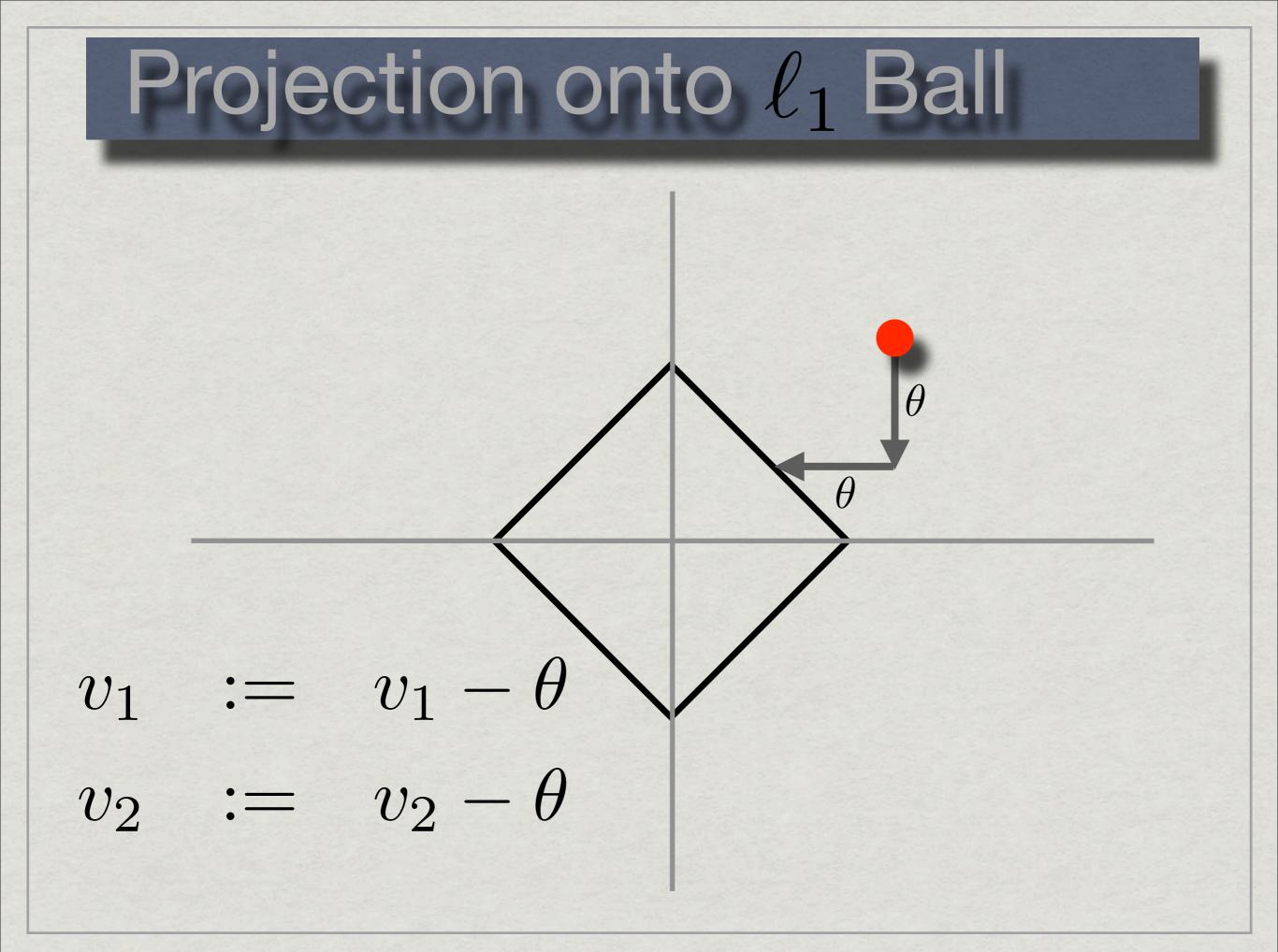


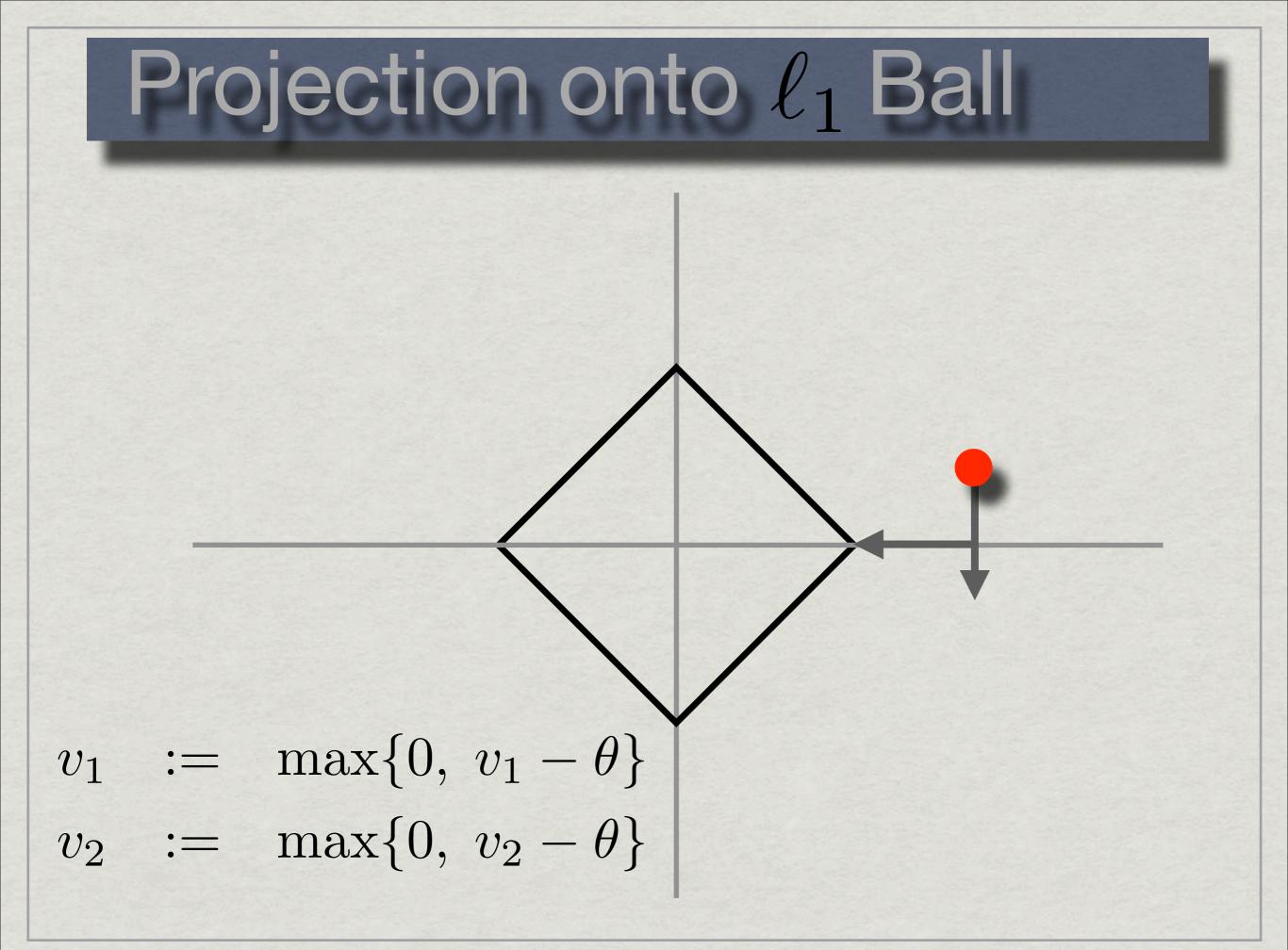
Stoc. Grad. & Domain Constraints

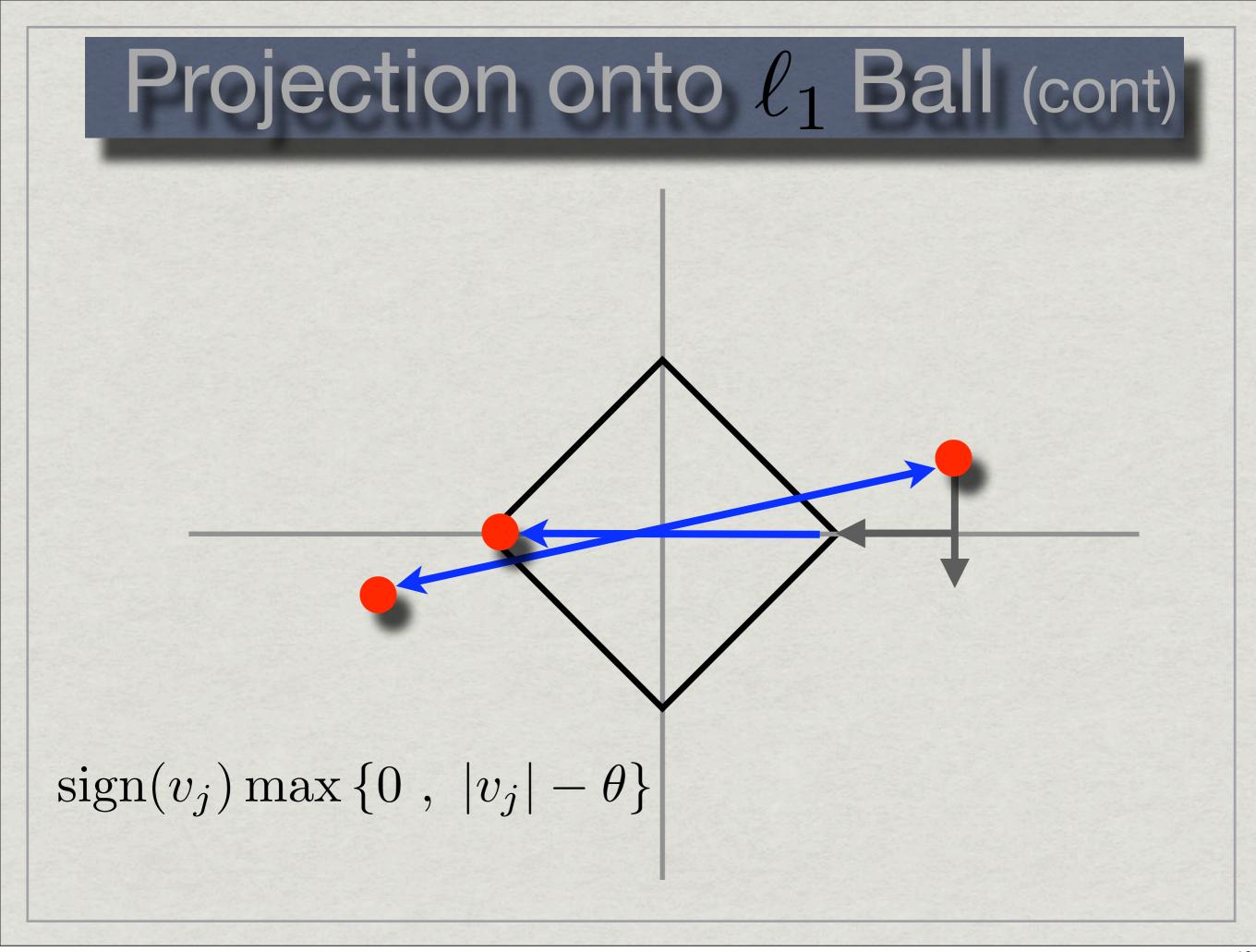
Stoc. Grad. with l_1 Constraints

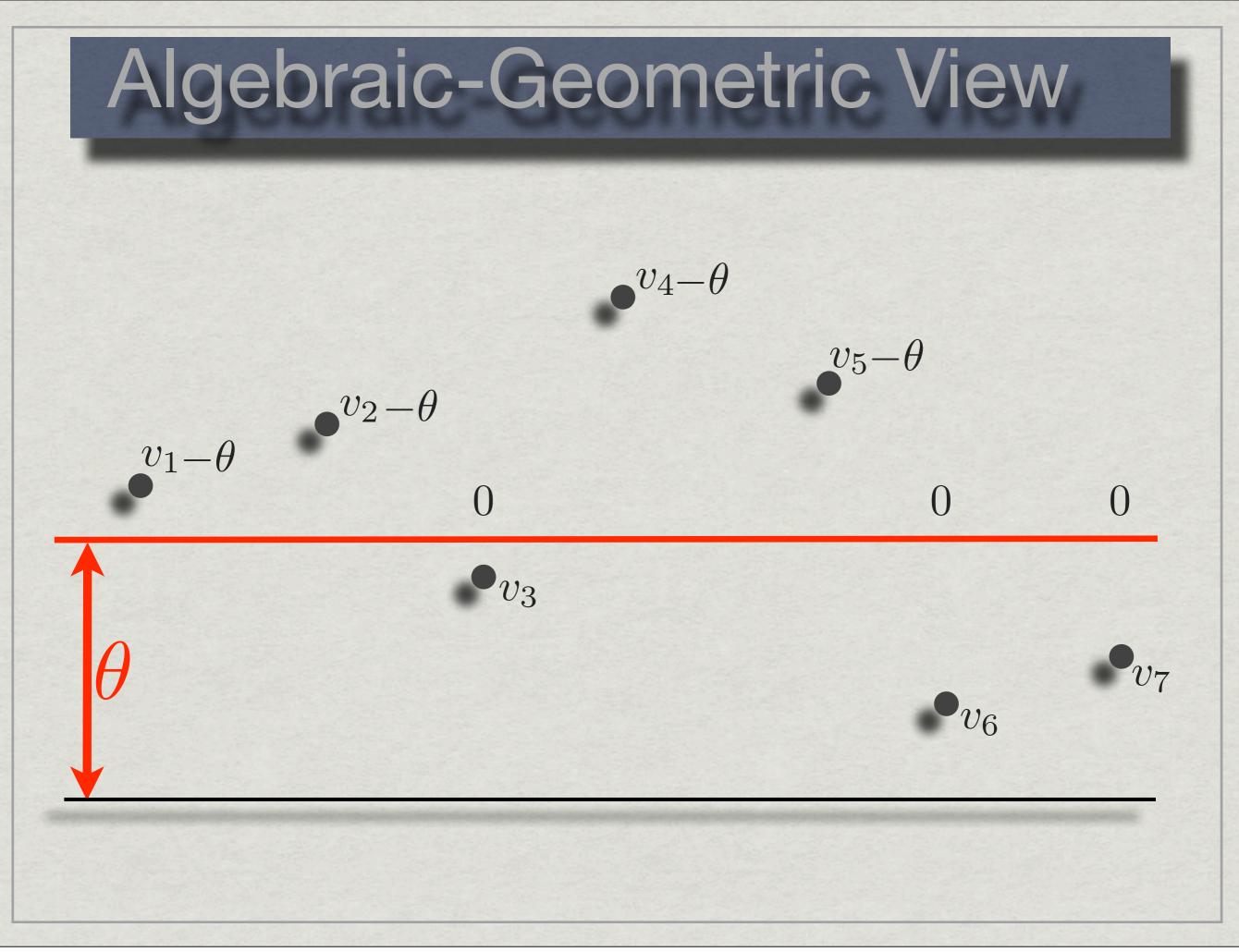
 \mathbf{w}_{t+1}

 \mathbf{w}_{t+2}









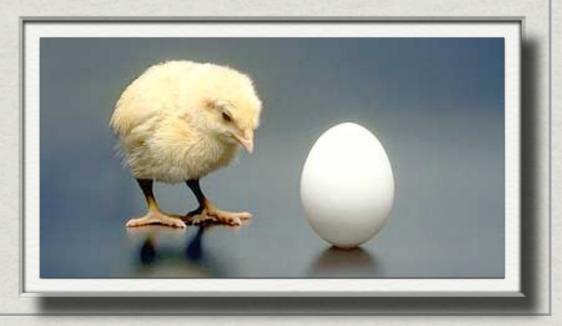
Algebraic-Geometric View

$$v_{4-\theta}$$

 $v_{1-\theta}$
 $v_{1-\theta}$
 $v_{1-\theta}$
 $v_{1-\theta}$
 $v_{1-\theta}$
 $v_{1-\theta}$
 $v_{2-\theta}$
 v_{2-

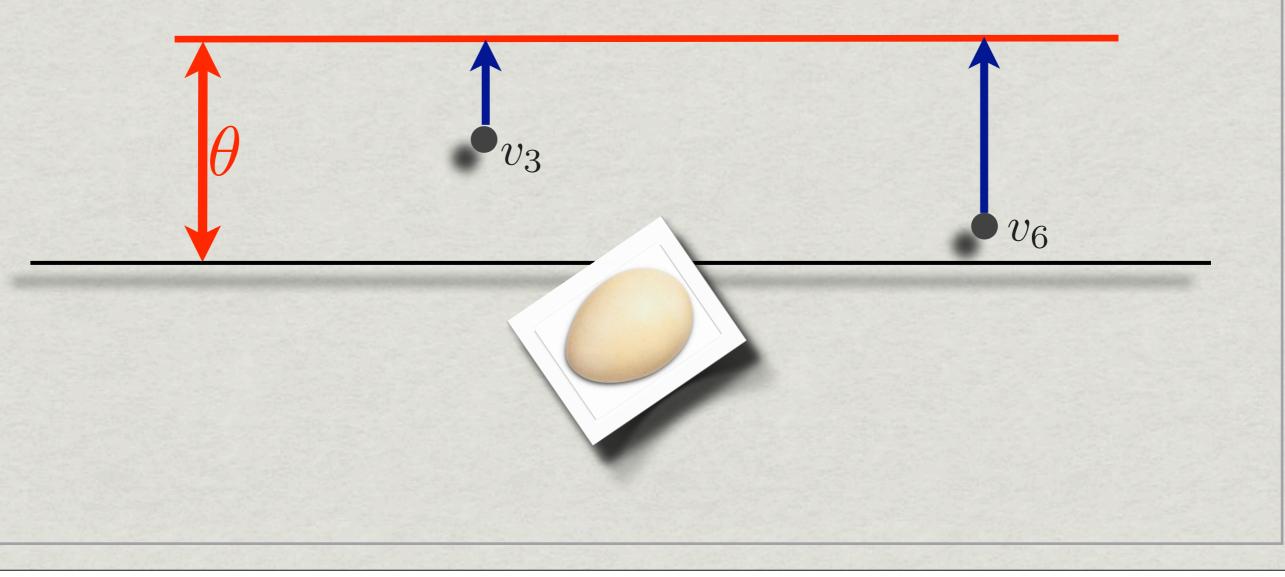
Chicken and Egg Problem

- Had we known the threshold we could have found all the zero elements
- Had we known the elements that become zero we could have calculated the threshold



From Eggs to Omelette

If $v_j < v_k$ then if after the projection the k'th component is zero, the j'th component must be zero as well



From Eggs to Omelette

 v_3

 v_2

 v_1

If two feasible solutions exist with k and k+1 non-zero elements then the solution with k+1 elements attains a lower loss v_4

 v_5

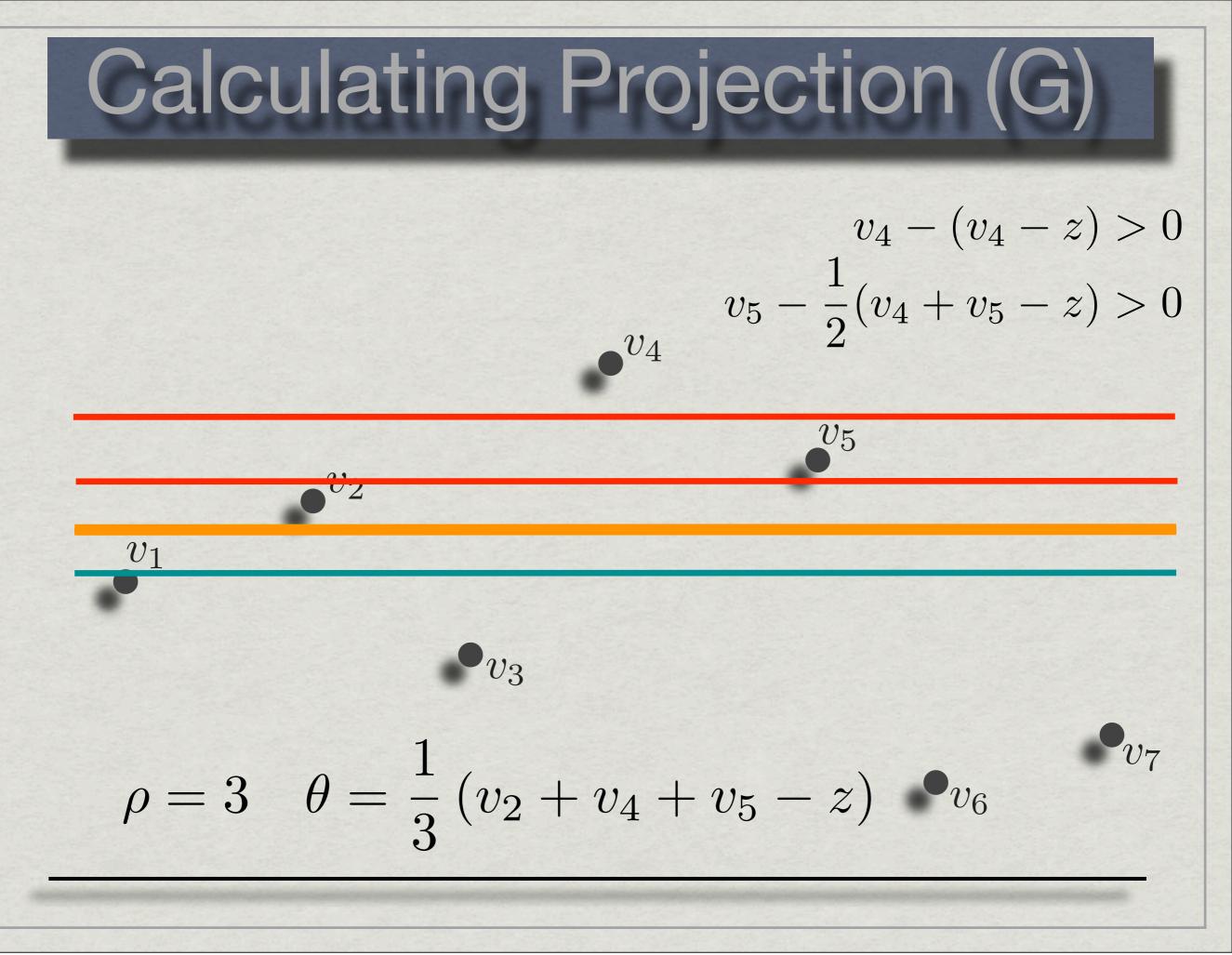
 v_7

 v_6

Calculating ℓ_1 Projection

- Sort vector to be projected $\Rightarrow \mu_1 \ge \mu_2 \ge \mu_3 \ge ... \ge \mu_n$
- If j is a feasible index then $\mu_{j} > \theta \quad \Rightarrow \quad \mu_{j} > \underbrace{\frac{1}{j} \left(\sum_{r=1}^{j} \mu_{r} - z\right)}_{\theta}$ • Number of non-zero elements ρ

$$\rho = \max\left\{ j : \mu_j - \frac{1}{j} \left(\sum_{r=1}^j \mu_r - z \right) > 0 \right\}$$



Efficient Projection Alg.

- Assume we know number of elements greater than v_j $ho(v_j) = |\{v_i : v_i \ge v_j\}|$
- Assume we know the sum of elements great than v_j $s(v_j) = \sum_{i:v_i \ge v_j} v_i$
- Then, we can check in constant time the status of v_j $v_j > \theta \Leftrightarrow v_j > \frac{1}{\rho(v_j)} (s(v_j) - z) \Leftrightarrow s(v_j) - \rho(v_j)v_j < z$
 - Randomized median-like search [O(n) instead O(n log(n))]

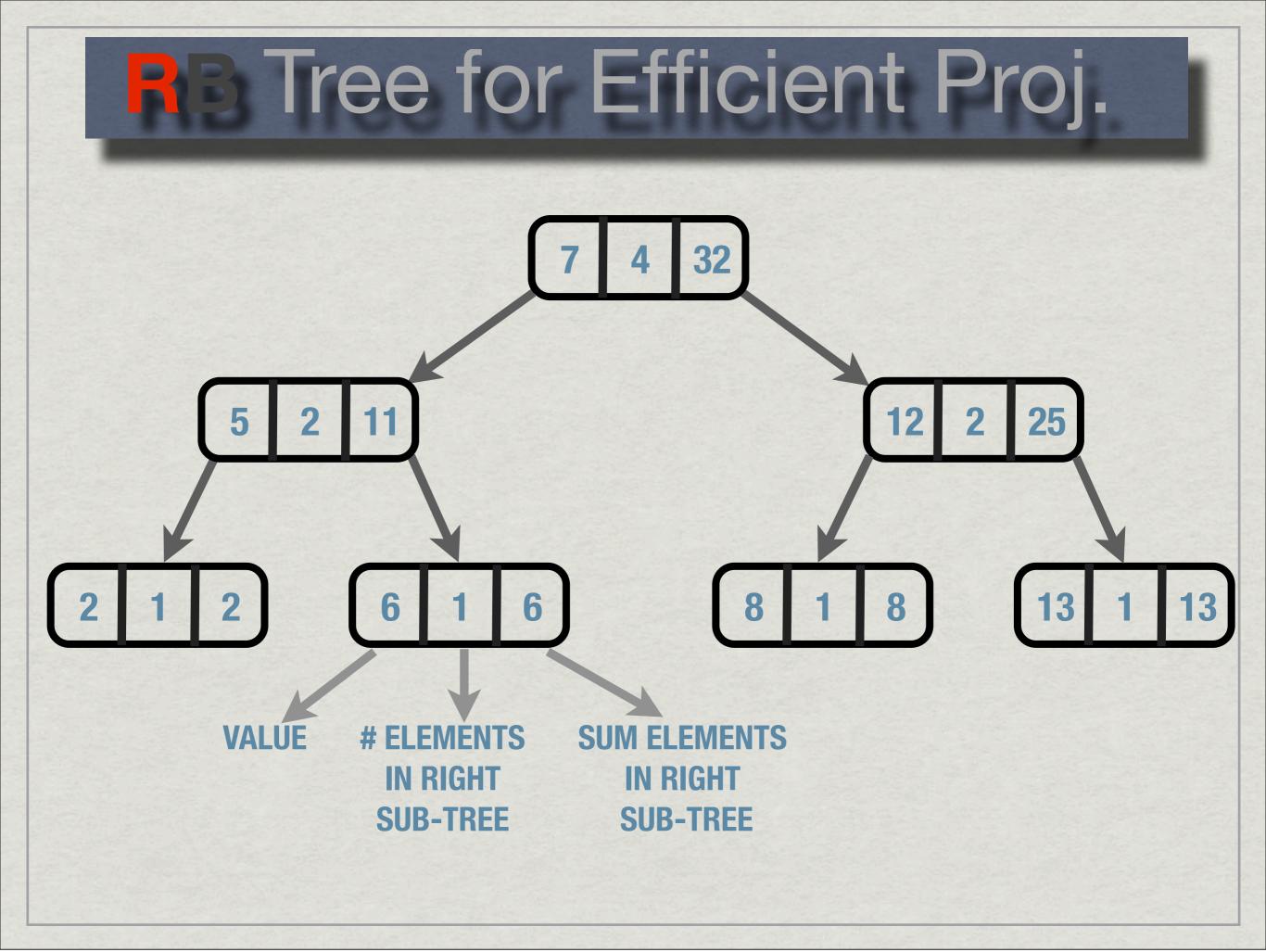
Working in High Dimensions

- In many applications the dimension is very high
 [text application: 2 million tokens]
 [web/ads data: often > 10⁸]
- Small number of non-zero elements in each example
 [text application: ~ thousand tokens per document]
 [web/ads data: often < 10¹¹]
- Online/stochastic updates only modify the weights corresponding to non-zero features in example
- Goals:
 - linear time in the number of non-zero features
 - sub-linear in the full dimension

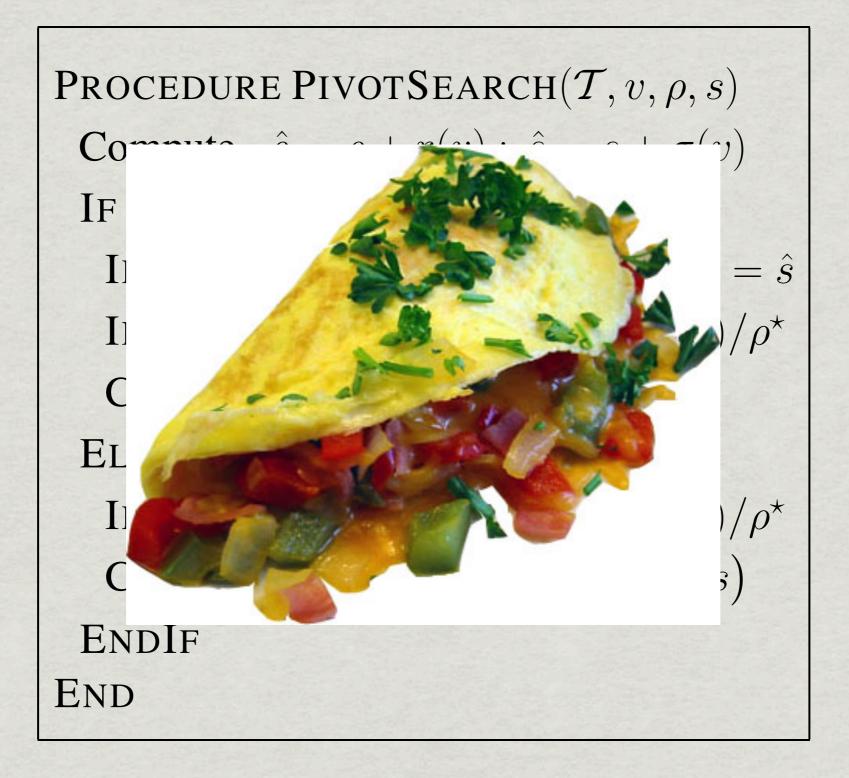
Efficient Alg. for High Dim

- Use **red-black** (**RB**) tree to store only the non-zero components of the weight vector. Non-zero components are stored w/o global shift $\Theta_t = \sum \theta_t$
- Each online/stochastic update deletes & then inserts non-zero elements of an example in O(k log(n)) time
- Store in each node of **RB** additional information that facilitates efficient search for "pivot" θ_t
- Upon projection, removal of a whole sub-tree is performed in logarithmic time using Tarajan's (83) algorithm for splitting **RB** tree

 $s \le t$



Pivot Search with RB Tree



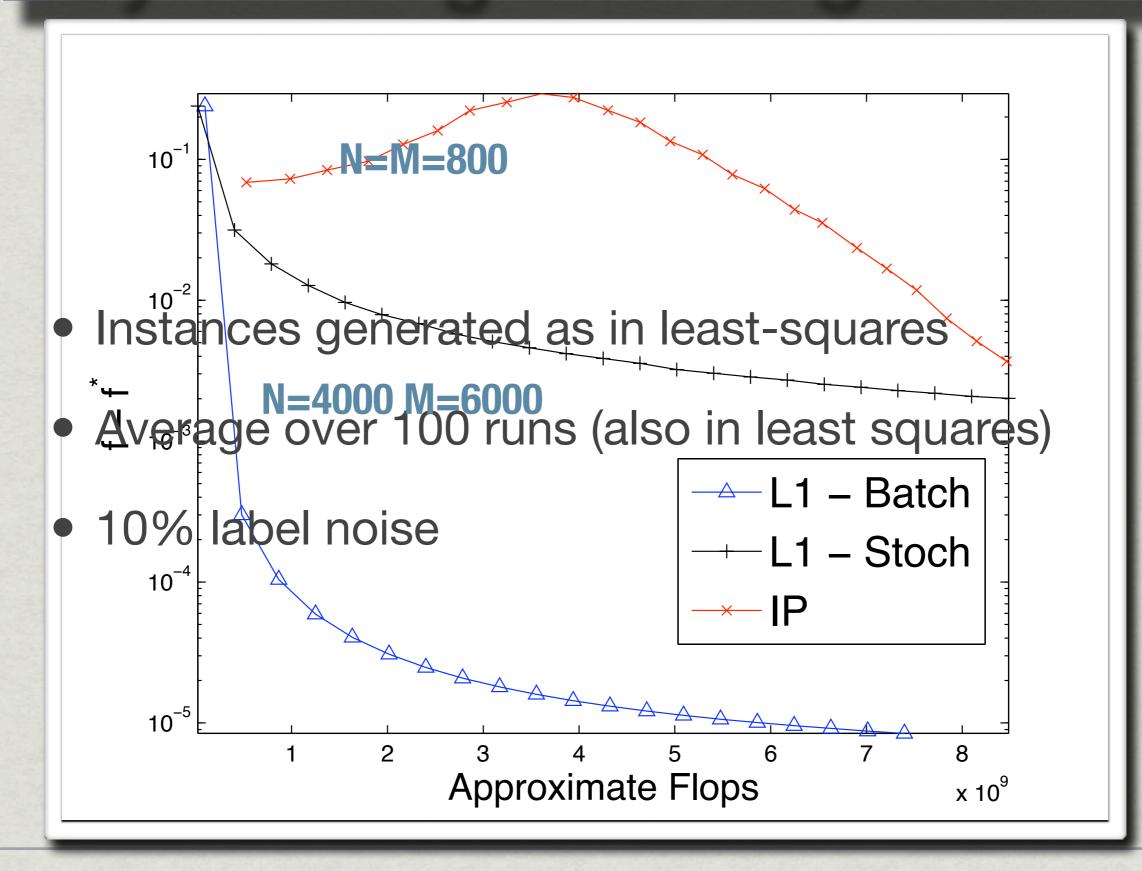
Empirical Results

- Losses:
 - squared error
 - logistic regression (binary & multiclass)
- Datasets: synthetic, MNIST, Reuters Corpus Vol. 1
- Algorithms for comparison:
 - Specialized coordinate descent for SE (FHT'07)
 - Interior Point (IP) method with L₁ Boundary Const.
 - Mirror (entropic) descent & Exponentiated Gradient

Synthetic: Least Squares

- data matrix entries distributed Monthinate
- regressor: --L1 Batch --L1 Stoch
 - 50% of components distributed N(0,1)
 - 50% of components set to zero
 10% irrelevant features)
- N(0, 1) noise added to each target
- Cross validation to determine projection radius
- Stochastic gradient with learning rate 1/3 sqrt(t) 1 2 3 4 5 6Approximate Flops $x 10^9$

Synt.: Logistic Regression

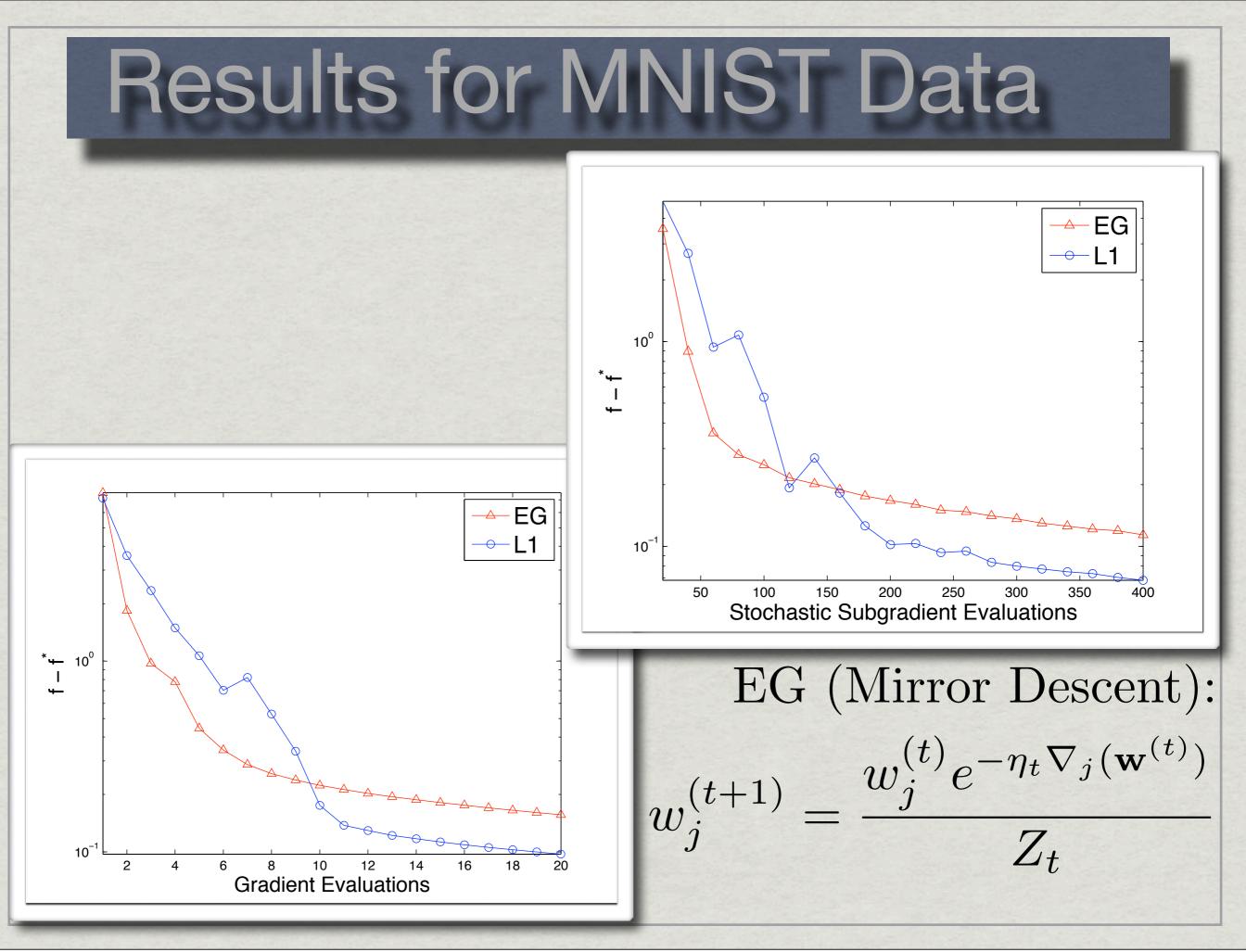


Results for MNIST Data

- Learned predictor of the form $k(\mathbf{x}, j) = \sum_{i \in S} w_{ji} \sigma_{ji} K(\mathbf{x}_i, \mathbf{x}), \quad \sigma_{ji} = \begin{cases} 1 & \text{if } y_i = j \\ -1 & \text{otherwise.} \end{cases}$
- S: support-set, found using multicass Perceptron
- 60,000 training examples, 28x28 pixel images
- Multiclass logistic regression with L₁

$$\min_{\mathbf{w}} \quad \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + \sum_{r \neq y_i} e^{k(\mathbf{x}_i, r) - k(\mathbf{x}_i, y_i)} \right)$$

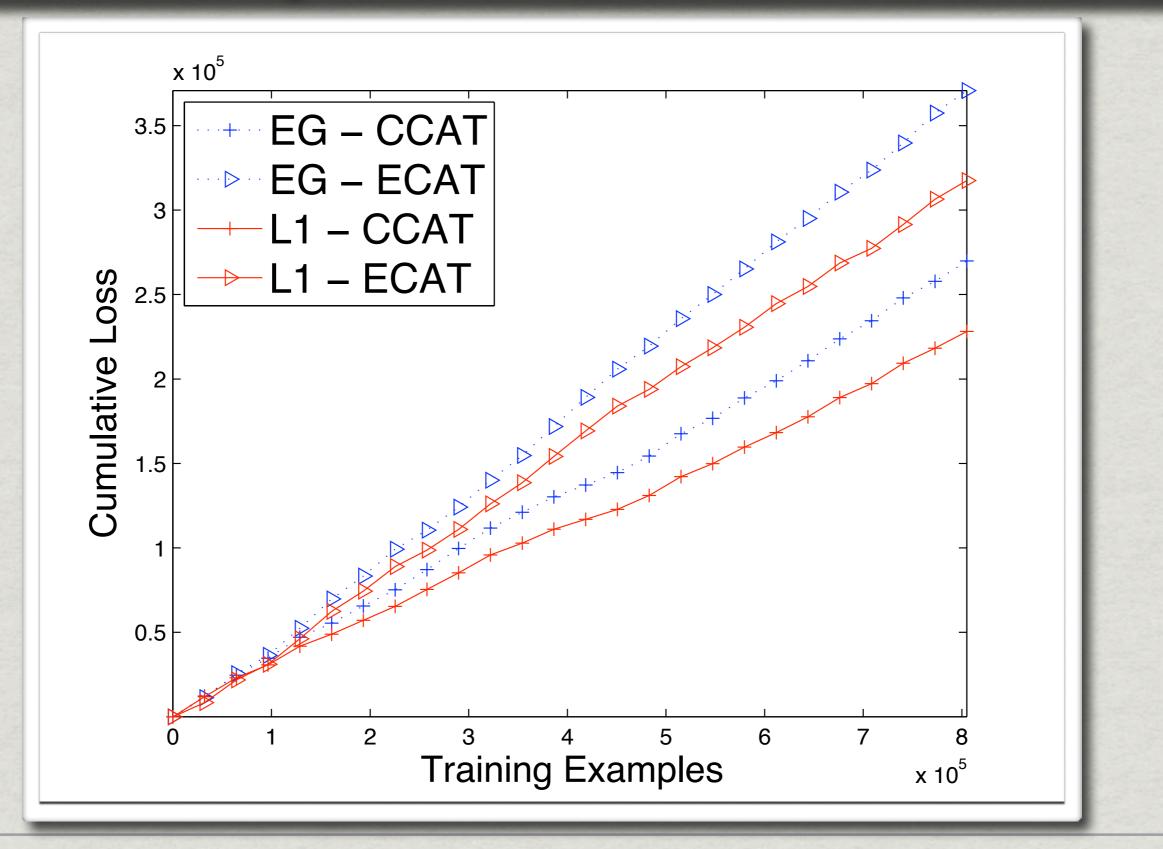
s.t. $\|\mathbf{w}_j\|_1 \le z, \mathbf{w}_j \succeq 0.$

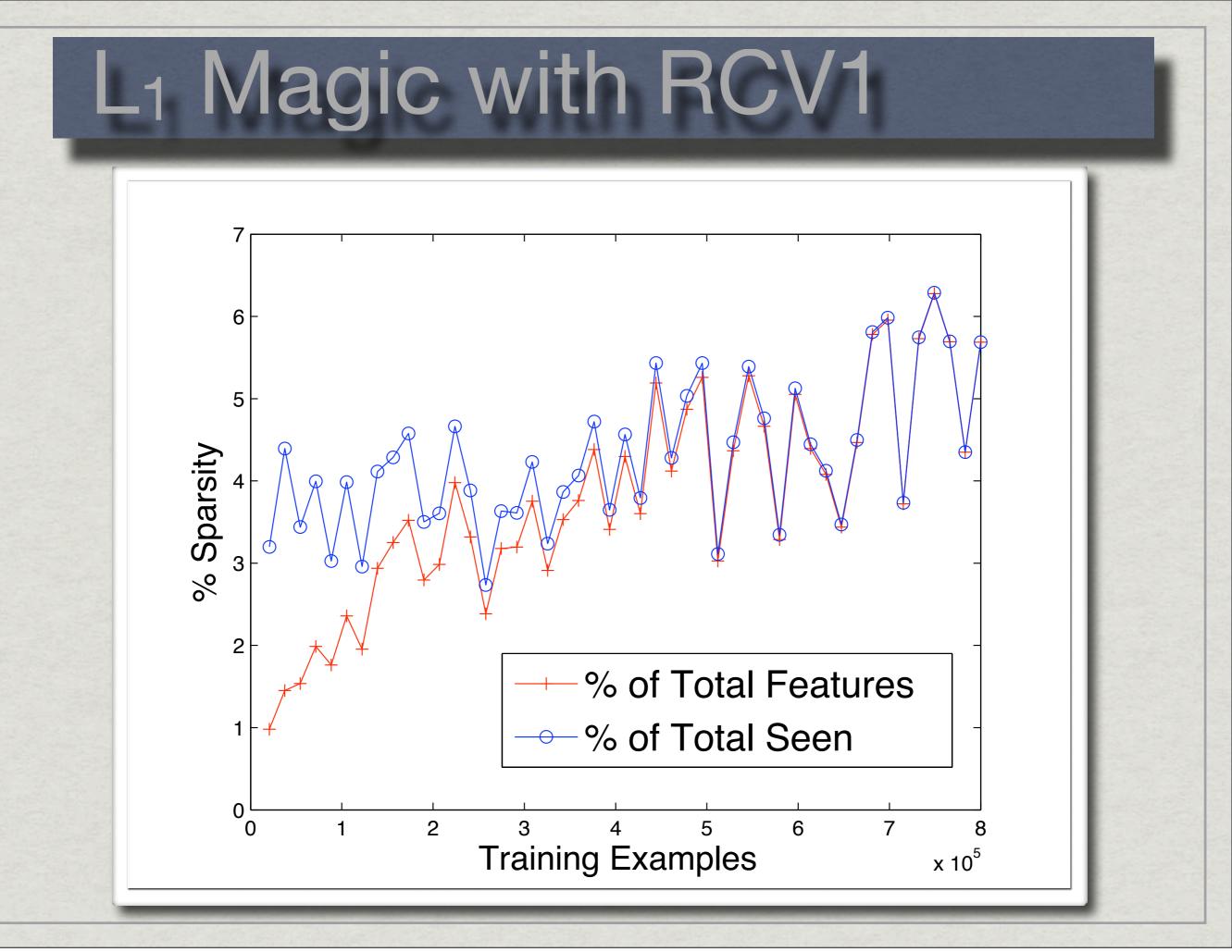


Reuters Corpus Vol. 1

- 804,414 articles, 1,946,684 word bigrams
- Each article includes ~0.26% of bigrams
- Compared with Exponentiated Gradient (KW'97) [extension with positive & negative weights]
- Both algorithms used the same domain constraints
- Learning rate ~ 1/sqrt(t)

L₁ Proj. vs. EG on RCV1





Concluding Remarks

- Bertsekas first described Euclidean projection onto the simplex (see also [Gafni & Bertsekas, 84]) using sorting (O(n log(n)) time)
- Similar algorithms rediscovered and used as dual solvers for multiclass SVM, ranking problems (CS'01, CS'02, SS'06, Hazan'06)
- Efficient L1-like experts tracking: Herbster & Warmuth'01
- First efficient L₁ algorithms for high dimensional settings
- Part of my work on design, analysis, and implementation of provably correct & efficient learning algorithms for very large scale problems
- Extensions and other related work:
 - Adding hyper-box constraints, non-Euclidean projections
 - Infusing AdaBoost with L₁ regularization
 - New algorithm for L₁ regularization through projections