
Efficient Projection Algorithms
onto the L1 Ball for Learning
Sparse Representations from
High Dimension Data
Yoram Singer
Google

BASED ON JOINT WORK WITH:
 JOHN DUCHI & TUSHAR CHANDRA (GOOGLE)

SHAI SHALEV-SHWARTZ (TTI)

1

MMDS WORKSHOP, STANFORD, JUNE 27, 2008
1

Feature Selection & Learning

• Common approach to topic classification:

• Select relevant features / tokens

• Assign weights to tokens in order to achieve
low classification error rate

THE HIGHER MINIMUM WAGE THAT
WAS SIGNED INTO LAW ... WILL BE
WELCOME RELIEF OF WORKERS ...
THE 90 CENT-AN-HOUR INCREASE...

REGULATIONS
LABOUR
ECONOMICS

2

Portfolio Design & Selection

• A large collections of investments tools
(stocks, bonds, ETFs, cash, options, ...)

• Select a subset of the assets

• Distribute investments among selected assets,
not necessarily evenly

3

Learning & Representation

• Many learning problems benefit from compact
representation of the input space:
 spam classification, advertisements placement,
 web ranking, audio reconstruction, ...

• Often the learning is divides into two phases:

• Find compact representation (CR)

• Build a prediction mechanism from (on top) CR

• Perform selection of features and learning a predictor
simultaneously

4

• Support vector machine learning

• Portfolio design

Two Forms of ERM

T∑

t=1

log (wt · xt) s.t. wt ∈ ∆

arg min
w

σ‖w‖2 +
1
m

m∑

i=1

[1− yi(w · xi)]+

T∑

t=1

! (wt; (xt, yt)) s.t. wt ∈ S

arg min
w∈S

σ‖w‖2 + E(x,y)∼D ["(w; (x, y)]
PENALIZED

EMPIRICAL RISK

DOMAIN CONSTRAINED
EMPIRICAL RISK

5

Stoc. Grad. & Domain Constraints

X = {w | ‖w‖1 ≤ z}

min
w

L(w) s.t. ‖w‖1 ≤ z

wt+1 = ΠX(wt − ηt∇tL)

ΠX(w) = arg min {‖w − v‖ | v ∈ X}

STOCHASTIC GRADIENT

LEARNING RATE / STEP SIZE

6

Stoc. Grad. with Constraints

wt wt+1

wt+2

FOCUS MOSTLY ON EFFICIENT ALGORITHMS FOR EUCLIDEAN
PROJECTIONS ONTO THE L1 BALL IN HIGH DIMENSIONS

!1

7

Projection onto Ball!1

v1 := v1 − θ

v2 := v2 − θ

θ

θ

8

Projection onto Ball!1

v1 := max{0, v1 − θ}
v2 := max{0, v2 − θ}

9

Projection onto Ball (cont)!1

sign(vj) max {0 , |vj |− θ}

10

θ

Algebraic-Geometric View

v1

v2

v3

v4

v5

v6

v7

−θ
−θ

−θ

−θ

00 0

11

θ

Algebraic-Geometric View

v1

v2

v3

v4

v5

v6

v7

−θ
−θ

−θ

−θ

⇒ θ = v1+v2+v4+v5−z
4

(v1 − θ) + (v2 − θ) + (v4 − θ) + (v5 − θ) = z

12

Chicken and Egg Problem

• Had we known the threshold we could have found all
the zero elements

• Had we known the elements that become zero we
could have calculated the threshold

13

From Eggs to Omelette

If vj < vk then if after the projection the k’th
component is zero, the j’th component must
be zero as well

θ v3

v6

14

From Eggs to Omelette
If two feasible solutions exist with k and k+1 non-zero
elements then the solution with k+1 elements attains
a lower loss

v1

v2

v3

v4

v5

v6

v7

15

• Sort vector to be projected

• If j is a feasible index then

• Number of non-zero elements

Calculating Projection

ρ

⇒ µ1 ≥ µ2 ≥ µ3 ≥ ... ≥ µn

µj > θ ⇒ µj >
1
j

(
j∑

r=1

µr − z

)

︸ ︷︷ ︸
θ

ρ = max

{
j : µj −

1
j

(
j∑

r=1

µr − z

)
> 0

}

!1

16

Calculating Projection (G)

v1

v2

v3

v4

v5

v6

v7

ρ = 3 θ =
1
3

(v2 + v4 + v5 − z)

v4 − (v4 − z) > 0

v5 −
1
2
(v4 + v5 − z) > 0

17

vj > θ ⇔ vj >
1

ρ(vj)
(s(vj)− z)⇔ s(vj)− ρ(vj)vj < z

• Assume we know number of elements greater than vj

• Assume we know the sum of elements great than vj

• Then, we can check in constant time the status of vj

• Randomized median-like search [O(n) instead O(n log(n))]

Efficient Projection Alg.

ρ(vj) = |{vi : vi ≥ vj}|

s(vj) =
∑

i:vi≥vj

vi

18

Working in High Dimensions
• In many applications the dimension is very high

[text application: 2 million tokens]
[web/ads data: often > 108]

• Small number of non-zero elements in each example
[text application: ~ thousand tokens per document]
[web/ads data: often < 1011]

• Online/stochastic updates only modify the weights
corresponding to non-zero features in example

• Goals:

• linear time in the number of non-zero features

• sub-linear in the full dimension

19

• Use red-black (RB) tree to store only the non-zero
components of the weight vector. Non-zero
components are stored w/o global shift

• Each online/stochastic update deletes & then inserts
non-zero elements of an example in O(k log(n)) time

• Store in each node of RB additional information that
facilitates efficient search for “pivot”

• Upon projection, removal of a whole sub-tree is
performed in logarithmic time using Tarajan’s (83)
algorithm for splitting RB tree

Efficient Alg. for High Dim

Θt =
∑

s≤t

θt

θt

20

RB Tree for Efficient Proj.

7 4 32

5 2 11

2 1 2 6 1 6

12 2 25

8 1 8 13 1 13

VALUE # ELEMENTS
IN RIGHT

SUB-TREE

SUM ELEMENTS
IN RIGHT

 SUB-TREE

21

Pivot Search with RB Tree

PROCEDURE PIVOTSEARCH(T , v, ρ, s)

Compute ρ̂ = ρ + r(v) ; ŝ = s + σ(v)

IF ŝ < vρ̂ + z // v ≥ pivot

IF v# > v THEN v# = v ; ρ# = ρ̂ ; s# = ŝ

IF leaf
T
(v) RETURN θ = (s# − z)/ρ#

CALL PIVOTSEARCH
(

left
T
(v), ρ̂, ŝ

)

ELSE // v < pivot

IF leaf
T
(v) RETURN θ = (s# − z)/ρ#

CALL PIVOTSEARCH
(

right
T
(v), ρ, s

)

ENDIF

END

22

Empirical Results

• Losses:

• squared error

• logistic regression (binary & multiclass)

• Datasets: synthetic, MNIST, Reuters Corpus Vol. 1

• Algorithms for comparison:

• Specialized coordinate descent for SE (FHT’07)

• Interior Point (IP) method with L1 Boundary Const.

• Mirror (entropic) descent & Exponentiated Gradient

23

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
x 108

10!1

100

101

102

Approximate Flops

f !
 f*

Coordinate
L1 ! Line
L1 ! Batch
L1 ! Stoch
IP

N=1000 M=1000
1 2 3 4 5 6

x 109

10!1

100

101

102

103

Approximate Flops

f !
 f*

Coordinate
L1 ! Batch
L1 ! Stoch
IP

N=4000 M=6000

• data matrix entries distributed N(0,1)

• regressor:

• 50% of components distributed N(0,1)

• 50% of components set to zero
(50% irrelevant features)

• N(0,1) noise added to each target

• Cross validation to determine projection radius

• Stochastic gradient with learning rate ~ 1/sqrt(t)

Synthetic: Least Squares

24

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
x 108

10!4

10!3

10!2

10!1

Approximate Flops

f !
 f*

L1 ! Line
L1 ! Batch
L1 ! Stoch
IP

1 2 3 4 5 6 7 8
x 109

10!5

10!4

10!3

10!2

10!1

Approximate Flops

f !
 f*

L1 ! Batch
L1 ! Stoch
IP

Synt.: Logistic Regression

• Instances generated as in least-squares

• Average over 100 runs (also in least squares)

• 10% label noise

N=M=800

N=4000 M=6000

25

• Learned predictor of the form

• S: support-set, found using multicass Perceptron

• 60,000 training examples, 28x28 pixel images

• Multiclass logistic regression with L1

Results for MNIST Data

k(x, j) =
∑

i∈S

wjiσjiK(xi,x), σji =
{

1 if yi = j
−1 otherwise.

minw
1
m

∑m
i=1 log

(
1 +

∑
r !=yi

ek(xi,r)−k(xi,yi)
)

s.t. ‖wj‖1 ≤ z,wj # 0.

26

Results for MNIST Data

EG (Mirror Descent):

w(t+1)
j =

w(t)
j e−ηt∇j(w

(t))

Zt2 4 6 8 10 12 14 16 18 20
10!1

100

Gradient Evaluations

f !
 f*

EG
L1

50 100 150 200 250 300 350 400

10!1

100

Stochastic Subgradient Evaluations
f !

 f*

EG
L1

27

Reuters Corpus Vol. 1

• 804,414 articles, 1,946,684 word bigrams

• Each article includes ~0.26% of bigrams

• Compared with Exponentiated Gradient (KW’97)
[extension with positive & negative weights]

• Both algorithms used the same domain constraints

• Learning rate ~ 1/sqrt(t)

28

L1 Proj. vs. EG on RCV1

0 1 2 3 4 5 6 7 8
x 105

0.5

1

1.5

2

2.5

3

3.5

x 105

Training Examples

C
um

ul
at

iv
e

Lo
ss

EG ! CCAT
EG ! ECAT
L1 ! CCAT
L1 ! ECAT

29

L1 Magic with RCV1

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3

4

5

6

7

Training Examples

%
 S

pa
rs

ity

% of Total Features
% of Total Seen

30

Concluding Remarks
• Bertsekas first described Euclidean projection onto the simplex (see

also [Gafni & Bertsekas, 84]) using sorting (O(n log(n)) time)

• Similar algorithms rediscovered and used as dual solvers for
multiclass SVM, ranking problems (CS’01, CS’02, SS’06, Hazan’06)

• Efficient L1-like experts tracking: Herbster & Warmuth’01

• First efficient L1 algorithms for high dimensional settings

• Part of my work on design, analysis, and implementation of provably
correct & efficient learning algorithms for very large scale problems

• Extensions and other related work:
• Adding hyper-box constraints, non-Euclidean projections
• Infusing AdaBoost with L1 regularization
• New algorithm for L1 regularization through projections

31

