Data Analysis with Graphs

Elizabeth Purdom

Department of Biostatistics, UC, Berkeley
June 28, 2008

Outline

Graphical Data

Graphs: Relationship among Variables
Transformation of Data
Example of PCA
Prediction

Graph Connecting Observations

Outline

Graphical Data

Graphs: Relationship among Variables
 Transformation of Data
 Example of PCA
 Prediction

Graph Connecting Observations

Graphical Data in Biology

Data connected to Graphs

Known Graph on p genes

Data connected to Graphs

Data on p genes
Known Graph on p genes

Data connected to Graphs

Data on p genes
Known Graph on p genes

Data connected to Graphs

Data on p genes

- Improved interpretability of inference/hypothesis testing
- Relevant Features for Prediction of Outcome
- Classify objects onto graph

Outline

Graphical Data

Graphs: Relationship among Variables
Transformation of Data
Example of PCA
Prediction

Graph Connecting Observations

Intestinal Bacterial Data

$$
\text { -. } 1
$$

Outline

Graphical Data

Graphs: Relationship among Variables
Transformation of Data
Example of PCA
Prediction

Graph Connecting Observations

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p} \quad$ Graph \mathcal{G} linking p variables

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p}$
Graph \mathcal{G} linking p variables
\Downarrow
Transform based on \mathcal{G}, e.g. various summaries

- Averages over k subgraphs
- Difference between \mathbf{x}_{i} and its neighbors
- Contrasts between subgraphs

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p} \quad$ Graph \mathcal{G} linking p variables
Transform based on \mathcal{G}, e.g. various summaries

- Averages over k subgraphs
- Difference between \mathbf{x}_{i} and its neighbors
- Contrasts between subgraphs
\Downarrow
Linear combinations based on graph: $\tilde{\mathbf{x}}=\mathbf{V}^{T} \mathbf{x}$

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p} \quad$ Graph \mathcal{G} linking p variables
Transform based on \mathcal{G}, e.g. various summaries

- Averages over k subgraphs
- Difference between \mathbf{x}_{i} and its neighbors
- Contrasts between subgraphs

Linear combinations based on graph: $\tilde{\mathbf{x}}=\mathbf{V}^{T} \mathbf{x}$
\Downarrow
Decompose $\mathbf{x}: \mathbf{x}=\mathbf{V} \tilde{\mathbf{x}}=\sum_{i} \tilde{x}_{(i)} \mathbf{v}_{i}$

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p} \quad$ Graph \mathcal{G} linking p variables
Transform based on \mathcal{G}, e.g. various summaries

- Averages over k subgraphs
- Difference between \mathbf{x}_{i} and its neighbors
- Contrasts between subgraphs

Linear combinations based on graph: $\tilde{\mathbf{x}}=\mathbf{V}^{T} \mathbf{x}$
Decompose $\mathbf{x}: \mathbf{x}=\mathbf{V} \tilde{\mathbf{x}}=\sum_{i} \tilde{x}_{(i)} \mathbf{v}_{i}$
\Downarrow
Reweight directions: $f(\mathbf{x})=\sum_{i} \lambda_{i}^{1 / 2} \tilde{x}_{(i)} \mathbf{v}_{i}$

Transform Data Based on Graph

Observe $\mathbf{x} \in \mathbb{R}^{p} \quad$ Graph \mathcal{G} linking p variables
Transform based on \mathcal{G}, e.g. various summaries

- Averages over k subgraphs
- Difference between \mathbf{x}_{i} and its neighbors
- Contrasts between subgraphs

Linear combinations based on graph: $\tilde{\mathbf{x}}=\mathbf{V}^{T} \mathbf{x}$
Decompose \mathbf{x} : $\mathbf{x}=\mathbf{V} \tilde{\mathbf{x}}=\sum_{i} \tilde{x}_{(i)} \mathbf{v}_{i}$
Reweight directions: $f(\mathbf{x})=\sum_{i} \lambda_{i}^{1 / 2} \tilde{x}_{(i)} \mathbf{v}_{i}$

$$
\Downarrow
$$

New metric space with $\mathbf{S}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}:\left\langle\mathbf{x}_{k}, \mathbf{x}_{\ell}\right\rangle_{\mathbf{S}}=\mathbf{x}_{k}^{T} \mathbf{S} \mathbf{x}_{\ell}$

Representing Graphs

- Adjacency Matrix: A

$$
\begin{aligned}
& \exp (\alpha \mathbf{A})=\sum_{k=0}^{\infty} \alpha^{k} \mathbf{A}^{k} / k! \\
& (\mathbf{I}-\alpha \mathbf{A})^{-1}=\sum_{k=0}^{\infty} \alpha^{k} \mathbf{A}^{k}
\end{aligned}
$$

Number of Paths

\leftarrow Heat Kernel
\leftarrow Commute Distance

- Normalized Laplacian $\mathcal{L}=\mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2}$

Smola and Kondor (2003); Fouss et al. (2003)

Representing Graphs

- Adjacency Matrix: A

$$
\begin{aligned}
& \exp (\alpha \mathbf{A})=\sum_{k=0}^{\infty} \alpha^{k} \mathbf{A}^{k} / k! \\
& (\mathbf{I}-\alpha \mathbf{A})^{-1}=\sum_{k=0}^{\infty} \alpha^{k} \mathbf{A}^{k}
\end{aligned}
$$

Number of Paths
\leftarrow Heat Kernel
\leftarrow Commute Distance

- Normalized Laplacian $\mathcal{L}=\mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2}$

Analysis of Graphs
Data \rightarrow Graph: Cut Algorithms, Laplacian Eigenmaps
Smola and Kondor (2003); Fouss et al. (2003)

Sample of Eigenvectors for \mathbf{L}

Sample of Eigenvectors of $\boldsymbol{\Sigma}_{\mathcal{T}}$

Outline

Graphical Data

Graphs: Relationship among Variables
Transformation of Data
Example of PCA
Prediction

Graph Connecting Observations

Generalized PCA

Metric space with $\mathbf{S}_{p \times p}, \mathbf{x} \in \mathbb{R}^{p}, \mathbf{X}_{n \times p}$
Find $\mathbf{b} \in \mathbb{R}^{p}$:

$$
\max _{\|\mathbf{b}\|_{\mathbf{S}}^{2}=1} \operatorname{var}\left(\langle\mathbf{b}, \mathbf{x}\rangle_{\mathbf{S}}\right)
$$

$$
\begin{gathered}
\mathbf{U S b}_{i}=\lambda_{i} \mathbf{b}_{i} \\
\mathbf{U}=\widehat{\operatorname{cov}}(\mathbf{x})=\mathbf{X}^{T} \mathbf{Q} \mathbf{X}
\end{gathered}
$$

Generalized PCA

Metric space with $\mathbf{S}_{p \times p}, \mathbf{x} \in \mathbb{R}^{p}, \mathbf{X}_{n \times p}$
Find $\mathbf{b} \in \mathbb{R}^{p}$:

$$
\max _{\|\mathbf{b}\|_{\mathbf{S}}^{2}=1} \operatorname{var}\left(\langle\mathbf{b}, \mathbf{x}\rangle_{\mathbf{S}}\right)
$$

$$
\begin{gathered}
\mathbf{U S b}_{i}=\lambda_{i} \mathbf{b}_{i} \\
\mathbf{U}=\widehat{\operatorname{cov}}(\mathbf{x})=\mathbf{X}^{T} \mathbf{Q} \mathbf{X}
\end{gathered}
$$

e.g.

- Correspondence Analysis $\quad \Rightarrow \quad \mathbf{S}, \mathbf{Q}$ diagonals SALSA Algorithm
- PCA on $f\left(\mathbf{x}_{i}\right) \quad \Rightarrow \quad \mathbf{Q}=\mathbf{I}$
- DPCoA $\Rightarrow \mathbf{S}=\boldsymbol{\Sigma}_{\mathcal{T}}$ covariance for trees, \mathbf{Q} diagonal

Kernel PCA

Generalized PCA of Intestinal Data

$$
\mathbf{x} \in \mathbb{R}^{p}, \mathbf{S}=\boldsymbol{\Sigma}_{\mathcal{T}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T} \quad \text { PCA on } f(\mathbf{x})=\sum_{i} \lambda^{1 / 2} \tilde{x}_{(i)} \mathbf{v}_{i}
$$

PCA as Transformations of \mathbf{x}

Regular PCA: $\quad \mathbf{x} \quad \Rightarrow \quad \hat{\mathbf{x}}_{P C A}=\mathbf{A}_{P C A}^{T} \mathbf{x}$
Generalized PCA: $\quad f(\mathbf{x}) \quad \Rightarrow \quad \hat{\mathbf{x}}_{F}=\mathbf{A}_{\mathcal{G}}^{T} f(\mathbf{x})=\mathcal{A}^{T} \mathbf{x}$

Outline

Graphical Data

Graphs: Relationship among Variables
Transformation of Data
Example of PCA

Prediction

Graph Connecting Observations

Supervised Classification/Prediction

Outcome: y
Predictor variable: $\quad f(\mathbf{x}) \in \mathbb{R}^{p}$

$$
\begin{gathered}
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(\boldsymbol{\beta}^{T} f\left(\mathbf{x}_{i}\right), y_{(i)}\right)+C\|\boldsymbol{\beta}\|^{2} \\
\Leftrightarrow^{*} \\
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(\left\langle\boldsymbol{\alpha}, \mathbf{x}_{i}\right\rangle_{\mathbf{S}}, y_{(i)}\right)+C\|\boldsymbol{\alpha}\|_{\mathbf{S}}^{2}
\end{gathered}
$$

${ }^{*} \boldsymbol{\beta}=\mathbf{S}^{1 / 2} \boldsymbol{\alpha} \quad$ Implicitly assume: $\boldsymbol{\beta} \in \operatorname{span}\left\{\mathbf{v}_{\boldsymbol{i}}\right\}_{i: \lambda_{i}>0}$

SVM Decision Rule

Predicting Irradiated Yeast Cultures from Microarray Data

Rapaport et al. (2007, Figure 3)

Outline

Graphical Data

Graphs: Relationship among Variables
 Transformation of Data
 Example of PCA
 Prediction

Graph Connecting Observations

Predictions related to \mathcal{G} :

- New node, predict edges based on \mathbf{x}

Data \mathbf{X}, graph \mathcal{G}_{n} on n observations

$$
\mathbf{X}=\left(\begin{array}{ccc}
x_{1(1)} & \cdots & x_{1(p)} \\
x_{2(1)} & \cdots & x_{2(p)} \\
& \vdots & \\
x_{n(1)} & \cdots & x_{n(p)}
\end{array}\right)
$$

Predictions related to \mathcal{G} :

- New node, predict edges based on \mathbf{x}

Data X, graph \mathcal{G}_{n} on n observations
$\mathbf{X}=\left(\begin{array}{ccc}x_{1(1)} & \cdots & x_{1(p)} \\ x_{2(1)} & \cdots & x_{2(p)} \\ & \vdots & \\ x_{n(1)} & \cdots & x_{n(p)}\end{array}\right)$

$$
\mathbf{X}_{*}=\left(\begin{array}{ccc}
x_{1(1)}^{*} & \cdots & x_{1(p)}^{*} \\
x_{2(1)}^{*} & \cdots & x_{2(p)}^{*} \\
& \vdots & \\
x_{m(1)}^{*} & \cdots & x_{m(p)}^{*}
\end{array}\right)
$$

Predictions related to \mathcal{G} :

- New node, predict edges based on \mathbf{x}

Data \mathbf{X}, graph \mathcal{G}_{n} on n observations $\quad \Rightarrow \quad \mathcal{G}_{n+m}$

$$
\mathbf{X}_{*}=\left(\begin{array}{ccc}
x_{1(1)} & \cdots & x_{1(p)} \\
x_{2(1)} & \cdots & x_{2(p)} \\
\vdots & \\
x_{n(1)} & \cdots & x_{n(p)} \\
x_{1(1)}^{*} & \cdots & x_{1(p)}^{*} \\
x_{2(1)}^{*} & \cdots & x_{2(p)}^{*} \\
x_{m(1)}^{*} & \cdots & x_{m(p)}^{*}
\end{array}\right)
$$

Predictions related to \mathcal{G} :

- New node, predict edges based on \mathbf{x}
- New observation, assign to node of \mathcal{G} based on \mathbf{x}

Data X, graph \mathcal{G}_{d} on n observations
$\mathbf{X}=\left(\begin{array}{ccc}x_{1(1)} & \cdots & x_{1(p)} \\ x_{2(1)} & \cdots & x_{2(p)} \\ & \vdots & \\ x_{n(1)} & \cdots & x_{n(p)}\end{array}\right)$

Predictions related to \mathcal{G} :

- New node, predict edges based on \mathbf{x}
- New observation, assign to node of \mathcal{G} based on \mathbf{x}

Data X, graph \mathcal{G}_{d} on n observations $\quad \Rightarrow \quad$ assign to d classes
$\mathbf{X}=\left(\begin{array}{ccc}x_{1(1)} & \cdots & x_{1(p)} \\ x_{2(1)} & \cdots & x_{2(p)} \\ & \vdots & \\ x_{n(1)} & \cdots & x_{n(p)}\end{array}\right)$

Unifying the Problems

Predict New Edges:
$\mathbb{1}\{i \sim j\}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

Classify New Observations:
$\mathbb{1}\{i \in v\}=f\left(\mathbf{x}_{i}\right)$

Unifying the Problems

Predict New Edges:
$\mathbb{1}\{i \sim j\}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

Classify New Observations:
$\mathbb{1}\{i \in v\}=f\left(\mathbf{x}_{i}\right)$
\Downarrow

Instead Predict Similarities: $\quad S_{\mathcal{G}}(i, j)=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\epsilon_{i j}$

$$
=g\left(S_{x}(i, j)\right)+\epsilon_{i j}
$$

Simple fitting: $\quad \min \sum_{i, j}\left(S_{\mathcal{G}}(i, j)-c_{i j} S_{x}(i, j)\right)^{2}$

Unifying the Problems

Predict New Edges:
$\mathbb{1}\{i \sim j\}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

Classify New Observations:
$\mathbb{1}\{i \in v\}=f\left(\mathbf{x}_{i}\right)$
\Downarrow

Instead Predict Similarities: $\quad S_{\mathcal{G}}(i, j)=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\epsilon_{i j}$

$$
=g\left(S_{x}(i, j)\right)+\epsilon_{i j}
$$

Simple fitting: $\quad \min \sum_{i, j}\left(S_{\mathcal{G}}(i, j)-c_{i j} S_{x}(i, j)\right)^{2}$
Regression Model: $\mathbf{y}=\mathbf{C x}+\boldsymbol{\epsilon}$
Constraints on C (Reduced Rank Regression):

- Low rank
- Uncorrelated

Geometric Goal

Maximize similarity between clouds of data (RV-Coeff)
Transform $\mathbf{S}_{x} \rightarrow \widehat{\mathbf{S}}_{\mathcal{G}}$,

$$
\max \left\langle\mathbf{S}_{\mathcal{G}}, \widehat{\mathbf{S}}_{\mathcal{G}}\right\rangle
$$

- Gives interpretation of relation between data and graph
- Use for exploration

Regularization and Kernel Methods

- Clear $\mathbf{S}_{\mathcal{G}}, \mathbf{S}_{x}$ define kernels: Kernel CCA, PLS, RRR Yamanishi et al. (2004): yeast data
- Previous formulation: unregularized kernel RRR
- Implement trade-off between (empirically) uncorrelated features and the norm of the features
(Bach and Jordan, 2002; Rosipal and Trejo, 2001; Purdom, 2006)

Regularization and Kernel Methods

- Clear $\mathbf{S}_{\mathcal{G}}, \mathbf{S}_{x}$ define kernels: Kernel CCA, PLS, RRR Yamanishi et al. (2004): yeast data
- Previous formulation: unregularized kernel RRR
- Implement trade-off between (empirically) uncorrelated features and the norm of the features
- If $x=\mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{X} \in \mathbb{R}^{n \times p}, \quad \mathbf{K}_{X}=\mathbf{X}^{T} \mathbf{X}$

Kernel CCA/RRR $\left(\mathbf{K}_{\mathcal{G}}, \mathbf{K}_{X}\right) \quad \Leftrightarrow \quad$ Generalized PCA $(\mathbf{X}, \mathbf{Q}, \mathbf{S})$
(For appropriate regularization of Kernel CCA)

In Summary

- Computationally simple ways of using large graphs
- Automatically picks features of the data
- 'Smooths' data rather than explicitly limit analysis to graph

In Summary

- Computationally simple ways of using large graphs
- Automatically picks features of the data
- 'Smooths' data rather than explicitly limit analysis to graph
- Adjacency matrix not deal with moderate details

Directed Edges
Different Nodes

- Eigenvectors \neq subnetworks
$\Rightarrow \quad$ Kind of approximation, but not explicit

Acknowledgements

- Susan Holmes
- Relman Lab (Stanford)
- Bloom Lab (Berkeley)

References I

ВАСн, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. Journal of Machine Learning Research 3 1-48.
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science 308 1635-1638.
Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics 29 751-760.
Fouss, F., Renders, J.-M. and Saerens, M. (2003). Some relationships between Kleinberg's hubs and authorities, correspondence analysis and the Salsa algorithm. In Proceedings of the Third International Conference on Data Mining. IEEE.

References II

Purdom, E. (2006). Multivariate Kernel Methods in the Analysis of Graphical Structures. Ph.D. thesis, Stanford University.
Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E. and VERT, J.-P. (2007). Classification of microarray data using gene networks. BMC Bioinformatics 8.
Robert, P. and Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV-coefficient. Applied Statistics 25 257-265.
Rosipal, R. and Trejo, L. J. (2001). Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research 297-123.

References III

Smola, A. and Kondor, I. (2003). Kernels and regularization on graphs. In Proceedings of the Annual Conference on Computational Learning Theory (B. Schölkopf and M. Warmuth, eds.). Lecture Notes in Computer Science, Springer.
Yamanishi, Y., Vert, J.-P. and Kanehisa, M. (2004). Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20 i363-i370.

