Models and Algorithms for Complex Networks

"with netwith parametriz atian tayping land attributes" "with categorical attributes" [C. Faloutsos MMDS08]

> Milena Mihail Georgia Tech.

> > with

Stephen Young, Gagan Goel, Giorgos Amanatidis, Bradley Green, Christos Gkantsidis, Amin Saberi,D. Bader, T. Feder, C. Papadimitriou, P. Tetali, E. Zegura

Talk Outline

Complex Networks in Web N.0

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models

2. Semantic Flexible Models

Models & Algorithms Connection : Kleinberg's Model(s) for Navigation

Distributed Searching Algorithms with Additional Local Info/Dynamics

1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics: further parametrization, typically local, locality of info in algorithms & dynamics. Dynamics become especially important.

Small-world, i.e. small diameter, high clustering coefficients.

Web N.0

scaling The Internet is constantly growing and evolving giving rise to new models and algorithmic questions. 3

However, in practice, there are discrepancies ...

A rich theory of **power-law random graphs** has been developed [Evolutionary, Configurational Models, & e.g. see Rick Durrett's '07 book]. 4

exhibit a "large" increase in the properties of generated graphs

by introducing a **'small' extension** in the **parameters** of the generating model.

Case 1: Structural/Syntactic Flexible Model

Models with power law and arbitrary degree sequences Modifications and Generalizations with additional constraints, of Erdos-Gallai / Havel-Havel degree distributions

(from random graphs, to graphs with very low entropy).

The networking community proposed that [Sigcomm 04, CCR 06 and Sigcomm 06], beyond the degree sequence $d_1 \ge d_2 \ge \ldots \ge d_n$, models for networks of routers should capture how many nodes of degree d_i are connected to nodes of degree d_i . 6

Networking Proposition [CCR 06, Sigcomm 06]:

A real highly optimized network G.

A graph with same number of links between nodes of degree d_i and d_j as G.

A random graph with same average degree as G.

A random graph with same degree sequence as G.

The Joint-Degree Matrix Realization Problem is:

Given $\langle \mathbf{V}, \mathbf{d}, D \rangle$, is there/cnstrct simple graph: all vertices in V_i have degree $\mathbf{d}(V_i)$, and there are d_{ij} edges between V_i and V_j (resp. d_{ii} edges inside V_i).

Definitions	Let $V = [n]$. Let $V = \{V_1, \dots, V_k\}$ denote a partition of V to classes of vertices of the same degree. Let $d : V \to N$ denote the degrees of each class V_i . Let $D = (d_{ij})$ be a $k \times k$ matrix, where $d \mapsto$ is the number of edges between V_i and V_i
	a_{ij} is the number of edges between v_i and v_j ,
	and d_{ii} is the number of edges entirely in V_i .

The (well studied) Degree Sequence Realization Problem is Let V = [n]. Let $d_1 \ge d_2 \ge \ldots \ge d_n$. Is there/construct a simple graph on n vertices mincost, with degrees: $d_1 \ge d_2 \ge \ldots \ge d_n$.

connecte

mincost,

random

The Joint-Degree Matrix Realization Problem is: Given $\langle \mathbf{V}, \mathbf{d}, D \rangle$, is there a simple graph where: all vertices in V_i have degree $\mathbf{d}(V_i)$, and there are d_{ij} edges between V_i and V_j (resp. d_{ii} edges inside V_i), $1 \leq i, j \leq k$.

Theorem [Amanatidis, Green, M '08]:

The natural necessary conditions for an instance $\langle \mathbf{V}, \mathbf{d}, D \rangle$ to have a realization are also sufficient (and have a short description). The natural necessary conditions for an instance $\langle \mathbf{V}, \mathbf{d}, D \rangle$ to have a connected realization are also sufficient (no known short

d<u>escription</u>).

connecte

mincost,

random

There are <u>polynomial time algorithms</u> to construct a realization and a connected realization of $\langle V, d, D \rangle$, or produce a certificate that such a realization does not exist.

Theorem [Erdos-Gallai]:

A degree sequence $d_1 \ge d_2 \ge ... \ge d_n$ is realizable iff the natural necessary condition holds: $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min\{k, d_i\}$ moreover, there is a connected realization $\sum_{i=1}^n d_i \ge 2(n-1)$ iff the natural necessary condition holds:

[Havel-Hakimi] Construction:

Greedy: any unsatisfied vertex is connected with the vertices of highest remaining degree requirements.

Connectivity, if possible, attained with 2-switches. Note :all 2-switches are legal. 11 Theorem, Joint Degree Matrix Realization [Amanatidis, Green, M '08]: Let V = [n]. Then $\langle \mathbf{V}, \mathbf{d}, D \rangle$

has a graphic realization if and only if:

(i) *Degree Feasibility* holds :

 $2d_{ii} + \sum_{j \in [k], j \neq i} d_{ij} = |V_i| \cdot \mathbf{d}(V_i), \, \forall \mathbf{1} \le i \le k.$

(ii) *Matrix Feasibility* holds: *D* is symmetric

with nonnegative integral entries,

and
$$d_{ij} \leq |V_i| \cdot |V_j|, \forall 1 \leq i < j \leq k$$
,

while $d_{ii} \leq |V_i| \cdot (|V_i| - 1)/2, \forall 1 \leq i \leq k$.

Moreover, when $\langle \mathbf{V}, \mathbf{d}, D \rangle$ is realizable, there is a polynomial (in *n*) time algorithm that pro-

duces a graphic realization of $< \mathbf{V}, \mathbf{d}, D >$.

Proof [sketch]:

Necessity is obvious.

Sufficiency follows from the **greedy** polynomial time construction algorithm outlined next.

Balanced Degree Invariant:

The key idea of the algorithm is to maintain balanced degrees within each degree class. In particular, where G_l is the graph after the

l-th iteration, the algorithm maintains:

Theorem, Joint Degree Matrix Connected Realization [Amanatidis, Green, M '08]: Let V = [n]. Let < V, d, D > be a realizable instance of the degree matrix realization prob-

lem. Then, there is a polynomial (in *n*) time algorith that, either outputs a *connected* graphic realization of $\langle \mathbf{V}, \mathbf{d}, D \rangle$, or outputs a *certificate* that a connected graphic realization of $\langle \mathbf{V}, \mathbf{d}, D \rangle$ does not exist.

Proof [remarks]:

We do not know of a polynomially short description of necessary and sufficient conditions.

The algorithm explores vertices of the same degree in different components, in a recursive manner. Main Difficulty: Two connected components are amenable to rewiring by 2-switches, only using two vertices of the <u>same</u> degree.

Open Problems for Joint Degree Matrix Realization

- Construct mincost and/or random realization, or connected realization.
- Satisfy constraints between arbitrary subsets of vertices.
- Is there a reduction to matchings or flow or some other well understood combinatorial problem?
- Is there evidence of hardness ?
- Is there a simple generative model for graphs with low assortativity ? (explanatory or other ...)

Talk Outline

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models

2. Semantic Flexible Models

Models & Algorithms Connection : Kleinberg's Model(s) for Navigation

Distributed Searching Algorithms with Additional Local Info/Dynamics

1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics: further parametrization, typically local, locality of info in algorithms & dynamics. Dynamics become especially important.

Case 2: Semantic Flexible Model(s)

Generalizations of Erdos-Renyi random graphs

FlickrFriendship
NetworkPatent Collaboration
Network (in Boston)
Network (in Boston)
Network (in Boston)Moders With semantics on nodes,
and links among nodes with semantic proximity
Vargenerated by very general probability distributions.Patent Collaboration
Network (in Boston)
Network (in Boston)National Statistical Device Stati

The Model $G_g^{\langle \cdot, \cdot \rangle}(\mathbf{X}, n)$

SUMMARY OF RESULTS

 A semi-closed formula for degree distribution
 Model can generate graphs with a wide variety of densities average degrees Ω(log n) up to O(n) .
 and wide varieties of degree distributions, including power-laws.

• Diameter characterization :

Determined by Erdos-Renyi for similar average density, if all coordinates of **X** are in $(0, 1/\sqrt{d})$ (will say more about this).

 Positive clustering coefficient, depending on the "distance" of the generating distribution from the uniform distribution.

Remark: Power-laws and the small world phenomenon are the hallmark of complex networks.

A Semi-closed Formula for Degree Distribution Let $\omega \in [0, 1]$ be a random variable $\left| \left\langle \frac{\mathbb{E}[X]}{\|\mathbb{E}[X]\|}, X \right\rangle$ distributed as $\left| \left\langle \frac{\mathbb{E}[X]}{\|\mathbb{E}[X]\|}, X \right\rangle$

Theorem [Young, M '08] For any valid X on \mathbb{R}^d , $d \ge 1$, let v be a vertex in $G = G_g^{\langle \cdot, \cdot \rangle}(\mathbf{X}, n)$, Let $0 < \delta, \epsilon < 1$ be such that $(1 + \delta)(1 - \epsilon) > 1$. Then,

$$\begin{split} \mathbb{P}(|\deg(v) - k| \le \delta k) \le \min \left\{ ((1 - \epsilon)e^{\epsilon})^{(1 - \delta)k} + ((1 + \epsilon)e^{-\epsilon})^{(1 + \delta)k}, \frac{2(1 + \delta^2)n}{(g(n)\epsilon(1 - \delta^2)k)^2} \right\} + \int_{(1 - \epsilon)(1 - \delta)t_n^k}^{(1 + \epsilon)(1 + \delta)t_n^k} d\omega \\ \mathbb{P}(|\deg(v) - k| \le \delta k) \ge \left(1 - \min \left\{ \left(2(1 + \epsilon)e^{-\epsilon} \right)^{(1 - \delta)k}, \frac{2n}{(g(n)\epsilon(1 - \delta)k)^2} \right\} \right) \int_{(1 + \epsilon)(1 - \delta)t_n^k}^{(1 - \epsilon)(1 + \delta)t_n^k} d\omega \\ t_n^k = \frac{g(n)k}{\|\mathbb{E}[\mathbf{X}]\|(n - 1)} \end{split}$$

Theorem (removing error terms) [Young, M '08]

$$\mathbf{P}(|\deg(v) - k| \le \delta k) \simeq \int_{\substack{(1-\delta) \frac{g(n)k}{||\mathbf{E}[\mathbf{X}]||n}}}^{\substack{(1+\delta) \frac{g(n)k}{||\mathbf{E}[\mathbf{X}]||n}}} d\omega$$

Example:

Consider the one dimensional random dot product graph with distribution $\Pr(x \le r) \le r^{1/\alpha}$ $\alpha \ge 1$ and various densification functions.

This is in agreement with real data.

Diameter Characterization

We have obtained a method of lifting results about the diameter of the Erdős-Rényí model to $G_g^{\langle\cdot,\cdot\rangle}(\mathbf{X},n)$. Specifically, using the boundedness of the support of \mathbf{X} , we can prove that if Erdős-Rényí model $\mathcal{G}\left(\Theta\left(\frac{1}{g(n)}\right),n\right)$ has low diameter, then the diameter of $G_g^{\langle\cdot,\cdot\rangle}(\mathbf{X},n)$ is not much bigger. For this result only, we assume that $\mathbf{X} \in (0, 1/\sqrt{d})$

Remark: If $\mathbf{X} \in [0, 1/\sqrt{d}]$ the graph can become disconnected It is important to obtain characterizations of connectivity as \mathbf{X} approaches $[0, 1/\sqrt{d}]$. This would enhance model flexibility

Clustering Characterization

Theorem [Young, M '08] For vertices, u, v, and w in $G_g^{\langle \cdot, \cdot \rangle}(\mathbf{X}, n)$, $\mathbb{P}(u \sim w \mid u \sim v, v \sim w) \geq \mathbb{P}(u \sim w)$, with equality holding if and only if $\mu_{\mathbf{X}}(\mathbb{E}[\mathbf{X}]) = 1$, that is \mathbf{X} is almost surely constant.

Remarks on the proof

Clustering depends on the distance of $G_g^{\langle\cdot,\cdot\rangle}(\mathbf{X},n)$ from a standard Erdős-Rényí model.

Clustering depends on "size" of cov(X).

 $\operatorname{cov}(\mathbf{X}) = \mathbb{E}\left[\mathbf{X}\mathbf{X}^{T}\right] - \mathbb{E}\left[\mathbf{X}\right]\mathbb{E}\left[\mathbf{X}\right]^{T}$

is symmetric positive semidefinite may assume coordinates have covariance 0.

Open Problems for Random Dot Product Graphs

- Fit real data, and isolate "benchmark" distributions \mathbf{X} .
- Characterize connectivity (diameter and conductance) as X approaches $[0, 1/\sqrt{d}]$.
- Do/which further properties of X characterize further properties of $G_g^{\langle\cdot,\cdot\rangle}(\mathbf{X},n)$?
- Evolution: X as a function of n ?

 (including: two connected vertices with small similarity, either disconnect, or increase their similarity).
- Should/can $d = \log n$?
- Similarity functions beyond inner product (e.g. Kernel functions).
- Algorithms: navigability, information/virus propagation, etc.

KRONECKER GRAPHS [Faloutsos, Kleinberg,Leskovec 06]

log *n*-bit vertex characterization

Another "semantic" "flexible" model, introducing parametrization.

STOCHASTIC KRONECKER GRAPHS

[Faloutsos, Kleinberg, Leskovec 06]

aaa	aab	aba	abb	baa	bab	bba	bbb
aab	aac	abb	abc	bab	bac	bbb	bbc
aba	abb	aca	acb	bba	bbb	bca	bcb
abb	abc	acd	acc	bbb	b bbc	bcd	bcc
baa	bab	bba	bbb	caa	cab	cba	cbb
bab	bac	bbb	bbc	cab	cac	cbb	cbc
bba	bbb	b bca	bcb	cba	cbb	cca	ccb
bbb	bbc	bcd	bcc	cbb	cbc	ccd	ccc

b	aa	ab	ba	bb
c	ab	ac	bb	bc
	ba	bb	ca	cb
	bb	bc	cd	cc

a

h

 $0 \leq \mathbf{a}, \mathbf{b}, \mathbf{c} \leq 1$

Several properties characterized (e.g. multinomial degree distributions, densification, shrinking diameter, self-similarity). Large scale data set have been fit efficiently ! 26 Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models

2. Semantic Flexible Models

Models & Algorithms Connection : Kleinberg's Model(s) for Navigation

Distributed Searching Algorithms with Additional Local Info/Dynamics

1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics: Further Parametrization, Locality of Info & Dynamics. Where it all started: Kleinberg's navigability model

Strategic Network Formation Process [Sandberg 05]:

all pairs of vertices u and v choose a random u-v shortest path

each node x computes : for each node $u \neq x$ P(u) =paths through xwith endpoint u

each node x adds link to node u with probability $\simeq P(u)$

Experimentally, the resulting network has structure and navigability similar to Kleinberg's small world network.

Strategic Network Formation Process [Green & M '08] simplification of [Clauset & Moore 03]:

repeat simeoultaneously
each node u is presented a uniformly random node u
u starts navigating to v
if the navigation steps exceed L then u adds a link to v until no links are added

Experimentally, the resulting network becomes navigable after poly log *n* steps but does not have structure similar to Kleinberg's small world network. Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models

2. Semantic Flexible Models

Models & Algorithms Connection : Kleinberg's Model(s) for Navigation

Distributed Searching Algorithms with Additional Local Info/Dynamics

1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics: further parametrization, typically local, locality of info in algorithms & dynamics. Dynamics become especially important.

1. On the Power of Local Replication

How do networks **search** (propagate information) :

A. Flooding

[Gkantidis, M, Saberi, '04 '05]

B. Long random walk

D. Short random walk with local flooding

(e.g. flooding with direction)

Cost = queried nodes / found information

1. On the Power of Local Replication

[Gkantidis, M, Saberi , '04 '05] [M, Saberi , Tetali '05]

2. On the Power of Topology Awareness via Link Criticality

Link Criticality via Distributed Asynchronous Computation of Principal Eigenvector(S)[Gkantsidis,Goel,M,Saberi 07]

Step: For hild loop desynchrotrotrolly)
$$\frac{x_i(t) + x_j(t) + x_j(t)}{\sum_{i=1}^{n} 2d}$$

Hardest part: Numerical Stability.

Flexible (further parametrized) Models

1. Structural/Syntactic Flexible Models

2. Semantic Flexible Models

Models & Algorithms Connection : Kleinberg's Model(s) for Navigation

Distributed Searching Algorithms with Additional Local Info/Dynamics

1. On the Power of Local Replication

2. On the Power of Topology Awareness via Link Criticality

Conclusion : Web N.0 Model & Algorithm characteristics: further parametrization, typically local, locality of info in algorithms & dynamics. Dynamics become especially important.

Topology Maintenance = Connectivity & Good Conductance

Theorem [Feder,Guetz,M,Saberi 06]:The Markov chain corresponding to a local 2-link switch is rapidly mixing if the degree sequence enforces diameter at least 3, and for some $d \le n/2$, $\frac{d+1}{n-d}d \le d_i \le d$.