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Sapphire: using data mining techniques to address
the data overload problem

= We analyze science data from experiments, observations,
and simulations: massive *and* complex

= Sapphire has a three-fold focus

» research in robust, accurate, scalable algorithms
[ * modular, extensible software

 analysis of data from practical problems
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Scientific data mining - from a Terabyte to a
Megabyte
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An iterative and interactive process
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The Sapphire system architecture: flexible, |
portable, scalable
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<--> User Input & feedback
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The modular software allows us to meet the
needs of different applications

Graphical Command-line
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Sapphire libraries
Scientific data processing,

dimension reduction,
pattern recognition

Fluid mix, turbulence
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Classification of Bent-double Galaxies in the FIRST Survey

Sapphire: Erick Cantu-Paz, Imola Fodor, Chandrika Kamath, Nu Ai Tang

FIRST astronomers: Bob Becker, Michael Gregg,
Sally Laurent-Muehleisen (LLNL), and Rick White (STScl)
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Classifying radio-emitting galaxies with a bent-
double morphology

= Faint Images of the Radio Sky at Twenty cm (FIRST)

Using the NRAO Very Large Array, B configuration

10,000 square degrees survey, ~90 radio galaxies / degree?
1.8" pixels, resolution 5, rms 0.15mJy

= Image maps and catalog available
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FIRST data set: Detecting bent-doubles in 250GB

image data, 78MB catalog data

Image Map R

1150
pixels

: Catalog
1550 pixels ] 720K entries
~32K image maps, 7.1MB each 64 pixels
Catalog RA DEC Peak Flux Major Axis Minor Axis Position Angle
entry \ (mJy/bm) (arcsec) (arcsec) (degrees)
005625 -011543 25.38 7.39 2.23 37.9
Radio 005626 -011557  5.50 18.30 14.29 942
Galaxy 005624 -011631 6.44 19.34 10.19 39.8
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Our approach for classifying radio-galaxies using
features from the catalog

= Group catalog entries to identify a galaxy
* 1 entry: unlikely to be bent-doubles
« > 3-entry: all “interesting”
 classify 2- and 3-entry galaxies separately
= Focus on the 3-entry galaxies
« 195 training examples; 167 bents
+ extract relevant features «—— Iterate till
« build a decision tree | error < 10%
 use the tree to classify the 15K unlabeled galaxies

= Goal: identify likely bent-double galaxies for further
observations by astronomers
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Our approach for classifying radio-galaxies using
features from the catalog

= Group catalog entries to identify a galaxy
* 1 entry: unlikely to be bent-doubles
e > 3-entry: all “interesting”
 classify 2- and 3-entry galaxies separately
= Focus on the 3-entry galaxies
« 195 training examples; 167 bents
» extract relevant features«—— |[terate till
« build a decision tree | error <10%
» use the tree to classify the 15K unlabeled galaxies

= Goal: identify likely bent-double galaxies for further
observations by astronomers
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Challenge: validation of results is subjective,
tedious, and inconsistent

= QOriginal training set: 195 (167 bents, 28 non-bents)
» Validated data: 290 (92 bents, 198 non-bents)
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We tried building new models with the larger
balanced training set with 485 examples

Error rate (std. error) — 10 runs of 10-fold cross validation

Method Gini (no pruning) Gini (pruning)
Single tree 22.79 (0.31) 19.77 (0.18)
Histogram-based (10 trees) | 18.69 (0.28) 18.27 (0.30)
Sampling-based (10 trees) |18.21 (0.23) 17.31 (0.17)
Adaboost (10 trees) 21.87 (0.42) 20.40 (0.45)
Bagging (10 trees) 19.40 (0.28) 18.35 (0.34)
ArcX4 (10 trees) 20.48 (0.39) 20.12 (0.20)

= The error rate is now ~20% in comparison to 10% with
the smaller training data set
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Observations: good quality training data is hard
to find; interpret accuracy results with caution

= Why did the error rate go up?
* a more balanced (= different) training set
« still using features suited for old training set

* new galaxies added were borderline — therefore,
likely to be misclassified

= So, what do we do next?
* iterate and refine the features for new training data
« recall: goal - identify galaxies for further observation

= We used the different methods to rank-order the galaxies
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Analysis of Bubbles and Spikes in Rayleigh-Taylor
Instability

Sapphire: Abel Gezahegne, Chandrika Kamath

Physicist: Paul L. Miller (LLNL)
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Goal: use image analysis to characterize and
track bubbles and spikes

= DNS simulation of the Rayleigh-Taylor instability

* regular Cartesian grid: 3072**3 grid points
« 5 variables per grid point
o 249 time steps

« 80TB analysis data

I -
' III\
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The first step is to define a bubble...

o “ i
192

A slice through the density variable at time steps 100, 200, 300, 400

8 400

Convention: Smaller values are darker in image.
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... which can be a challenge, especially at the
later time steps

| 700
Density variable at time :

steps 500, 600, 700

192
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Challenges: no precise definition of bubbles,
range of scales, massive data, distributed data

= We used a progressive approach to the analysis
* asmall subset of the data at every 50-th time step
 all data at every 50-th time step
« all the data — only once!
= We focused on algorithms which
* were computationally inexpensive
» applicable to distributed data
* had few parameters

» were relatively insensitive to choice of parameters
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We used the density to find the bubble boundary
and considered its height as a 2-D image

192
Original
fluid
interface

144

Height-depth map
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Bubble counting — Method 1: traditional 2D
region growing (time step 50)

2800 seconds to process a 3072x3072 image
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Bubble counting — Method 2: domain-specific
approach using the mag-X-Y velocity (time step 50)

X velocity
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Bubble counting — Method 2: identifying the
bubble tips

Mag X-Y velocity Height-depth map Bubble tips

8 seconds to process a 3072x3072 image

Lawrence Livermore National Laboratory &
22

11



How do we know we have the right results? use
different methods + domain expertise to verify...

DMS bubble count, Magnitude XY Velocity and Segmentation Approaches
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... and investigate the sensitivity of the results to

chanw the 3-D region-growing threshold
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Observations

= Try to exploit domain-specific characteristics of data
= To gain confidence in results
* try different methods

» conduct studies to observe sensitivity of results to
algorithm parameters

= To handle massive data sets
* try simple algorithms — they often work very well!
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Analysis of Orbits in Poincaré Plots

Sapphire: Chandrika Kamath, Abraham Bagherjeiran, Erick Cantu-Paz,
Siddharth Manay
Physicists: Neil Pomphrey, Don Monticello, Josh Breslau, and Scott
Klasky (PPPL)
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We want to automatically classify orbits in a
Poincaré plot

National Compact Stellarator Experiment Schematic of a puncture plot
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A sample Poincaré plot from computer simulations
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We consider four classes of orbits — determined by

the location of the initial point

Quasi-periodic

Stochastic

Island chain

Separatrix
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Challenge: There is a large variation in the orbits of

any one class, e.g. quasiperiodic orbits
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Variation in island-chain orbits
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Variation in separatrix orbits
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Observation: feature extraction is difficult, but
key to accurate results

= Variation in the data may make it difficult to
* identify good features
 extract them in a robust way

Identifying missing orbits
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Summary: challenges to mining scientific data

= Quality of the data — noise in data, small and
unbalanced training data, ...

= Massive size of the data

= |dentification and extraction of good features

= Variation in the data: challenge to algorithms

= Lack of understanding of the scientific phenomena
= Need to verify results

= Reasoning in the presence of uncertainty
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