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What is Counting? Why Should We Care?

Counting is just counting! Given D items, x1, x2, ..., xD , we can count

• The sum
∑D

i=1 xi. The number of non-zeros,
∑D

i=1 1xi 6=0

• The αth moment F(α) =
∑D

i=1 xα
i

F(1) =the sum, F(2) = the power/energy, F(0) = number of non-zeros.

• The future fortune,
∑D

i=1 x1±∆
i , ∆ = interest/decay rate (usually small)

• The entropy moment
∑D

i=1 xi log xi and entropy
∑D

i=1
xi

F(1)
log xi

F(1)

• The Tsallis Entropy
1−F(α)/F α

(1)

α−1 The Rényi Entropy 1
1−α log

F(α)

F α
(1)
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Isn’t Counting a Simple (Trivial) Task?

Partially True!, if data are static. However

Real-world data are in general Massive and Dynamic —— Data Streams

• Databases in Amazon, Ebay, Walmart, and search engines

• Internet/telephone traffic, high-way traffic

• Finance (stock) data

• ...

For example, the Turnstile data stream model for an online bookstore
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t=1            arriving stream  =  (3,  10  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0 0

t=0

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 010

t=2            arriving stream  =  (1,  5  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0

t=3            arriving stream  =  (3,  −8  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0

user  3  ordered 10 books

user 1 ordered 5 books

user 3 cancelled 8 books

5 2

5

10
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Turnstile Data Stream Model

At time t, an incoming element : at = (it, It)

it ∈ [1, D] index, It: increment/decrement.

Updating rule : At[it] = At−1[it] + It

Goal : Count F(α) =
∑D

i=1 At[i]
α
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Counting: Trivial if α = 1, but Non-trivial in General

Goal : Count F(α) =
∑D

i=1 At[i]
α, where At[it] = At−1[it] + It .

When α 6= 1, counting F(α) exactly requires D counters. (but D can be 264)

When α = 1, however, counting the sum is trivial, using a simple counter.

F(1) =
D
∑

i=1

At[i] =
t
∑

s=1

Is,
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The Intuition for α ≈ 1

There might exist an intelligent counting system which works like a simple counter

when α is close 1; and its complexity is a function of how close α is to 1.

Our answer: Yes!

Two caveats:

(1) What if data are negative? Shouldn’t we define F(α) =
∑D

i=1 |At[i]|α ?

(2) Why the case α ≈ 1 is important ?
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The Non-Negativity Constraint

”God created the natural numbers; all the rest is the work of man.”

—- by German mathematician Leopold Kronecker (1823 - 1891)

Turnstile model, at = (it, It), At[it] = At−1[it] + It,

It > 0: increment, insertion, eg place orders

It < 0: decrement, deletion, eg cancel orders,

This talk: Strict Turnstile model At[i] ≥ 0, always.

One can only cancel an order if she/he did place the order!!

Suffices for almost all applications.
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Sample Applications of αth Moments (Especially α ≈ 1)

1. F(α) =
∑D

i=1 At[i]
α itself is a useful summary statistic

e.g., Rényi entropy, Tsallis entropy, are functions of F(α).

2. Statistical modeling and inference of parameters using method of moments

3. F(α) =
∑D

i=1 At[i]
α is a fundamental building element for other algorithms

Eg., estimating Shannon entropy of data streams
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Estimate Shannon Entropy of Data Streams

Definition of Shannon Entropy

H = −
D
∑

i=1

At[i]

F(1)
log

At[i]

F(1)
, F(1) =

D
∑

i=1

At[i]

Many papers/algorithms in theoretical CS and databases on estimating entropy.

Three Examples (all used α moments with α → 1)
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• Difference of Two Moments (Zhao, et. al., 2007)

lim
∆→0

x1+∆ − x1−∆

2∆
= x log(x), (α = 1 ± ∆),

lim
∆→0

1

2∆

(

D
∑

i=1

At[i]
1+∆ −

D
∑

i=1

At[i]
1−∆

)

→
D
∑

i=1

At[i] log At[i].

• Rényi Entropy (Harvey, et. al., FOCS’08)

Hα =
1

1 − α
log

F(α)

Fα
(1)

→ H, as α → 1

• Tsallis Entropy (Harvey, et. al., FOCS’08)

Tα =
1

α − 1

(

1 − F(α)

Fα
(1)

)

→ H, as α → 1

Rényi entropy and Tsallis entropy are themselves useful, e.g., in physics
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Our Technique: Skewed Stable Random Projections

Original data stream signal: At[i], i = 1 to D. eg D = 264

Projected signal: Xt = At × R ∈ R
k , k is small (eg k = 50 ∼ 100)

Projection matrix: R ∈ R
D×k, entries are random

This talk : Skewed projections

Sample entries of R i.i.d. from a skewed stable distribution.

——————————————————-

Previous classical work: symmetric stable random projections (Indyk, JACM 2006)

Sample R from a symmetric stable distribution.
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Incremental Projection

Linear Projection: Xt = At × R

+

Linear data model: At[it] = At−1[it] + It

=⇒
Conduct Xt = At × R incrementally.

Generate entries of R on-demand
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Recover F(α) from Projected Data

Xt = (x1, x2, ..., xk) = At × R

R = {rij} ∈ R
D×k, rij ∼ S (α, β, 1)

S (α, β, γ): α-stable, β-skewed distribution with scale γ

Then, by stability, at any t, xj ’s are i.i.d. stable samples

xj ∼ S

(

α, β, F(α) =
D
∑

i=1

At[i]
α

)

=⇒ A statistical estimation problem.
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Review of Skewed Stable Distributions

Z follows a β-skewed α-stable distribution if Fourier transform of its density

FZ(t) = E exp
(√

−1Zt
)

α 6= 1,

= exp
(

−F |t|α
(

1 −
√
−1βsign(t) tan

(πα

2

)))

,

0 < α ≤ 2, −1 ≤ β ≤ 1. The scale F > 0. Z ∼ S(α, β, F )

If Z1, Z2 ∼ S(α, β, 1), independent, then for any C1 ≥ 0, C2 ≥ 0,

Z = C1Z1 + C2Z2 ∼ S (α, β, F = Cα
1 + Cα

2 ) .
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If C1 and C2 do not have the same signs, the “stability” does not hold.

Let Z = C1Z1 − C2Z2, with C1 ≥ 0 and C2 ≥ 0.

Because F−Z2(t) = FZ2(−t),

FZ(t) = exp
(

−|C1t|α
(

1 −
√
−1βsign(t) tan

(πα

2

)))

× exp
(

−|C2t|α
(

1 +
√
−1βsign(t) tan

(πα

2

)))

,

Does NOT represent a stable law, unless β = 0 or α = 2, 0+.

Symmetric (β = 0) projections work for any data,

but if data are non-negative, benefits of skewed projection are enormous.
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The Statistical Estimation Problem

Task : Given k i.i.d. samples xj ∼ S
(

α, β, F(α)

)

, estimate F(α).

• No closed-form density in general, but closed-form moments exit.

• A Geometric Mean estimator based on positive moments.

• A Harmonic Mean estimator based on negative moments.

• Both estimators exhibit exponential error (tail) bounds.
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The Moment Formula

Lemma 1 If Z ∼ S(α, β, F(α)), then for any −1 < λ < α ,

E
(

|Z|λ
)

= F
λ/α
(α) cos

(

λ

α
tan−1

(

β tan
(απ

2

))

)

×
(

1 + β2 tan2
(απ

2

))
λ
2α

(

2

π
sin
(π

2
λ
)

Γ

(

1 − λ

α

)

Γ (λ)

)

,

Proof: ArXiv report, “Compressed Counting” Feb 2008.

Partial proof can be found at Zolotarev (1986), Hardin (1984).

λ = α
k =⇒ an unbiased geometric mean estimator.
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Nice things happen when β = 1.

Lemma 2 When β = 1, then, for α < 1 and −∞ < λ < α ,

E
(

|Z|λ
)

= E
(

Zλ
)

= F
λ/α
(α)

Γ
(

1 − λ
α

)

cosλ/α
(

απ
2

)

Γ (1 − λ)
.

Nice consequence :

Estimators using negative moments will have infinite moments.



Ping Li Compressed Counting Cornell University MMDS June, 2008 20

The Geometric Mean Estimator for all β

Xt = (x1, x2, ..., xk) = At × R

F̂(α),gm,β =

∏k
j=1 |xj |α/k

Dgm,β
,

Dgm,β = cosk

(

1

k
tan−1

(

β tan
(απ

2

))

)

×

(

1 + β2 tan2
(απ

2

))
1
2

[

2

π
sin
(πα

2k

)

Γ

(

1 − 1

k

)

Γ
(α

k

)

]k

.

Which β ? : Variance of F̂(α),gm,β is decreasing in β ∈ [0, 1].
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Var
(

F̂(α),gm,β

)

= F 2
(α)Vgm,β

Vgm,β =

[

2 − sec2

(

1

k
tan−1

(

β tan
(απ

2

))

)]k

×
[

2
π sin

(

πα
k

)

Γ
(

1 − 2
k

)

Γ
(

2α
k

)]k

[

2
π sin

(

πα
2k

)

Γ
(

1 − 1
k

)

Γ
(

α
k

)]2k
− 1,

A decreasing function of β ∈ [0, 1]. =⇒ Use β = 1, maximally skewed
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The Geometric Mean Estimator for β = 1

F̂(α),gm =

∏k
j=1 |xj |α/k

Dgm

Lemma 3

Var
(

F̂(α),gm

)

=















F 2
(α)

k
π2

6

(

1 − α2
)

+ O
(

1
k2

)

, if α < 1

F 2
(α)

k
π2

6 (α − 1) (5 − α) + O
(

1
k2

)

, if α > 1

As α → 1, the asymptotic variance → 0.
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A Geometric Mean Estimator for Symmetric Projections β = 0

(Li, SODA’08)

Symmetric projections, ie rij ∼ S(α, β = 0, 1).

Projected data: xj ∼ S
(

α, β = 0, F(α)

)

, j = 1 to k.

Geometric mean estimator (later used by Harvey et. al. FOCS’08):

F̂(α),gm,sym =

∏k
j=1 |xj |α/k

Dgm,sym

Var
(

F̂(α),gm,sym

)

=
F 2

(α)

k

π2

12

(

2 + α2
)

+ O

(

1

k2

)

,

As α → 1, using skewed projections achieves an “infinite improvement”.
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A Better Estimator Using Harmonic Mean, for α < 1

Skewed Projections (β = 1)

F̂(α),hm =
k

cos(απ
2 )

Γ(1+α)
∑k

j=1 |xj |−α

(

1 − 1

k

(

2Γ2(1 + α)

Γ(1 + 2α)
− 1

))

.

Advantages of F̂(α),hm

• Smaller variance

• Smaller tail bound constant

• Moment generating function exits.
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Comparing Asymptotic Variances
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Now What?

Question 1: Is Compressed Counting (skewed projections) practical?

Answer: Yes, it is as practical as symmetric stable random projections

Question 2: Does Compressed Counting demonstrate improvement on real data?

Answer: Yes, definitely.

Question 3: Precisely, how large k should be?

Answer: k = O
(

1/ǫ2
)

for general α, but k = O (1/ǫ) only when α → 1.

The bounds are precisely specified.
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Sampling From Maximally-Skewed Stable Distributions

To sample from Z ∼ S(α, β = 1, 1):

W ∼ exp(1) U ∼ Uniform
(

−π

2
,

π

2

)

ρ =







π
2 α < 1

π
2

2−α
α α > 1

Z =
sin (α(U + ρ))

[cosUcos (ρα)]1/α

[

cos (U − α(U + ρ))

W

]
1−α

α

∼ S(α, β = 1, 1)

cos1/α (ρα) can be removed and later reflected in the estimators.

Sampling from Skewed distributions is as easy as from symmetric distributions .
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Experiments on Real Data (Word “A”)

Comparing mean square errors (MSE): Compressed Counting
symmetric projection
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Estimate Shannon entropy using Rényi entropy

0.8 0.9 1 1.1 1.2
10

−4

10
−3

10
−2

10
−1

10
0

Shannon entropy
 (by Renyi)

R
at

io
s 

of
 M

S
E

: C
C

/s
ym

α

 

 

Geometric
Harmonic

Compressed Counting is practical and highly effective!
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Tail Bounds of the Geometric Mean Estimator

Lemma 4

Pr

(

F̂(α),gm − F(α) ≥ ǫF(α)

)

≤ exp

(

−k
ǫ2

GR,gm

)

, ǫ > 0,

Pr

(

F̂(α),gm − F(α) ≤ −ǫF(α)

)

≤ exp

(

−k
ǫ2

GL,gm

)

, 0 < ǫ < 1,

ǫ2

GR,gm

= CR log(1 + ǫ) − CRγe(α − 1)

− log

(

cos

(

κ(α)πCR

2

)

2

π
Γ
(

αCR
)

Γ
(

1 − CR
)

sin

(

παCR

2

))

CR is the solution to to

− γe(α − 1) + log(1 + ǫ) +
κ(α)π

2
tan

(

κ(α)π

2
CR

)

−

απ/2

tan
(

απ
2

CR

) −

Γ′
(

αCR
)

Γ
(

αCR
)

α +
Γ′

(

1 − CR
)

Γ
(

1 − CR
)

= 0,
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The Sample Complexity Bound

Let G = max{GL,gm, GR,gm}.

Bound the error (tail) probability by δ, the level of significance (eg 0.05)

Pr

(

|F̂(α),gm − F(α)| ≥ ǫF(α)

)

≤ 2 exp

(

−k
ǫ2

G

)

≤ δ

=⇒ k ≥ G

ǫ2
log

2

δ

Sample Complexity Bound (large-deviation bound):

If k ≥ G
ǫ2 log 2

δ , then with probability at least 1 − δ, F(α) can be approximated

within a factor of 1 ± ǫ.

The O
(

1/ǫ2
)

bound in general can not be improved — Central Limit Theorem
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The Sample Complexity for α = 1 ± ∆

Lemma 5 For fixed ǫ, as α → 1 (i.e., ∆ → 0),

GR,gm =
ǫ2

log(1 + ǫ) − 2
√

∆log (1 + ǫ) + o
(√

∆
) = O (ǫ)

If α > 1, then

GL,gm =
ǫ2

− log(1 − ǫ) − 2
√

−2∆ log(1 − ǫ) + o
(√

∆
) = O (ǫ)

If α < 1, then

GL,gm =
ǫ2

∆
(

exp
(

− log(1−ǫ)
∆

− 1 − γe

))

+ o
(

∆ exp
(

1
∆

))

= O
(

ǫ exp
(

− ǫ

∆

))

For α close to 1, sample complexity is O (1/ǫ) not O
(

1/ǫ2
)

.

Not violating fundamental principles.
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Applications in Method of Moments

For example, zi, i = 1 to D are collected from data streams. zi’s follow a

generalized gamma distribution zi ∼ GG(θ1, θ2, θ3):

E(zi) = θ1θ2, Var(z) = θ1θ
2
2, E (z − E(z))3 = (θ3 + 1)θ1θ

3
2

Estimate θ1, θ2, θ3 using

• First three moments (α = 1, 2, 3) =⇒ Computationally very expensive

• Fractional moments (eg. α = 0.95, 1.05, 1) =⇒ Computationally cheap

Will this affect estimation accuracy? Not really, because D is large!
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A Simple Example with One Parameter

Suppose zi ∼ Gamma(θ, 1). The data zi’s are collected from data streams.

Estimate θ by αth moment: E(zα
i ) = Γ(α + θ)/Γ(θ) .

Solve for θ̂ from the moment equation:

Γ(α + θ̂)

Γ(θ̂)
=

1

D

D
∑

i=1

zα
i

Var
(

θ̂
)

≈ 1

D

(

Γ(2α + θ)Γ(θ)

Γ2(α + θ)
− 1

)

1
(

Γ′(α+θ)
Γ(α+θ) − Γ′(θ)

Γ(θ)

)2
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Var(θ̂)|α=0 ≈ 0.608
D , Var(θ̂)|α=1 ≈ 1

D ,
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Trade-off:

α = 1, higher variance, fewer counters

α = 0, smaller variance, more counters

Since D is very large, the difference between 0.608
D and 1

D may not matter.
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Summary

Goal: Efficiently count the αth moment F(α) =
∑D

i=1 At[i]
α.

Since At is dynamic, an exact answer requires D counters

Intuition: An intelligent counting system should resemble a simple counter for α

close 1, with complexity varying continuously as a function of how close α is to 1.

Compressed Counting (CC) is such an intelligent counting system, based on

maximally-skewed α-stable random projections. =⇒ a statistical estimation task.

Estimators: The geometric mean and harmonic mean estimators. Sample

complexity = O (1/ǫ) for α close to 1, instead of the usual O
(

1/ǫ2
)

bound.
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Applications:

1. F(α) =
∑D

i=1 At[i]
α itself is a useful summary statistic,

e.g., the sum in the future (interest/decay), Rényi entropy, Tsallis entropy.

2. Statistical modeling and inference of parameters using method of moments

3. F(α) =
∑D

i=1 At[i]
α is a fundamental building block for other algorithms

e.g., estimating entropy of data streams

Limitation: CC can not be used for estimating pairwise distances!!
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Thank you!


