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A segment of Chromosome 7 of two 
random individuals compared

2200 base pairs
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Introduction

• Single Nucleotide Polymorphism (SNP)
…ACAA…AGTCT….TAGACG…
…ACCA…AGACT….TAAACG…

– Mostly SNPs are biallelic
– About 10 million “common” SNPs with minor 

allele frequencies > 1%
– Cover the entire human genomes and 

Commonly used markers in genetics.
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Fine Mapping of Disease Genes
• Genetic Disease

– Genetic variants affect one’s susceptibility to certain disease
• Map genes related with disease

– Association method using unrelated individuals is very powerful!

Case1:
Case2:
Case3:
Case4:
Control1:
Control2:
Control3:
Control4:

Two disease mutations. They may interact to increase disease susceptibility
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Problem
• Given genotypes at multiple loci for both cases and 

controls, find most likely positions where a disease-related 
mutation may have occurred
– Complex Disease:

• Multiple mutations, low risks (1.2~1.3)
• Espistasis, environmental exposure, individual parameters

– Epistasis (multi-locus interaction): 
• Alleles at one locus “affect” the behavior of alleles at other loci
• Examples: breast cancer (Ritchie et al. 2001)

post-PTCA stenosis (Zee et al. 2002)
essential hypertension (Williams et al. 2004)
atrial fibrillation (Tsai et al. 2004)
type 2 diabetes (Cho et al. 2004)
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Detecting Interactions among unlinked markers
• Generalizing/simplifying existing models to handle 

genome-wide association study (with unlinked markers)
– Diseased individuals may form distinct “haplotype patterns”

among the disease-related markers.
– Our Bayesian model attempts to infer such patterns by 

contrasting with the control individuals.

• Simulation Studies (haplotype types): 
– (a) 1000 cases, 1000 controls; 1000 candidate markers; 3 interacting 

markers; ~40% phenocopies

– (b) 200 cases, 200 controls; 100 candidate markers; 6 interacting 
markers; ~60% phenocopies. A total of 26=64 haplotype patterns

21121221Risk
111110101100011010001000Pattern

Assigned risk=5 to six patterns and risk=7.5 to one pattern 
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Methods for Detecting Epistasis
• Parametric modeling:

- too many parameters, no sufficient information
• Non-parametric modeling: 

– Machine learning: complicated, work for small datasets
– CART: Classification and Regression Trees (Breiman et al. 1984)
– MARS: Multivariate Adaptive Regression Splines (Friedman 1991)
– CPM: Combinatorial Partitioning Method (Nelson et al. 2001)
– RPM: Restricted Partitioning Method (Culverhouse et al. 2004)
– MDR: Multifactor Dimension Reduction (Ritchie et al. 2001)
– Monte Carlo Logic Regression (Kooperberg and Ruczinski, 2005)
– BGTA: Backward Genotype-Trait Association (Lo et al. 2005)
– and More…

- computationally very expensive!
- over-fitting, sensitive to test data and new data
- multiple testing issue: False Discovery Rate (Benjamini, Hochberg 

1995; Storey, 2002)
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General: Regression and Classification

Ind 1

Ind 2

Ind N

M

Responses
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Y2

YN

M

x11, x12, …, x1p

x21, x22, …, x2p

xN1, xN2, …, xNP
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How to model this?

Covariates
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A digression: Naïve Bayes Classifier
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Our approach: one step beyond NB
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Group 2
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Our Approach: Beyond NB
• Partition L markers into three groups

– Group 1: l1 markers have marginal effects only
• Genotype frequencies are different between cases and controls 

– Group 2: l2 markers have epistasis effect
• Genotypes of markers are correlated, consider a vector of 

genotypes with unknown frequencies 
• Different from multiplication of single marker frequencies

– Group 0: L- l1 - l2 markers have no association
• Genotype frequencies are the same between cases and controls
• 1st-order Markov chain to account for Linkage Disequilibrium

1
dG

2
dG

0
dG

21 lf fρ = × ×L

{ } 21...3lρ
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Another graphical Illustration
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Generalization

• Modeling the covariates

( | 1) ( | ) ( | 1)G G GP Y P I P I Y dI= = =∫X X

G is a vector of indicators, taking values in {0,1,2}
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For cases:

For controls:
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Probabilities of a grouping I
• Group 1:

– njk: number of genotype k at marker j in group 1

• Group 2:

– nk: number of genotype vector k at markers in group 2

• Group 0:

– mjk: number of genotype k at marker j in group 0 and controls
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Markov Chain Monte Carlo 
Sampling

• Joint Likelihood: 

– : multinomial prior for the number of markers in each group

• Randomly assign markers to group 0, 1 or 2

• Update the marker membership and accept the change according 
to the Metropolis-Hastings Ratio
– A quarter million iterations takes 3 minutes on P4-1.6GHz PC

• The output is a sample of markers from the posterior distribution
– assess the significance of disease association based on the posterior 

density of markers in group 1 and 2

1 2 0( , , ) ( | ) ( | ) ( , | ) ( )d u d d d uP G G I P G I P G I P G G I P I=

( )P I
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Simulation

• Model 1: two markers, marginal effects
• Model 2: a pair of interacting markers
• Model 3: threshold model
• Model 4: 3-interacting loci
• Model 5: two pairs of interacting loci
• Model 6: a 6-way interaction
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Results
• Compare to and step-wise logistic regression and Chi-square

B: The full Bayesian model;  S: Step-wise B-stat 
L: Step-wise logistic C: Chi-square test

•• 1,000 markers in N 1,000 markers in N 
cases and N controls, cases and N controls, 
where N = 1,000 (black where N = 1,000 (black 
bar) or 2,000 (grey bar)bar) or 2,000 (grey bar)

•• Power is averaged over Power is averaged over 
50 tests50 tests

•• Type I error rate is at Type I error rate is at 
0.1 with multiple 0.1 with multiple 
correctioncorrection

18
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Compare to Other Methods
• MDR (Ritchie et al. 2001)
• Logic Regression (Kooperberg and Ruczinski 2005)
• BGTA (Zheng and Lo 2006)
• Chi-square (a single-marker approach)

40 markers in 
400 cases and 
400 controls

3-way interaction
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Impact of MAF discrepancy
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Analyzing the whole-genome AMD data

• From J. Hoh’s group (Klein et al. 2005)
• 116,204 SNP markers typed for 96 cases 

and 50 controls
• After filtering, 96,932 SNPs left for analysis
• We found the two markers reported 

(marginally significant), but no interactions
• We did further simulations using this data 

set

22

Posterior probabilities prior=10-3
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MCMC Convergence

P=0.001, no annealing

AMD Data, 100K SNPs

24
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Posterior  for a simulated case
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Simulating AMD-like data
• 500 cases and 500 controls, 100K SNPs
• With genotype frequencies and LD structures similar to the 

AMD data
• Insert interactions based on Models 2 & 4
• Both BEAM and Logistic regression runs about 5 hrs

Publication: Zhang and Liu (2007), Nature Genetics, 39(9),  1167-73. 
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Augmented Naïve Bayes
Classifier

Basic setting for the classification problem:
Y: class label (1,2,…,K)
X: covariates (1,2,…,m)

Discrete valued

Difficulties
Large number of covariates

Redundancy and colinearity would affect most classifiers
Variable selection is necessary

Different classes have different associated covariates.
Methods that select one group of variables for all classes 
would work poorly

28

Naïve Bayes model

X1 X2 X3 Xm

Y
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Tree-Augmented Naïve Bayes

X1

X2

X3

Y

X4 X6

X5

(Pearl 1988; Friedman 1997)

TAN
(tree-augmented
naïve Bayes)

30

Augmented Naïve Bayes

X11 X12 X13

Y

X21

X22

X23

X01 X02

Group 0

Group 1

Group 2
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Classification

Different classes are indicated by I’s
Sample I from posterior distribution
Calculate posterior probability ratio for 
each class k and put sample into the 
class with the highest ratio.
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Simulation study

5 classes, p=(0.1, 0.1, 0.3, 0.2, 0.3)
N=2000 samples
m=200 covariates
Each class is associated with 5 
covariates (1 overlap, total 24)

Multinomial distributed with parameters 
randomly sampled from a Dirichlet
distribution
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Simulation study

Naive Bayes: 49.1% (5-fold CV)
Random forest: 47.95% (5-fold CV)
CART: 55.2% (no CV)
TAN: 55.65% (5-fold CV)

Our method: 72% (5-fold CV)
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Simulation study

22 of the 24 truly associated covariates 
have the highest posterior probability 
of selection in Group 1

Some covariates are selected in Group 
2 too. However, all of them are 
associated with other classes.
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Some other real data

91.6%92%92.2%91.2%Soybean

81.1%

94%

73.3%

94.7%

C4.5

84.1%83.3%81.5%Heart

94%94%93.3%Iris

83.5%81.8%82.8%Cleveland

97.4%96.9%97.4%Breast

ANBTANNB
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Another Example: HIV-1Drug

• Protease Inhibitors (PIs) target HIV-1 
protease enzyme which is responsible for 
the posttranslational processing of the viral 
gag- and gag-pol-encoded poly proteins to 
yield the structural proteins and enzymes 
of the virus. 
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Structural model of HIV-1 protease homodimer labeled with protease inhibitor 
resistance mutations. 
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How to detect drug resistance Mutations

• Protease sequences from treated patients (949 
cases)

VVTIRIGGQLKEALLDTGAD
IVTIRIGGQLKEALLDTGAD
RVTIRIGGQLREALLDTGAD

• Sequences from untreated patients (4146 
controls)

LVTIRIGGQLREALLDTGAD
IVTIRIGGQLKEALLDTGAD
LVTIRIGGQLKEALLDTGAD

Which ones contributes to drug resistance?
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Drug resistance mutations

• The IAS-USA Drug Resistance Mutations 
list in HIV-1 updated in Fall 2006

• For IDV, mutations on the list are
10, 20, 24, 32, 36, 46, 54, 71, 73, 77, 82, 84, 

90
• The ones we detect
10, 24, 32, 46, 54, 71, 73, 82, 90

40

Posterior plots
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Interactions
• What is known:
The occurrence of changes at L10, L24, 

M46, I54, A71, V82, I84, L90 was highly 
significantly correlated with phenotypic 
resistance. 

Minor mutations influence drug resistance 
only in combination with other mutations.

73 + 90, 32+47, 84+90, 48+54+82, 88+90, 
Our results are consistent with above.

42

Part  II

Themes discovery with 
generalized dictionary model
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Example: market basket
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Generalized dictionary model:
from sequences to combinations

• A set of basic “elements”
• A theme dictionary
• A sequence is generated by drawing themes 

independently with theme-specific probabilities  

1 1{ , , },   where each .nα α α= ⊂KD E
1{ , , }Kω ω= KE

Example:
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Application 
text mining in The Stone Story

108,296 sentences and 4,502
Chinese characters are involved

Mean length of sentences is 6.72

46

Application II (cont.)
text mining in The Stone Story

(4937 themes found)
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