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Introduction

» Single Nucleotide Polymorphism (SNP)
...AC A...AG CT...TA ACG...
..AC A..AG CT....TA ACG...

— Mostly SNPs are biallelic

— About 10 million “common” SNPs with minor
allele frequencies > 1%

— Cover the entire human genomes and
Commonly used markers in genetics.

Fine Mapping of Disease Genes

* Genetic Disease
— Genetic variants affect one’s susceptibility to certain disease

* Map genes related with disease
— Association method using unrelated individuals is very powerful!

Casel:
Case2:
Case3:
Case4:
Controll:
Control2:
Control3:
Control4:

Two disease mutations. They may interact to increase disease susceptibility
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Problem

* Given genotypes at multiple loci for both cases and
controls, find most likely positions where a disease-related
mutation may have occurred

— Complex Disease:
e Multiple mutations, low risks (1.2~1.3)
 Espistasis, environmental exposure, individual parameters
— Epistasis (multi-locus interaction):
« Alleles at one locus “affect” the behavior of alleles at other loci
 Examples: breast cancer (Ritchie et al. 2001)
post-PTCA stenosis (Zee et al. 2002)
essential hypertension (Williams et al. 2004)
atrial fibrillation (Tsai et al. 2004)
type 2 diabetes (Cho et al. 2004)

Detecting Interactions among unlinked markers

» Generalizing/simplifying existing models to handle
genome-wide association study (with unlinked markers)

— Diseased individuals may form distinct “haplotype patterns”
among the disease-related markers.

— Our Bayesian model attempts to infer such patterns by
contrasting with the control individuals.
» Simulation Studies (haplotype types):

— (@) 1000 cases, 1000 controls; 1000 candidate markers; 3 interacting
markers; ~40% phenocopies

Pattern 000 001 010 011 100 101 110 111
Risk 1 2 A 1 2 1 1 2

— (b) 200 cases, 200 controls; 100 candidate markers; 6 interacting
markers; ~60% phenocopies. A total of 26=64 haplotype patterns

Assigned risk=>5 to six patterns and risk=7.5 to one pattern




Methods for Detecting Epistasis

Parametric modeling:

- too many parameters, no sufficient information

Non-parametric modeling:

— Machine learning: complicated, work for small datasets
CART: Classification and Regression Trees (Breiman et al. 1984)
MARS: Multivariate Adaptive Regression Splines (Friedman 1991)
CPM: Combinatorial Partitioning Method (Nelson et al. 2001)
RPM: Restricted Partitioning Method (Culverhouse et al. 2004)
MDR: Multifactor Dimension Reduction (Ritchie et al. 2001)
Monte Carlo Logic Regression (Kooperberg and Ruczinski, 2005)
BGTA: Backward Genotype-Trait Association (Lo et al. 2005)
and More...

- computationally very expensive!

- over-fitting, sensitive to test data and new data

- multiple testing issue: False Discovery Rate (Benjamini, Hochberg
1995; Storey, 2002)
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General: Regression and Classification

Covariates Responses

Xll’ Xlz, s

X21, X22, e

P(Y | X)=P(X|Y)P(Y)/P(X)

How to model this?




A digression: Naive Bayes Classifier

oc P(Y)Hf:lp(xj 1Y)
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Our approach: one step beyond NB




Our Approach: Beyond NB

« Partition L markers into three groups

— Group 1: I, markers have marginal effects only
Gld » Genotype frequencies are different between cases and controls

— Group 2: I, markers have epistasis effect

GY = Genotypes of markers are correlated, consider a vector of
genotypes with unknown frequencies {p}, .

« Different from multiplication of single marker frequencies
p=fxxf,
— Group 0: L- I; - I, markers have no association
GY -+ Genotype frequencies are the same between cases and controls
* 1st-order Markov chain to account for Linkage Disequilibrium

Another graphical lllustration

Markers: 1, 2, 3, ...k

Cases

Controls
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Generalization

* Modeling the covariates

For cases:
POX|Y =1) = [P(X|15)P(I¢ |Y =1)dl,

G is a vector of indicators, taking values in {0,1,2}

For controls:
p
P(X|Y=0)=]P(X;|Y =0)
j=1

Probabilities of a grouping I

« Group1:  P(G|6;)P(®])= HHP(Q.,I@)“)P(@“) HH(H )™ P(6Y)

i=1 j=1 j=1 k=1

— n: number of genotype k at marker j in group 1

Integrate : o 1T F(njﬁakl (o)) 1
out G)f: PG = H{{H () JF(N +\a\)f

+ Group 2: o [& T8 T8
P(Gz)‘{ﬂ r(B) JTIN+15D

— n,: number of genotype vector k at markers in group 2

[JH”"“MMMI
\[ T(ay) Jr(imijaDJ

— my: number of genotype k at marker j in group 0 and controls

e Group O: P(G!,GY) = H




Markov Chain Monte Carlo
Sampling

Joint Likelihood: P(GY,G", 1) =P(G' | 1)P(G! | 1)P(G¢,G" | 1)P(1)
—P(I) : multinomial prior for the number of markers in each group
Randomly assign markers to group 0, 1 or 2

Update the marker membership and accept the change according
to the Metropolis-Hastings Ratio

— A quarter million iterations takes 3 minutes on P4-1.6GHz PC

The output is a sample of markers from the posterior distribution

— assess the significance of disease association based on the posterior
density of markers in group 1 and 2

Simulation

Model 1: two markers, marginal effects
Model 2: a pair of interacting markers
Model 3: threshold model

Model 4: 3-interacting loci

Model 5: two pairs of interacting loci
Model 6: a 6-way interaction




Results

Compare to and step-wise logistic regression and Chi-square

B: The full Bayesian
L: Step-wise logistic

model;

S: Step-wise B-stat

C: Chi-square test

Model 1 (h =03, =0.7)

Model 1 (A =0.3, r*=1.0)
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Compare to Other Methods

MDR (Ritchie et al. 2001)

Logic Regression (Kooperberg and Ruczinski 2005)
BGTA (Zheng and Lo 2006)

Chi-square (a single-marker approach)

S

40 markers in
400 cases and
400 controls
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3-way interaction
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Impact of MAF discrepancy
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Figure 2 Impact of MAF discrepancy and LD on the powsrs of EEAM (B},
the stepwise B-stat (5), the stepwise logistic regression (L) and the 2-d.f. <
test (C). Tha comparison is based on modeal 2, whare the allele fregquancies
of the second disease locus are unmatched by that of the associated marker.
The marginal effect size per disease locws is 0.5, Under each setting, the
power is cakulated from 50 data sets contaiming 1,000 markers genotypad
from 1,000 cases and 1,000 controls. The power is the proportion of 500
data sets in which all associated markers are identified at a significance
threshold of 0.1 after Bonfearroni comaction.

w.nature.com/naturegenstics
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Analyzing the whole-genome AMD data

From J. Hoh'’s group (Klein et al. 2005)

116,204 SNP markers typed for 96 cases
and 50 controls

After filtering, 96,932 SNPs left for analysis

We found the two markers reported
(marginally significant), but no interactions

» We did further simulations using this data

set

Posterior probabilities prior=10-3

Posterior Probability
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Posterior for a simulated case

1.0

Prior: pl=p2=1/3 . Prior: pl=p2=1/300

0.8
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Simulating AMD-like data

500 cases and 500 controls, 100K SNPs

With genotype frequencies and LD structures similar to the
AMD data

Insert interactions based on Models 2 & 4
Both BEAM and Logistic regression runs about 5 hrs

Model 2 Model 4

HDD

B s L C
W =3 O x=2 [ x=1
(b)

Publication: Zhang and Liu (2007), Nature Genetics, 39(9), 1167-73.
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Augmented Naive Bayes

i Classifier

= Basic setting for the classification problem:
= Y: class label (1,2,...,K)
= X: covariates (1,2,...,m)
= Discrete valued
= Difficulties

= Large number of covariates
= Redundancy and colinearity would affect most classifiers
= Variable selection is necessary
= Different classes have different associated covariates.

= Methods that select one group of variables for all classes
would work poorly
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i Naive Bayes model

PO I, POGIY)
P(Xla"'aXm)

P(Y|X17 . aXm) ==

28
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* Tree-Augmented Naive Bayes

TAN
(tree-augmented
naive Bayes)

(Pearl 1988; Friedman 1997)
29

i Augmented Naive Bayes

Group 2

30
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i Classification

= Different classes are indicated by I's
= Sample | from posterior distribution

= Calculate posterior probability ratio for
each class k and put sample into the
class with the highest ratio.

P(Yiest = K[ Xpest; X, y) _ P(Viest = KIX, y) P(Kpest|Yiest =k, X, y)
P(Y}f‘-‘if # k|Xfe.a'hX_-y) P(“?.‘s‘f 1+— Ji‘|}(}") p(xfﬁ.‘i”},{e'ﬁf 7‘4: k-. X\ .Y)
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i Simulation study

= 5 classes, p=(0.1, 0.1, 0.3, 0.2, 0.3)
= N=2000 samples
= m=200 covariates

= Each class is associated with 5
covariates (1 overlap, total 24)

= Multinomial distributed with parameters
randomly sampled from a Dirichlet
distribution

32
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i Simulation study

= Naive Bayes: 49.1% (5-fold CV)

= Random forest: 47.95% (5-fold CV)
= CART: 55.2% (no CV)

= TAN: 55.65% (5-fold CV)

= Our method: 72% (5-fold CV)

33

i Simulation study

» 22 of the 24 truly associated covariates
have the highest posterior probability
of selection in Group 1

= Some covariates are selected in Group
2 too. However, all of them are
associated with other classes.

34
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i Some other real data

NB TAN C4.5 ANB
Breast 97.4% 96.9% 94.7% 97.4%
Cleveland |82.8% 81.8% 73.3% 83.5%
Iris 93.3% 94% 94% 94%
Heart 81.5% 83.3% 81.1% 84.1%
Soybean 91.2% 92.2% 92% 91.6%0
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Another Example: HIV-1Drug

» Protease Inhibitors (PIs) target HIV-1
protease enzyme which is responsible for
the posttranslational processing of the viral
gag- and gag-pol-encoded poly proteins to
yield the structural proteins and enzymes
of the virus.
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Structural model of HIV-1 protease homodimer labeled with protease inhibitor
resistance mutations.

How to detect drug resistance Mutations

» Protease sequences from treated patients (949

cases)
VTIRIGGQL EALLDTGAD

VTIRIGGQL EALLDTGAD
VTIRIGGQL EALLDTGAD

» Sequences from untreated patients (4146
controls)
VTIRIGGQL EALLDTGAD
VTIRIGGQL EALLDTGAD
VTIRIGGQL EALLDTGAD

Which ones contributes to drug resistance?
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Drug resistance mutations

* The IAS-USA Drug Resistance Mutations
list in HIV-1 updated in Fall 2006

» For IDV, mutations on the list are

10, 20, 24, 32, 36, 46, 54, 71, /3, 77, 82, 84,
90

 The ones we detect
10, 24, 32, 46, 54, 71, 73, 82, 90

Posterior plots
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Marke i
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Interactions

 What is known:

The occurrence of changes at L10, L24,
M46, 154, A71, V82, 184, L90 was highly
significantly correlated with phenotypic
resistance.

Minor mutations influence drug resistance
only in combination with other mutations.

73 + 90, 32+47, 84+90, 48+54+82, 88+90,
Our results are consistent with above.

Part |l

Themes discovery with
generalized dictionary model
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Example: market basket

e Analyze tables of transactions

Customer | Basket

Chips, Salsa, Cookies, Crackers, Coke, Beer

Lettuce, Spinach, Oranges, Celery, Apples,
Grapes

Chips, Salsa, Frozen Pizza, Frozen Cake
Lettuce, Spinach, Milk, Butter

e Which items are frequently purchased together by customers?

Generalized dictionary model:
from sequences to combinations

» A set of basic “elements” E={®,,..., o}
« Atheme dictionary® ={«,,...,a,}, where each ¢, C E.

» A sequence is generated by drawing themes
independently with theme-specific probabilities
Example:

1 0 0 0 1 1

p  [aB][co][4][B][c][] 5={AB,C,D}.

Probability pas peo pa pe pe o

Under this model, the likelihood function of sentence S = {a, - -, g, } is

P(slp) = T pax TT (1=pe)= T 725 x TL (1= pa).
3 *  agD

acs aeD/s acs




Application

text mining in The Stone Story

H—IAl

P AR L R

BT R A AR 7
iR =R (EI R
(AP

[R5 Py ik — T 4 4] 2 )
R B
DRt
I T S TAE DRI ¢}

e 108,296 sentences and 4,502
Chinese characters are involved

e Mean length of sentences is 6.72

Application Il (cont.) (4937 themes found)
text mining in The Stone Story

— Table 7. Some meaningful themes found by the dictionary model

Group [ Group 11 Group ITT
Relationships among characters Important places Important characters
EEEE B B REE e £E EH#E HE
EERER B B BEEs TR RN KB R
TG B HBILK AR T OANE
AFERER B BB FrE REE M—F  EH
HUR 1) B BT ER 2 R wls AR M
EESE 0 ES:85 1 TG HEH LR k&
Nl R ANt MEREX] T A
pisdir ey ] PUHEER, Fhsl kg —ENE R
ANFRERE NEEY KR ARE ZHE  Fif
MNERFKE AT R HrIEA AR TEB FHE
HHBER ERmEH fh = KARE BIEF
Sy Si FRHRY 7 RIS M ER
REEH ANEEE Rk He KA M
FIkBREL NFEH B s Ehde W= wmE
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