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Talk Outline Complex Networks
in Web N.O

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models
2. Semantic Flexible Models

Distributed Searching Algorithms with Additional Local Info/Dynamics
1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics:
further parametrization, typically local,

locality of info in algorithms & dynamics.
Dynamics become especially important. 5
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The Internet iIs constantly growing and evolving giving
rise to new models and algorithmic questions. ;



However, in practice, there are discre
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A rich theory of power-law random grapﬂﬁs

has been developed [ Evolutionary, Configurational Models, &
e.g. see Rick Durrett’s 07 book |. 4



“Flexible” models|for complex networks:
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Case 1: Structural/Syntactic Flexible Model
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The networking community proposed that [Sigcomm 04, CCR 06 and Sigcomm 06],
beyond the degree sequence d1 > do > ... > dyn
models for NEtWorks ot routers snould capture

how many nodes of degree d; are connected to nodes of degree d o 6



Networking Proposition [CCR 06, Sigcomm 06]:. . | . .
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between nodes of degree df,;and dj as G. degree sequence as G.
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The Joint-Degree Matrix Realization Problem is:
Given <V.,d, D>, is there/cnstrct simple graph:
all vertices in V; have degree d(V;), and

there are d;; edges between V; and V;

(resp. d;; edges inside V}).

MINCOoSt,

Let V =[n].
Let V={Vq,...,V,} denote a partition of V

to classes of vertices of the same degree.
Lletd: V- N

denote the degrees of each class V.
Let D=(d;;) be a k x k matrix, where

d;; i1s the number of edges between V; and V;,
and d;; is the number of edges entirely in V,.

Definitions

The (well studied) Degree Sequence Realization PrQpix

Let V=[n]. Let di{ > dpr > ... > dy.

Is there/construct a simple graph on n vertices MINCOSt,
with degrees: dy >do > ... > dn. random




The Joint-Degree Matrix Realization Problem is:
Given <V.,d, D>, is there a simple graph where:

all vertices in V; have degree d(V;), and
there are d;; edges between V; and V;
(resp. d;; edges inside V;), 1 <14,j <k.

Theorem [Amanatidis, Green, M “08]:

The natural necessary conditions for an instance<V,d, D >

to have a realization are also sufficient (and have a short description).

The natural necessary conditions for an instance <V, d, D >

to have a connected realization are also sufficient (ng_known short
description).

There are polynomial time algorithms to construct
a realization and a connected realization of <V,d, D> |

or produce a certificate that such a realization does not exist.
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Theorem [Erdos-Gallai]:

Adegree sequence d1 > dp > ... > dpn IS realizable

iff the natural necessary condition holds; Zi=1d; < k(k—1) + Xj_, ,  min{k, d;}
moreover, there Is a connected realization  >'_;d; > 2 (n—1)

Iff the natural necessary condition holds:

0 0
1
1
o .
01 B .
234 . 10
[ Havel-Hakimi ] Construction:
0 Greedy: any unsatisfied vertex

12 3 IS connected with the vertices of

highest remaining degree requirements.
2.0

Connectivity, if possible,
2 attained with 2-switches .
0 Note :all 2-switches are legal . 11



Theorem, Joint Degree Matrix Realization [Amanatidis, Green, M “08]:
Let V=[n]. Then <V,d, D>
has a graphic realization if and only if:
(i) Degree Feasibility holds :
2di; + X e j2idi; = Vil -d(Vy), VI < i < k.
(ii) Matrix Feasibility holds: D is symmetric
mtive integral entries,
and di; < |Vj| - |V}, V1 <i < j <k,
while d;; < |Vi[ - (|V;] —1)/2, V1 <i < k.
Moreover, when <V,d, D> is realizable, there
is a polynomial (in n) time algorithm that pro-
duces a graphic realization of <V, d, D >.

Proof [sketch]: Sufficiency follows from the greedy
polynomial time construction algorithm
outlined next. 12

Necessity is obvious.



Balanced Degree Invariant:
The key idea of the algorithm is to maintain

balanced degrees within each degree class.

In particular, where G; is the graph after the
[-th iteration, the algorithm maintains:

max de — minde <1, . V1i<qi<k.
ma dg,(v) min dg,(v) <1, V1<i<

degree class Example Case Maintaining

degree class ]
Balanced Degree Invariant:

/ Vi
I\/IinDegGl(fz:Slc,%
add "},

Note: This may NOT be a
simple “augmenting” path.




Theorem, Joint Degree Matrix Connected Realization

[Amanatidis, Green, M “08]:
Let V =[n]. Let <V,d,D > be a realizable
instance of the degree matrix realization prob-
lem. Then, thereis a polynomial gin n) time al-
gorith that, either outputs a connected graphic
realization of <V,d,D >, or outputs a certifi-
cate that a connected graphic realization of

<V.,d, D> does not exist.

Proof [remarks]: Main Difficulty: Two connected components
We do not know of are amenable to rewiring by 2-switches,
a polynomially short only using two vertices of the same degree.

description of necessary /7 N\@ - Nererennitnn, (VBS
and sufficient conditions. T

The algorithm explores v eV,
vertices of the same degree
in different components,

IN a recursive manner.

connected
component

connected

component 14



Open Problems for Joint Degree Matrix Realization

Construct mincost and/or random realization,

Sat
ISt

Is t
Is t
wit

or connected realization.
Isfy constraints between arbitrary subsets of vertices.
here a reduction to matchings or flow or
some other well understood combinatorial problem?
nere evidence of hardness ?
nere a simple generative model for graphs
n low assortativity ? ( explanatory or other ...)

15



Talk Outline Complex Networks
in Web N.O

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models
2. Semantic Flexible Models

Distributed Searching Algorithms with Additional Local Info/Dynamics
1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics:
further parametrization, typically local,

locality of info in algorithms & dynamics.
Dynamics become especially important. oDD




Case 2: Semantic Flexible Model(s)
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RANDOM DOT PRODUCT GRAPHS

< Kratzl,Nickel,Scheinerman 05
The M Odel Gg (X n) Young,Scheinerman 07
Young,M 08

n vertices lach generated according to X|

each vertex is a vector in d-dim space
one coordinate for each attribute

d 1s fixed
X is a probability distribution in R4
X is in the positive orthant [0, 1/+/d]
1 and otherwise arbitrary

® O
° d=2
., n=very large
o scales




The Model Gg (X n)

edges are added between two vertices
with probabilities proportional
to their inner product,denoting similarity,

and inversely proportional
to a non-decreasing " sparsification” function

g=g(n)
l Q(logn) < g(n) < O(n)
very
likely d — 2
n=very large
unIikerI scales
“y

18



SUMMARY OF RESULTS

= A semi-closed formula for degree distribution

Model can generate graphs with a wide variety of densities
average degrees 2(logn) upto O(n) .

and wide varieties of degree distributions, including power-laws.

= Diameter characterization :
Determined by Erdos-Renyi for similar average density,
If all coordinates of X are in (0,1/+/d) (will say more about this).

= Positive clustering coefficient,
depending on the “distance” of the generating distribution
from the uniform distribution.

Remark: Power-laws and the small world phenomenon

are the hallmark of complex networks.
19



A Semi-closed Formula for Degree Distribution }

Let w € [0,1] be a random variable < E[X] X>
distributed as \ [EX]"

Theorem [Young, M *08] For any valid X on B, d > 1, let v be a vertex in & = Gg-"'::[}LnL Lot
0 < 4,6 < 1 besuch that {1 +4)(1 —¢) = 1. Then,

] N Ly B
- . , ; { —E'I . En I'l_E-“-1+":'.l'!|-|
P{|deg(v) — k| < 0k) > | 1 —min { (2(1 + e)e=5)" ) — _ f T
‘ (g(n)e(l —6)k)” {(14e){1 -5tk i

o ny LBk . 1 ek 214402 (+e)(1+8)tn
P(|deg(v) — k| < 6k) < min { (1 —e)e") ™ 4 (14 e T, — T T +f du
(g(n)e(l — 62)k)° (1—e}{1—d)tk

f,t; _ g(n)k
o |[E[X]][(n—-1)

Theorem ( removing error terms) [Young, M °08]

n)k
(1+0) i

n)k
(L= i

dw

P(|deg(v) — k| < cwc):/

20




Example:

Consider the one dimensional random dot product graph
with distribution Pr(z <r) <rl/@ a>1

and various densification functions.

for n .« (31 (a.wide range of degrees,
gin) = = — g(n){1+9) except for very large degrees)

P(|deg(v) — k| > 6k) > cne ({1 +0)F — (1—8)F) ket

L ——

T

10 !

Pr(deg(v) ~ k) ~ ki—2 \

1 > 1k 3 BOL Ll FULER

This is in agreement with real data.
21



Diameter Characterization

We have obtained a method of lifting results about the diameter of the Erdos-
Rényl model to G, (X, n). Specifically, using the boundedness of the support
of X, we can prove that if Erdos-Rényi model ¢ (9 (ﬁ) ._-n.) has low diame-
ter, then the diameter of Gg (X, n) is not much bigger. For this result only,

we assume that XX e (0, 1/v/d)

Suppﬂ;t of X |

Support of X

d is fixed

r ;~-‘*J'-
Fr'linite/?“:.:__:'{ X IS f|Xed

subcover . . — . ey .
o LS -_ I omnpal 1S Critical
Open ball e :
ofpradiug;'s ofradw;a.t N DI’OOf

Open .b.al_l of ;adius 1

Open b-al-l -D-f-radius 1

Remark: If X € [0, 1/+/d] the graph can become disconnecte
It is Important to obtain characterizations of connectivity as
X approaches[0, 1/v/d] .This would enhance model flexibility ”



Clustering Characterization

Theorem [Young, M°08]  For vertices, u, v, and w in G;""} (X, n),
Plu~w | u~uv,v~w) = Plu~w), with equality holding if and only if
px(E[X]) = 1. that is X is almost surely constant.

Remarks on the proof

Clustering depends on
the distance of Gg"'-:'[}{,nj from a standard Erdds-Rénvi model.

Clustering depends on "size" of cov(X).
—_— - T
cov(X) = E[XXT] -E[X]E[X]
152 symmetric positive semidefinite
may assume coordinates have covariance 0.

23



Open Problems for Random Dot Product Graphs

= Fit real data, and isolate “benchmark™ distributions X .
= Characterize connectivity (diameter and conductance)
as X approaches [0,1/Vd]

= Do/which further properties of X o

characterize further properties of G, (X,n) ?
= Evolution: X as a function of n ?

(including: two connected vertices with small similarity,

either disconnect, or increase their similarity).

» Should/can d=Ilogn ?
= Similarity functions beyond inner product (e.g. Kernel functions).
= Algorithms: navigability, information/virus propagation, etc.

24



KRONECKER GRAPHS [Faloutsos, Kleinberg,Leskovec 06]
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11111 1]1]1]imton

log n-bit vertex characterization

Another “semantic” * flexible” model, introducing parametrization.
25



STOCHASTIC KRONECKER GRAPHS

[ Faloutsos, Kleinberg, Leskovec 06]
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Several properties characterized (e.g. multinomial degree distributions,
densification, shrinking diameter, self-similarity).
Large scale data set have been fit efficiently !
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Talk Outline Complex Networks
in Web N.O

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models
2. Semantic Flexible Models

Distributed Searching Algorithms with Additional Local Info/Dynamics
1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics:

Further Parametrization, Locality of Info & Dynamics.

27



Where It all started: Klei

A)

nberg’s navigability model
B)

© © ©o O O O

~| Moral: Pa‘ametrization IS essential
In the study of complex networks

heorem [Kleinberg]:
The only value for which
the network is navigable
ST =2.

lower bound T
on delivery time
(given as log , T)

29

clustering exponent 1



Strategic Network Formation Process [Sandberg 05]:

O—C
J & vy ‘\\....
553 &8
Do &8 & &

‘.?’.‘

Q)
Seia
O0—0O0—0OC———06—0
[
all pairs of vertices v and v each node x computes :
choose a random wu-v shortest path for each node u = x

P(u)=paths through =
with endpoint «

each node z adds link to node u
with probability ~ P(u)

Experimentally, the resulting network has structure and

navigability similar to Kleinberg’s small world network.



Strategic Network Formation Process [ Green & M 08 ]
simplification of [Clauset & Moore 03]:

repeat :
simeoultaneously Experimentally,

D> each node wu is presented the resulting network
a uniformly random node u becomes navigable
> u starts navigating to v after poly logn steps
> if the navigation steps exceed L put does not have

then v adds a link to v structure similar

until no links are added to Kleinberg’s

small world network.
30



Talk Outline Complex Networks
in Web N.O

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models
2. Semantic Flexible Models

Distributed Searching Algorithms with Additional Local Info/Dynamics
1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics:
further parametrization, typically local,

locality of info in algorithms & dynamics.
Dynamics become especially important. 31




1. On the Power of Local Replication

How do networks search (propagate information) :
| Gkantidis, M, Saberi, ‘04 <05 |

. “\‘“’%ﬁfg VAV
gas

B. Long random walk

A Flooding

A

D.Short random walk with E.&éﬁe?a] ;ea rch schhérgﬁeez
local flooding (e.g.flooding with direction)

Cost = queried nodes | found information

32



1. On the Power of Local Replication ,W
o
Lo

| Gkantidis, M, Saberi, ‘04 <05 |
[M, Saberi, Tetali 05 ] D.Short random walk with
local flooding

network=random graph Equivalentto one-step local

replication of information.

Theorem (extends to power-law

random graphs):
The network can be searched

by RANDOM WALK
in O(y/n) steps.

n_nodes Proof :
of constant degree The cover time of

a random graph
/ on y/n nodes.

notice: O(n) nodes, O(n) links 33




2. On the Power of Topology Awareness via LINK Criticality

C.General search scheme
(e.g.flooding with direction)

W33/} &
S
A/ S

34



: - Via Semidefinite Programming
%;f!!&?fﬂl “Fastest Mixing Markov Chain”
%

YA :
How do social networks
2l compute link criticality ?

~\Z7

N/

Distributed, Asynchronous
Gkantsidis, Goel, Mihail, Saberi 07

35



Link Criticality via Distributed Asynchronous
Computation of Principal Eigenvector(s)[Gkantsidis,Goel,M,Saberi 07]

£ 10

: § (¢
: © ] L0
@ @ o O ;i (1)
a1 8T .
g L|J1E‘ 5 ‘
? ‘*".
o il I:I-,l,l,-@ I]‘l:l 0005 .01 L o2

Edge weight

Start with (x1,...,2n) L (1,...,1)

zi(t) + x;(t) + z;(¢)
2d

Step: For ilkedasnchrolfotshy)

\6J )=

Hardest part: Numerical Stability. 36



Talk Outline Complex Networks
in Web N.O

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models
2. Semantic Flexible Models

Distributed Searching Algorithms with Additional Local Info/Dynamics
1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics:
further parametrization, typically local,

locality of info in algorithms & dynamics.
Dynamics become especially important. 37




Topology Maintenance = Connectivity & Good Conductance

Theorem [Feder,Guetz,M,Saberi 06]:The Markov chain
corresponding to a local 2-link switch is rapidly mixing
If the degree sequence enforcgs dlaimeter at least 3,

and for some d<n/2, d<d; <d
- n —d - 39




