
Provable Spectral Clustering Algorithms

“Spectral Clustering” widely used in practice

and enjoys much empirical success. Here : in

what situations is one able to prove that it

succeeds in polynomial time ?

Many alg first do approximate clustering which

correctly clusters most points and then clean-

up to fix the mis-clustered points. First part

usually much simpler - useful for MMDS.

Success (Strictly) : There is one “intended”

clustering the data “generator” has in mind

and the alg finds precisely that clustering. Def-

inition avoids subjective features.
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First Cut : Assume data is generated at ran-

dom and different pieces of data are statisti-

cally independent.

Bopanna; Alon, Kahale; McSherry; Vempala,

Wang;....

Ulterior Motive Cannot seem to handle worst-

case. So lets try random case.

Not so ulterior a motive Perhaps attacking the

random case will give us insights into the gen-

eral problem.

Will also describe : Moving away from Ran-

dom Models. Purely Linear Algebra sufficient

conditions for success ?

(Known : Spectral works for Planar Graphs

with bounded degrees, Spielman, Teng;)
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Mixture Models

k probability densities (or discrete distributions)

on Rn with centers µ1, µ2, . . . µk. “Data Gener-

ator” picks given numbers of points according

to the k densities. Alg must cluster into the

(those) k clusters.

If centers are given !?! and point clouds are

well-separated, can cluster according to the

nearest center.

Even if centers are not given, but separations

are twice as much - pick any point and put

points close to it into one cluster. Repeat....

distance-based clustring
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Notation (throughout) :

Points (to be clustered) are in n space.

Max. Standard deviation in any direction ≤ σ

Suppose now, the densities are spherical Gaus-

sians. Points are at distance about

O(
√

nσ)

from center. Inter-center separation of Ω(
√

nσ)

allows distance based clustering. Improvements

by Dasgupta, Schulman; Arora, Kannan.
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A matrix with given points as rows.

Best Fit k−Subspace : Note subspace spanned

by top k singular vectors of A is the k−dim

space minimizing the sum of squared distances

to the points.

Vempala, Wong : For spherical Gaussian den-

sities, symmetry implies Best fit k subspace

passes through the centers of the k densities.

SVD yields the sub-space spanned by the cen-

ters.

Project to that subspace (Principal Compo-

nent Analysis. Now inter-center separation of√
kσ would suffice to do distance-based clus-

tering.
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A “different” context where Spectral Cluster-

ing provably works :

RANDOM matrix A : Assume either

Aij are INDEPENDENT (not identical) ran-

dom variables.

OR Above-diagonal Aij are independent (not

identical) and A is symmetric.

We dub this the FULL-INDEPENDENCE as-

sumption.

Rows of A are the points to be clustered.
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Why full independence ?

Random Graph Model : edges are chosen in-

dependently to be in/out.

Theoretical model with practical applications.

Ulterior Motive : Much beautiful theory of

random symmetric matrices, starting with the

Physicist Wigner.
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Another mixture model

A is n × n. There is an UNKNOWN partition

of {1,2, . . . n} into a constant number of parts

(clusters) - V1, V2, . . . Vk and a probability prt

associated with edges between Vr and Vt.

A is a 0-1 matrix (a graph) generated under

FULL INDEPENDENCE with these edge prob-

abilities.

Given just A, find the partition and the proba-

bilities.

4-word Description : Given A, find EA (the

entry-wise expectation of A).
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Wigner-type Theorem (Füredi, Komlos; Vu)

: Suppose A is symmetric, fully independent

n× n matrix with

Max Variance of any entry at most σ AND

|Aij| ≤ 1.

Then with high probability, the largest eigen-

value of A− EA is bounded :

||A− EA|| ≤ O(
√

nσ).

A ≈ EA in spectral norm. In fact, Wigner says

top eigen-value is O( length of one row ) !

Almost no “correlation” among rows.

McSherry : A ≈ EA and EA is of rank k imply

: the best rank k approx to A gives us approx-

imately EA. Can be used to cluster all but ε

fraction.
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Clean-up Phase : Correct the mis-clustered

points. Currently, tends to be technical, hard

and often calling for strong added assumptions

on the model.

Major Problem Clean up the clean-up phase.
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Beyond Full Independence

New Models - no more just Random Graphs.

Rows of A can represent objects.

Columns of A are features.

Example : Document-Term Matrix : Aij is

the number of occurances of j th term in i th

document.

Example : Consumer-Product Matrix : Aij the

preference the i th consumer has for the j th

product.

Again, model is EA. Given A. Infer model.

Azar, Karlin, Fiat, McSherry, Saia.
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Can we assume Full Independence ?

Consumers may be reasonably assumed to func-

tion independently of each other. But does

one consumer choose products to buy inde-

pendent;y of each other.

At least budget constraints ?

Documents in a collection may be indepen-

dent random variables. But one cannot as-

sume a particular document chooses indepen-

dently whether to include/exclude each word.

: Partial Independence Rows of A are indepen-

dent vector-valued random variables. Columns

possibly correlated.

Joint with : A. Dasgupta, J. Hopcroft, and P.

Mitra.
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Can we carry out these algorithms under partial

independence ??

Theorem Suppose A is an m × n matrix with

independent rows (vector-valued random vari-

ables). Suppose

(i) the maximum variance of any row in any

direction is at most σ2 and

(ii) | row− E(row)| ≤ M . Then, whp,

||A− EA|| ≤ O((logn)c)(M +
√

nσ).

Remark Relaxing full indpendence to partial

independence costs only polylog factors.

Proof based on Functional Analysis work of

Rudelson, Lust-Picard, Milman,....
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What are minimal Linear Algebra sufficient con-
ditions (no randomness) under which spectral
clustering works ?? Again, say points are the
rows of A. There is a positive real σ (playing
the role of std. dev. if the data were random)
such that

(i) Spectral Norm bound There exists a matrix
C (of cluster centers) with each row one of k
distinct vectors such that

||A− C|| ≤ c
√

nσ.

(ii) Separation Each pair of distinct centers
(rows of C) are separated by at least O(poly(k)σ).

(iii) Let Â denote projection to the row space
of C and (i) denote i th row. Assume (each
point is nearer its own cluster center than other
cluster centers in the projection) :

|Â(i)−C(i)| ≤ |Â(i)−C(j)|−poly(k)σ , ∀i,∀j : C(j) 6= C(i).

Conjecture : Under the assumptions, spectral
clustering can be used to cluster perfectly.
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Planted Clique Problem

Random Graph G(V, E) with edge probabilities

1/2. (|V | = n).

Hidden Clique of size p. Find it.

If p ≥ c
√

n logn, then the clique vertices have

highest degrees and this gives the clique away.

If p ≥ c
√

n, can still find them using “Spectral

Methods” (eigenvalues). (Alon, Krievelevich,

Sudukoff).

Major open question : Can we find the hidden

clique assuming only p > Ω(n1/3),Ω(n(1/2)−ε)

??
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Define an n× n× n array A by :

Aijk = ±1

if the number of edges of the graph among

{i, j, k} is odd or even respectively.

A has a solid block of p×p×p 1’s on P ×P ×P

(P is the hidden clique). But elsewhere, the

entries of A should be random ±1 and so in

other blocks, the total will be close to zero

because of cancellations.

So, if we can find this large block of “highly

correlated” entries, we should be done.
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Theorem (A. Frieze, K.) If A is an n×n×n array

constructed as above from a purely random

graph (no hidden clique), Whp, for any unit

length vector x,

|
∑

ijk

Aijkxixjxk| ≤ c
√

n(logn)2.

[A generalization of Wigner-type Theorem to

3-dimensional arrays.]

The unit length vector u which puts 1/
√

p on

each i ∈ P gives for our A - constructed from

random graph + hidden clique:
∑

ijk

Aijkuiujuk = p3/2.

If p > cn1/3(logn)2,, then p3/2 > c
√

n(logn)2.

Can we find maxima of such cubic forms -∑
ijk Aijkxixjxk ??
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