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Graphical Data in Biology

» Phylogenetic trees

» Transcription networks
» Metabolic networks

» Signalling pathways
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Data connected to Graphs

Known Graph on p genes
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Data connected to Graphs
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Data connected to Graphs

Data on p genes Known Graph on p genes
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Data connected to Graphs

Data on p genes

» Improved interpretability of
inference/hypothesis testing

» Relevant Features for
Prediction of Outcome

» Classify objects onto graph

Known Graph on p genes
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Graphs: Relationship among Variables



Intestinal Bacterial Data
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Graphs: Relationship among Variables
Transformation of Data



Transform Data Based on Graph

Observe x € R? Graph G linking p variables



Transform Data Based on Graph

Observe x € R? Graph G linking p variables
4

Transform based on G, e.g. various summaries

» Averages over k subgraphs
» Difference between x; and its neighbors
» Contrasts between subgraphs
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Transform Data Based on Graph

Observe x € R? Graph G linking p variables

Transform based on G, e.g. various summaries

» Averages over k subgraphs
» Difference between x; and its neighbors
» Contrasts between subgraphs

Linear combinations based on graph: & = V'x
\

Decompose x: x = VX = ) . Xy V;



Transform Data Based on Graph

Observe x € R? Graph g linking p variables

Transform based on G, e.g. various summaries

» Averages over k subgraphs

» Difference between x; and its neighbors

» Contrasts between subgraphs
Linear combinations based on graph: & = V'x
Decompose x: x = VX = > . XV

4

Reweight directions: f(x) = 3°, A/’

i XoVi



Transform Data Based on Graph

Observe x € R? Graph G linking p variables

Transform based on G, e.g. various summaries

» Averages over k subgraphs
» Difference between x; and its neighbors
» Contrasts between subgraphs

Linear combinations based on graph: & = V'x
Decompose x: x = VX = > . X, V;
Reweight directions: f(x) = >, )\l-l/z)?(i>vl~

)

New metric space with S = VAV”: (x;,x/)g = x! Sx;



Representing Graphs
» Adjacency Matrix: A

Z ofA¥ /k!
Z a* A

» Laplacian: L = D A

exp(al) Z o L* /k!

OO
=2 (L

k=

exp(aA)

(I—aA)”

(I+al)~

L+

Number of Paths

«— Heat Kernel

*

«— Commute Distance

» Normalized Laplacian £ = D~!/2LD~!/2

Smola and Kondor (2003); Fouss et al. (2003)



Representing Graphs
» Adjacency Matrix: A

Z ofA¥ /k!
Z a* A

» Laplacian: L = D A

exp(al) Z o L* /k!

OO
=2 (L

k=

exp(aA)

(I—aA)”

(I+al)~

L+

Number of Paths

«— Heat Kernel

*

«— Commute Distance

» Normalized Laplacian £ = D~!/2LD~!/2

Analysis of Graphs

Data — Graph: Cut Algorithms, Laplacian Eigenmaps

Smola and Kondor (2003); Fouss et al. (2003)



Sample of Eigenvectors for L
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Sample of Eigenvectors of X,
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Graphs: Relationship among Variables

Example of PCA



Generalized PCA

Metric space with S,,,, x € R?, X,,»,

Find b € R?:
> USb; = \;b;
max var((b,x)g) _ e — xT
[[bllg=1 U=cov(x) =X"QX

Escoufier (1973)



Generalized PCA

Metric space with S,,,, x € R?, X,,»,

Find b € R”:
UShb; = \b;
max var((b,x)g) -> _ T
[bllg=1 U =cov(x) =X QX
e.g.
» Correspondence Analysis = S, Q diagonals

SALSA Algorithm
» PCA on f(x;) = Q=1
» DPCoA = S = X7 covariance for trees, Q diagonal

Kernel PCA



Generalized PCA of Intestinal Data

X ERP,S =5, = VAV PCA on f(x) = 3, A%, vi
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PCA as Transformations of x

Regular PCA: X = Rpca = Abeux
Generalized PCA:  f(x) = &r=ALf(x)=ATx
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Graphs: Relationship among Variables

Prediction



Supervised Classification/Prediction

Outcome: y
Predictor variable:  f(x) € R?

n

min >~ 687/ (x9).0) + C118I

i=1

*

54

n

N o xhe v ) Cllal
;rélﬂrgp > ((a,xi)g . yw) + Cllalls
=

*B8 =8'"2a  Implicitly assume: 3 € span{v}i.x >0

Rapaport et al. (2007)



SVM Decision Rule

Predicting Irradiated Yeast Cultures from Microarray Data

With Graph

Without Graph
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Rapaport et al. (2007, Figure 3)
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Graph Connecting Observations



Predictions related to G:

» New node, predict edges based on x

Data X, graph G, on n observations
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» New node, predict edges based on x
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Predictions related to G:

» New node, predict edges based on x

Data X, graph G, on n observations = G,

X1y 0 X
ey 20
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Predictions related to G:

» New node, predict edges based on x
» New observation, assign to node of G based on x

Data X, graph G, on n observations

X1y o Xl
ey M2
Xn(y "0 Xngp)




Predictions related to G:

» New node, predict edges based on x
» New observation, assign to node of G based on x

Data X, graph G, on n observations = assign to d classes

X1y Xl
ey Y2
Xny "0 Xngp)




Unifying the Problems

Predict New Edges: Classify New Observations:
i ~j} =f(xi, %)) i e v} =f(xi)



Unifying the Problems

Predict New Edges: Classify New Observations:
i ~j} = f(xi,x)) 1{i e v} =f(x)

4

Instead Predict Similarities: Sg(i,)) = f(xi,X;) + €
= g(Sx(i7j)) + €

Simple fitting: ~ min 3=, (S (i,/) — ¢;Sx(i,/))?



Unifying the Problems

Predict New Edges: Classify New Observations:
i ~j} = f(xi,x)) 1{i e v} =f(x)

4

Instead Predict Similarities: Sg(i,)) = f(xi,X;) + €
= g(Sx(i7j>) + €

Simple fitting: ~ min 3=, (S (i,/) — ¢;Sx(i,/))?
Regression Model: y = Cx + €

Constraints on C (Reduced Rank Regression):
» Low rank
» Uncorrelated



Geometric Goal

Maximize similarity between clouds of data (RV-Coeff)

Transform S, — §g,
max <Sg,§g>

» Gives interpretation of relation between data and graph
» Use for exploration

(Robert and Escoufier, 1976)



Regularization and Kernel Methods

» Clear Sg, S, define kernels: Kernel CCA, PLS, RRR
Yamanishi et al. (2004): yeast data

» Previous formulation: unregularized kernel RRR

» Implement trade-off between (empirically) uncorrelated
features and the norm of the features

(Bach and Jordan, 2002; Rosipal and Trejo, 2001; Purdom, 2006)



Regularization and Kernel Methods

» Clear Sg, S, define kernels: Kernel CCA, PLS, RRR
Yamanishi et al. (2004): yeast data

» Previous formulation: unregularized kernel RRR

» Implement trade-off between (empirically) uncorrelated
features and the norm of the features

» fx=xeR", XeR™, Ky=X'X
Kernel CCA/RRR (Kg,Kx) <« Generalized PCA (X, Q,S)

(For appropriate regularization of Kernel CCA)



In Summary

» Computationally simple ways of using large graphs
» Automatically picks features of the data
» ’Smooths’ data rather than explicitly limit analysis to graph



In Summary

v

Computationally simple ways of using large graphs
Automatically picks features of the data
'Smooths’ data rather than explicitly limit analysis to graph

v

v

v

Adjacency matrix not deal with moderate details
Directed Edges
Different Nodes

Eigenvectors # subnetworks
= Kind of approximation, but not explicit

v



Acknowledgements

» Susan Holmes
» Relman Lab (Stanford)
» Bloom Lab (Berkeley)



References |

BACH, F. R. and JORDAN, M. . (2002). Kernel independent
component analysis. Journal of Machine Learning Research
3 1-48.

ECKBURG, P. B., BIk, E. M., BERNSTEIN, C. N., PURDOM, E.,
DETHLEFSEN, L., SARGENT, M., GILL, S. R., NELSON, K. E.
and RELMAN, D. A. (2005). Diversity of the human intestinal
microbial flora. Science 308 1635—1638.

ESCOUFIER, Y. (1973). Le traitement des variables vectorielles.
Biometrics 29 751-760.

Fouss, F., RENDERS, J.-M. and SAERENS, M. (2003). Some
relationships between Kleinberg’s hubs and authorities,
correspondence analysis and the Salsa algorithm. In
Proceedings of the Third International Conference on Data

Mining. IEEE.



References Il

PUrDOM, E. (2006). Multivariate Kernel Methods in the
Analysis of Graphical Structures. Ph.D. thesis, Stanford
University.

RAPAPORT, F., ZINOVYEV, A., DUTREIX, M., BARILLOT, E. and
VERT, J.-P. (2007). Classification of microarray data using
gene networks. BMC Bioinformatics 8.

ROBERT, P. and ESCOUFIER, Y. (1976). A unifying tool for
linear multivariate statistical methods: The RV-coefficient.
Applied Statistics 25 257—265.

RosIPAL, R. and TREJO, L. J. (2001). Kernel partial least
squares regression in reproducing kernel Hilbert space.
Journal of Machine Learning Research 2 97—123.



References llI

SMOLA, A. and KONDOR, I. (2003). Kernels and regularization
on graphs. In Proceedings of the Annual Conference on
Computational Learning Theory (B. Schélkopf and
M. Warmuth, eds.). Lecture Notes in Computer Science,
Springer.

YAMANISHI, Y., VERT, J.-P. and KANEHISA, M. (2004). Protein
network inference from multiple genomic data: a supervised
approach. Bioinformatics 20 i363—i370.



	Outline
	Graphical Data
	Graphical Data
	Graphical Data in Biology
	Data connected to Graphs
	Graphs: Relationship among Variables
	Intestinal Bacterial Data
	Transformation of Data
	Basis Transformation
	Representing Graphs
	Graph Eigenvectors
	Tree Eigenvectors
	Example of PCA
	Generalized PCA
	PCA on Transformed Data
	PCA as Transformations
	Prediction
	Supervised Classification
	SVM Decision Rule: Figure 3
	Graph Connecting Observations
	Predictions related to Graph
	Unifying the Problems
	Geometric Goal
	Regularization
	Summary
	References

