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Feature Selection & Learning

• Common approach to topic classification:

• Select relevant features / tokens

• Assign weights to tokens in order to achieve
low classification error rate
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Portfolio Design & Selection

• A large collections of investments tools
(stocks, bonds, ETFs, cash, options, ...)

• Select a subset of the assets

• Distribute investments among selected assets,
not necessarily evenly
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Learning & Representation

• Many learning problems benefit from compact 
representation of the input space:
   spam classification, advertisements placement,
   web ranking, audio reconstruction, ...

• Often the learning is divides into two phases:

• Find compact representation (CR)

• Build a prediction mechanism from (on top) CR

• Perform selection of features and learning a predictor
simultaneously
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• Support vector machine learning

• Portfolio design

Two Forms of ERM

T∑

t=1

log (wt · xt) s.t. wt ∈ ∆

arg min
w

σ‖w‖2 +
1
m

m∑

i=1

[1− yi(w · xi)]+

T∑

t=1

! (wt; (xt, yt)) s.t. wt ∈ S

arg min
w∈S

σ‖w‖2 + E(x,y)∼D ["(w; (x, y)]
PENALIZED 

EMPIRICAL RISK

DOMAIN CONSTRAINED 
EMPIRICAL RISK
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Stoc. Grad. & Domain Constraints 

X = {w | ‖w‖1 ≤ z}

min
w

L(w) s.t. ‖w‖1 ≤ z

wt+1 = ΠX(wt − ηt∇tL)

ΠX(w) = arg min {‖w − v‖ | v ∈ X}

STOCHASTIC GRADIENT

LEARNING RATE / STEP SIZE
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Stoc. Grad. with      Constraints 

wt wt+1

wt+2

FOCUS MOSTLY ON EFFICIENT ALGORITHMS FOR EUCLIDEAN 
PROJECTIONS ONTO THE L1 BALL IN HIGH DIMENSIONS

!1
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Projection onto     Ball!1

v1 := v1 − θ

v2 := v2 − θ

θ

θ
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Projection onto     Ball!1

v1 := max{0, v1 − θ}
v2 := max{0, v2 − θ}
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Projection onto     Ball (cont)!1

sign(vj) max {0 , |vj |− θ}
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⇒ θ = v1+v2+v4+v5−z
4

(v1 − θ) + (v2 − θ) + (v4 − θ) + (v5 − θ) = z
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Chicken and Egg Problem

• Had we known the threshold we could have found all 
the zero elements

• Had we known the elements that become zero we 
could have calculated the threshold
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From Eggs to Omelette

If vj < vk then if after the projection the k’th 
component is zero, the j’th component must
be zero as well

θ v3

v6
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From Eggs to Omelette
If two feasible solutions exist with k and k+1 non-zero 
elements then the solution with k+1 elements attains 
a lower loss
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15



• Sort vector to be projected

• If j is a feasible index then 

• Number of non-zero elements     

Calculating     Projection 

ρ

⇒ µ1 ≥ µ2 ≥ µ3 ≥ ... ≥ µn

µj > θ ⇒ µj >
1
j

(
j∑

r=1

µr − z

)

︸ ︷︷ ︸
θ

ρ = max

{
j : µj −

1
j

(
j∑

r=1

µr − z

)
> 0

}

!1
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Calculating Projection (G)

v1

v2

v3

v4

v5

v6

v7

ρ = 3 θ =
1
3

(v2 + v4 + v5 − z)

v4 − (v4 − z) > 0

v5 −
1
2
(v4 + v5 − z) > 0
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vj > θ ⇔ vj >
1

ρ(vj)
(s(vj)− z)⇔ s(vj)− ρ(vj)vj < z

• Assume we know number of elements greater than vj

• Assume we know the sum of elements great than vj

• Then, we can check in constant time the status of vj 

• Randomized median-like search [O(n) instead O(n log(n))]

Efficient Projection Alg.

ρ(vj) = |{vi : vi ≥ vj}|

s(vj) =
∑

i:vi≥vj

vi
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Working in High Dimensions
• In many applications the dimension is very high

[ text application: 2 million tokens]
[ web/ads data: often > 108 ]

• Small number of non-zero elements in each example
[ text application: ~ thousand tokens per document ]
[ web/ads data: often < 1011 ]

• Online/stochastic updates only modify the weights 
corresponding to non-zero features in example

• Goals:

• linear time in the number of non-zero features

• sub-linear in the full dimension
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• Use red-black (RB) tree to store only the non-zero 
components of the weight vector. Non-zero 
components are stored w/o global shift

• Each online/stochastic update deletes & then inserts 
non-zero elements of an example in O(k log(n)) time

• Store in each node of RB additional information that 
facilitates efficient search for “pivot”

• Upon projection, removal of a whole sub-tree is 
performed in logarithmic time using Tarajan’s (83)
algorithm for splitting RB tree

Efficient Alg. for High Dim

Θt =
∑

s≤t

θt

θt
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RB Tree for Efficient Proj.

7 4 32

5 2 11

2 1 2 6 1 6

12 2 25

8 1 8 13 1 13

VALUE # ELEMENTS
IN RIGHT 

SUB-TREE

SUM ELEMENTS
IN RIGHT

 SUB-TREE
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Pivot Search with RB Tree

PROCEDURE PIVOTSEARCH(T , v, ρ, s)

Compute ρ̂ = ρ + r(v) ; ŝ = s + σ(v)

IF ŝ < vρ̂ + z // v ≥ pivot

IF v# > v THEN v# = v ; ρ# = ρ̂ ; s# = ŝ

IF leaf
T
(v) RETURN θ = (s# − z)/ρ#

CALL PIVOTSEARCH
(

left
T
(v), ρ̂, ŝ

)

ELSE // v < pivot

IF leaf
T
(v) RETURN θ = (s# − z)/ρ#

CALL PIVOTSEARCH
(

right
T
(v), ρ, s

)

ENDIF

END
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Empirical Results

• Losses:

•  squared error

• logistic regression (binary & multiclass)

• Datasets: synthetic, MNIST, Reuters Corpus Vol. 1

• Algorithms for comparison:

• Specialized coordinate descent for SE (FHT’07)

• Interior Point (IP) method with L1  Boundary Const.

• Mirror (entropic) descent & Exponentiated Gradient

23



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
x 108

10!1

100

101

102

Approximate Flops

f !
 f*

 

 

Coordinate
L1 ! Line
L1 ! Batch
L1 ! Stoch
IP

N=1000 M=1000
1 2 3 4 5 6

x 109

10!1

100

101

102

103

Approximate Flops

f !
 f*

 

 

Coordinate
L1 ! Batch
L1 ! Stoch
IP

N=4000 M=6000

• data matrix entries distributed N(0,1)

• regressor:

• 50% of components distributed N(0,1)

• 50% of components set to zero
(50% irrelevant features)

• N(0,1) noise added to each target

• Cross validation to determine projection radius

• Stochastic gradient with learning rate ~ 1/sqrt(t)

Synthetic: Least Squares
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Synt.: Logistic Regression

• Instances generated as in least-squares 

• Average over 100 runs (also in least squares)

• 10% label noise

N=M=800

N=4000 M=6000
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• Learned predictor of the form

• S: support-set, found using multicass Perceptron

• 60,000 training examples, 28x28 pixel images

• Multiclass logistic regression with L1

Results for MNIST Data

k(x, j) =
∑

i∈S

wjiσjiK(xi,x), σji =
{

1 if yi = j
−1 otherwise.

minw
1
m

∑m
i=1 log

(
1 +

∑
r !=yi

ek(xi,r)−k(xi,yi)
)

s.t. ‖wj‖1 ≤ z,wj # 0.
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Results for MNIST Data

EG (Mirror Descent):

w(t+1)
j =

w(t)
j e−ηt∇j(w

(t))
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Reuters Corpus Vol. 1

• 804,414 articles, 1,946,684 word bigrams

• Each article includes ~0.26% of bigrams

• Compared with Exponentiated Gradient (KW’97)
[extension with positive & negative weights]

• Both algorithms used the same domain constraints

• Learning rate ~ 1/sqrt(t)
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L1 Proj. vs. EG on RCV1
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L1 Magic with RCV1
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Concluding Remarks
• Bertsekas first described Euclidean projection onto the simplex (see 

also [Gafni & Bertsekas, 84]) using sorting (O(n log(n)) time)

• Similar algorithms rediscovered and used as dual solvers for 
multiclass SVM, ranking problems (CS’01, CS’02, SS’06, Hazan’06)

• Efficient L1-like experts tracking: Herbster & Warmuth’01

• First efficient L1 algorithms for high dimensional settings

• Part of my work on design, analysis, and implementation of provably 
correct & efficient learning algorithms for very large scale problems

• Extensions and other related work:
• Adding hyper-box constraints, non-Euclidean projections
• Infusing AdaBoost with L1 regularization
• New algorithm for L1 regularization through projections
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